UNIVERSITI PUTRA MALAYSIA

PREVALENCE AND MOLECULAR CHARACTERISATION
OF VANCOMYCIN RESISTANT ENTEROCOCCI (VRE)
ISOLATED FROM BEEF

NIMITA HASMUKH FIFADARA

FSMB 2001 21
PREVALENCE AND MOLECULAR CHARACTERISATION OF VANCOMYCIN RESISTANT ENTEROCOCCI (VRE) ISOLATED FROM BEEF

By

NIMITA HASMUKH FIFADARA

Thesis Submitted in Fulfilment of the Requirement for the Degree of Doctor of Philosophy in the Faculty of Food Science and Biotechnology Universiti Putra Malaysia

August 2001
Dedicated to Taj and my parents
Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

PREVALENCE AND MOLECULAR CHARACTERIZATION OF VANCOMYCIN RESISTANT ENTEROCOCCI (VRE) ISOLATED FROM BEEF

By

NIMITA HASMUKH FIFADARA

August 2001

Chairman: Professor Dr. Gulam Rusul Rahmat Ali

Faculty: Food Science and Biotechnology

The present study was to isolate VRE from imported beef. In Malaysia, beef is the major consuming animal originated food and most of the beef is imported from those countries where the use of antibiotics in the feed of animals as a growth promoter was a common practice and was licensed. Out of 150 samples, 17 (11.3%) were positive for VRE. Sixty-seven (67) VRE were isolated from frozen imported beef (48) and burgers (19). The species identified were *E. faecium* (35), *E. faecalis* (22), *E. faecalis* asaccharolytic variant (3), *E. pseudoavium* (3), *E. gallinarum* (2), *E. maldoratus* (1) and *E. avium* (1). Various plating media and broths were evaluated for the isolation of VRE. Azide Dextrose broth (ADB) with vancomycin concentration of 50 µg/ml for 48 h enrichment and plating on Slanetz and Bartley agar (SBA) with vancomycin concentration of 50 µg/ml was concluded best for isolation of VRE. In the present study antibiotic resistance patterns and the rates of resistance of 67 isolates were evaluated. It
was observed that all the isolates were multiple resistant and resistant to ten of the sixteen antibiotics tested. All isolates were 100% resistant to streptomycin, vancomycin and teicoplanin. Other isolates were resistant between 94% to 97% to other eight antibiotics. Penicillin, ampicillin and chloremphenicol showed the least resistance namely, 26.8, 38.8 and 58.2%, respectively. Hemolytic activity on horse blood agar showed that 29 out of 67 isolates (43.3%) were β-hemolytic indicating to have potency to be pathogenic. The plasmid profiling revealed that 39 (58.2%) out of 67 bear plasmids of the range 1.0 to 35.8 MDa. Using specific PCR, vanA gene was detected among 65 of 67 isolates (97%) which is considered to make these isolates resistant to vancomycin. The molecular epidemiology of *E. faecium* and *E. faecalis* using RAPD-PCR technique showed the difference in the genetic relatedness of the strains isolated from frozen imported beef and beef burgers. It showed the genetic relatedness in terms of % similarity from the dendrogram prepared between all the strains taken into study. RAPD-PCR gave high discriminating results between all the strains. The work clearly reveals that beef can be a vehicle for VRE in Malaysia. The need for intervention to control or eliminate antibiotic resistant *Enterococcus* from foods of animal origin has been made clearer by the results presented in this study.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan untuk Ijazah Doktor Falsafah

PREVALEN DAN PENCIRIAN MOLIKULAR ENTEROKOKI RINTANG VANKOMISIN (VRE) DARI PEMENCILAN DAGING LEMBU MENTAH DAN YANG DIPROSES

Oleh

NIMITA HASMUKH FIFADARA

Ogos 2001

Pengerusi: Professor Dr. Gulam Rusul Rahmat Ali

Fakulti : Sains Makanan dan Bioteknologi

Dalam kajian yang dijalankan, adalah bertujun untuk memencilkan VRE daripada daging lembu. Daging lembu dipilih sebagai sumber sampel kerena ianya dimakan oleh sebahagian besar populasi dan kebanyakan daging lembu diimpot dari negara-negara dimana antibiotik-antibiotik banyak digunakan dalam makanan haiwan untuk menggalakkan tumbesaran yang cepat. Enam puluh tujuh (67) VRE dipencilkan dari daging lembu mentah (87) dan yang telah diproses (63). Spesis-spesis yang dikenalpasti melalui ujian biokimikal secara konvensional adalah E. faecium (35), E. faecalis (22), E. faecalis asaccharolytic variant (3), E. pseudoavium (3), E. gallinarum (2), E. maldoratus (1) dan E. avium (1). Berbagai jenis media, brot dan masa pengayaan juga telah dioptimiskan untuk mencilkan VRE. Azide Dextrose brot (ADB) dengan vankomosin pada
kepekatan 50 μg/ml selama 48 jam pengkayaan dan diplatkan atas Slanetz dan Bartley agar (SBA) dengan vankomosin pada kepekatan 50 μg/ml didapati sangat baik untuk pemencilan VRE. Corak kerintangan antibiotik menunjukkan bahawa pencilan-pencilan yang diperolehi sangat rintang terhadap kebanyakan antibiotik yang diuji dan aktiviti hemolitik diatas agar darah kuda memenjikan 29 daripada 67 pencilan (43.3%) adalah β-hemolitik menunjukkan mereka mempunyai potensi untuk menjadi patogenik. Profil plasmid menunjukkan bahawa 39 (58.2%) dari 67 membawa plasmid bersaiz antara 1.0 kepada 35.8 MDa. Dengan menggunakan kaedah PCR yang spesifik, gen vanA dikesan didalam 65 dari 67 pencilan (97%), yang menyebabkan mereka rintang kepada vankomisin. Epidemiologi molikular E. faecium dan E. faecalis dengan menggunakan taknik RAPD-PCR unjukkan perbezaan dari segi pertalian genetik pencilan-pencilan dari daging lembu mentah dan yang diproses. Ianya menunjukkan pertalian genetik dari segi % kesamaan dari dendrogram yang disediakan untuk untuh semua pencilan. RAPD-PCR memberi keputusan diskriminasi yang tinggi dikanalangan semua pencilan. Adalah dirumuskan bahawa daging lembu boleh menjadi satu pembawa VRE di Malaysia. Keperluan untuk pemantauan dan pengawalan kerintangan kepada antibiotik enterococcus yang berasal dari haiwan dapat dilihat dengan jelas daripada keputusan yang rolehi dalam kajian ini.
ACKNOWLEDGEMENTS

In The Name Of God, The Most Gracious
And Most Merciful

First and foremost, my heartfelt thanks to Almighty for giving me the strength and will power to complete this challenging task.

My utmost appreciation and gratitude to Professor Dr. Gulam Rusul Rahmat Ali, Chairman of Supervisory Committee, for his supervision, guidance, suggestions, kindness and scholarship which led to the completion of my Ph.D. study.

My sincere thanks to Supervisory Committee Associate Professor Dr. Son Radu for his dynamic help and advises throughout the molecular biology techniques and Dr. Zaiton Hassan for her suggestions and advice.

I am grateful to Dr. Lum Keang Yeang from Malaysian Agriculture and Research Development Institute and Dr. Tan Siang Hee from department of Biotechnology-UPM, for providing Gel Compar and Gel Doc to analyze the data.
I am thankful to Professor Dr. Patrice Courvalin; Institute of Pasteur Paris, and Dr. Guido Werner; Robert Koch Institute, Germany for providing VRE reference strains.

My sincere thanks to Professor Dr. Hassanah Mohd Ghazali, Associate Professor Dr. Saleha Abdul Aziz and Dr. Omar Arabi, for their advice and words of encouragement.

Special thanks to Ministry of Health Malaysia, for financial assistance through IRPA grant.

Also, my sincere thanks to all colleagues, staff of the faculty and friends who contributed one way or another towards the completion of my study.

Lastly, my heartfelt appreciation to Taj, my parents and brother for their love, support and encouragement.
I certify that an Examination Committee met on 20th August 2001 to conduct the final examination of Nimita Hasmukh Fifadara on her Doctor of Philosophy thesis entitled “Prevalence and Molecular Characterization of Vancomycin Resistant Enterococci (VRE) Isolated from Beef” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Abdul Manaf Ali, Ph.D.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairman)

Gulam Rusul Rahmat Ali, Ph.D.
Professor, Dean of Faculty of Food Science and Biotechnology
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Son Radu, Ph.D.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Zaiton Hassan, Ph.D.
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Larry Beuchat, Ph.D.
Professor,
Center for Food Safety
Universiti of Georgia
(Independent Examiner)

MOHD. GHAZALI MOHAYIDIN, Ph.D,
Professor/Deputy Dean of Graduate School,
Universiti Putra Malaysia

Date: 29 AUG 2001
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

AINI IDERIS, Ph.D.
Professor,
Dean of Graduate School,
Universiti Putra Malaysia

Date: 08 NOV 2001
I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or any other institutions.

NIMITA FIFADARA

Date: 29 Aug '2001
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION** ... 1
 Objectives of the Present Study 6

2. **LITERATURE REVIEW** .. 7
 Enterococci .. 7
 Taxonomy ... 7
 Habitat ... 10
 Identification .. 14
 Typing methods .. 15
 Pathogenesis .. 17
 Hospital Acquired Infections 18
 Epidemiology .. 19
 Vancomycin and it's Mode of Action 23
 Antibiotic Resistance .. 25
 High Level Aminoglycoside Resistance 26
 Beta Lactamase and Non Beta Lactamase Associated 29
 Penicillin Resistance ... 31
 Vancomycin Resistance .. 31
 Molecular Epidemiology of Vancomycin Resistance 36
 Sources of VRE from Food Origin 43
 Factors Influencing the Growth of VRE 48
 Media Formulation ... 48
 Temperature Survival .. 48
 Enrichment and Incubation Period 50
 Bile and High Salt Tolerance 52
 Risks of Antibiotic Use in Animal Feeds 52

3. **ISOLATION IDENTIFICATION AND COMPARISON OF ENRICHMENT BROTH AND PLATING MEDIA FOR VANCOMYCIN RESISTANT ENTEROCOCCI FROM**
Materials and Methods

Objectives

- Determination of Vancomycin Resistance
- Pyrolidonylarylaminidase Test
- Molecular Weight Determination of Plasmids
- Detection of Plasmid DNA Bands
- Extraction of Plasmid DNA
- Isolates
- Hemolysin Activity
- Extraction of Plasmid DNA
- Agarose Gel Electrophoresis And Staining
- Detection of Plasmid DNA Bands
- Molecular Weight Determination of Plasmids
- Results
- Discussion

Methods

- Enrichment
- Selective Plating
- Identification Procedures
- Pyrolidonylarylaminidase Test
- Determination of Vancomycin Resistance
- Culture Media and Growth Conditions
- Antibiotic Susceptibility Tests
- Molecular Weight Determination of Plasmids
- Agarose Gel Electrophoresis And Staining
- Extraction of Plasmid DNA
- Bacterial Strains
- Phenotypic Characterization
- DNA Preparation
- PCR Primer Sequences
- Method of Specific and Multiplex PCR
- Size Markers
- Results
- Discussion
RANDOM AMPLIFICATION OF POLYMORPHIC DNA
BY PCR OF E. FAECALIS AND E. FAECIUM ISOLATES... 131

Introduction ... 131
Objectives ... 134
Materials and Methods .. 134
 Bacterial Isolates and DNA Preparation 134
 DNA Primers .. 136
 RAPD-PCR Amplification 137
 Size Markers for PCR 137
 Dendrogram and Percent Similarity 138
Results ... 139
Discussion ... 159

7 GENERAL DISCUSSION .. 162

8 CONCLUSION ... 168

REFERENCES .. 170
APPENDIX ... 202
BIOGRAPHICAL SKETCH .. 208
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Enterococcal Species Groups as Determined by 16S rRNA Sequencing</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Members of the Genus Enterococcus</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Identification of Enterococcal Species</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Characteristics of Glycopeptide Resistant Enterococcus Species</td>
<td>32</td>
</tr>
<tr>
<td>2.5</td>
<td>Avoparcin as a Growth Promoter in Countries where the Occurrence of VRE in Animal Husbandary has been Investigated</td>
<td>44</td>
</tr>
<tr>
<td>2.6</td>
<td>Prevalence of Vancomycin Resistant Enterococcus faecium in Fecal Samples of Residents in a Vegetarian and Nonvegetarian nursing home, The Netherlands</td>
<td>45</td>
</tr>
<tr>
<td>2.7</td>
<td>Reports of VRE Worldwide from Animal and Clinical Sources</td>
<td>47</td>
</tr>
<tr>
<td>2.8</td>
<td>Log₁₀ Reduction in Bacterial Counts after Exposure at Different Temperature/Time Parameters</td>
<td>51</td>
</tr>
<tr>
<td>3.1</td>
<td>Prevalence of VRE Among Beef</td>
<td>65</td>
</tr>
<tr>
<td>3.2</td>
<td>Prevalence of VRE Species in Local Fresh and Frozen Imported Beef from Different Location</td>
<td>66</td>
</tr>
<tr>
<td>3.3</td>
<td>Prevalence of VRE in Frankfurters and Burgers Purchased from Supermarkets and Hawker Stalls</td>
<td>67</td>
</tr>
<tr>
<td>3.4</td>
<td>Enrichment Broth and Selective Media for Presumptive Positive Isolates and Confirmed Isolates from Positive Samples of Frozen Imported Beef</td>
<td>68</td>
</tr>
<tr>
<td>3.5</td>
<td>Enrichment Period Taken to Isolate VRE from Positive Beef Burger Samples with Number of Presumptive Positive and Confirmed Isolates</td>
<td>69</td>
</tr>
<tr>
<td>4.1</td>
<td>Antibiotics and R Category Breakpoints used in Susceptibility Testing</td>
<td>84</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentage of Monoresistant and Multiple Resistant Isolates From</td>
<td>88</td>
</tr>
</tbody>
</table>
4.3 Resistance of VRE Isolates to 16 Antibiotics
4.4 Antibiogramme Patterns of VRE Isolated from Frozen Imported Beef and Beef Burgers
4.5a Antibiogramme of *E. faecium* from Frozen Imported Beef
4.5b Antibiogramme of *E. faecium* from Beef Burgers
4.6a Antibiogramme of *E. faecalis* from Frozen Imported Beef
4.6b Antibiogramme of *E. faecalis* from Beef Burgers
4.7 Multiple Antibiotic Resistance (MAR) Index of VRE
4.8 Results of Hemolysin on Horse Blood Agar
4.9a Plasmid Profile of Vancomycin Resistant *E. faecium* and *E. avium* Isolated from Frozen Imported Beef
4.9b Plasmid Profile of Vancomycin Resistant *E. faecalis* Isolated from Frozen Imported Beef
4.10 Plasmid Profile of VRE Isolated from Beef Burgers
4.11 Correlation Between Antibiotic Resistance/ Susceptibility and Presence or Absence of Plasmid Among VRE Isolates
5.1 Primer Sequences for Diagnostic PCR
5.2 Optimization of Annealing Temperatures for Specific PCR
5.3 Multiplex PCR Assay Among Positive Controls and Five Test Isolates
6.1 Sequences of 11 10-mer Oligonucleotide Screened for RAPD-PCR analysis
6.2 DNA typing of *E. faecium* obtained by RAPD using Primer Gen15006 and 25011
6.3 DNA typing of *E. faecalis* obtained by RAPD using Primer Gen15001, 15002 and 15010
<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>35</td>
</tr>
<tr>
<td>2.5</td>
<td>39</td>
</tr>
<tr>
<td>2.6</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>99</td>
</tr>
<tr>
<td>4.2</td>
<td>100</td>
</tr>
<tr>
<td>4.3</td>
<td>101</td>
</tr>
<tr>
<td>4.4</td>
<td>102</td>
</tr>
<tr>
<td>4.5</td>
<td>103</td>
</tr>
<tr>
<td>4.6</td>
<td>104</td>
</tr>
<tr>
<td>5.1</td>
<td>123</td>
</tr>
<tr>
<td>5.2</td>
<td>125</td>
</tr>
<tr>
<td>5.3</td>
<td>127</td>
</tr>
</tbody>
</table>
6.1 Genomic DNA Isolation

6.2a RAPD-type of *E. faecium* with Primer 15006 (1-19)

6.2b RAPD-type of *E. faecium* with Primer 15006 (20-35)

6.3a RAPD-type of *E. faecium* with Primer 25011 (1-19)

6.3b RAPD-type of *E. faecium* with Primer 25011 (20-35)

6.4 RAPD-type of *E. faecalis* with Primer 15001 (1-19)

6.5 RAPD-type of *E. faecalis* with Primer 15002 (1-19)

6.6 RAPD-type of *E. faecalis* with Primer 15010 (1-19)

6.7 RAPD-type of *E. faecalis* with Primer 15001, 15002 and 15010 (20-22)

6.8 Dendrogram Showing Percent Similarity of all *E. faecium* Strains using Primer 15006

6.9 Dendrogram Showing Percent Similarity of all *E. faecium* Strains using Primer 15011

6.10 % Similarity Between all *E. faecalis* Strains using Primer 15001

6.11 % Similarity Between all *E. faecalis* Strains using Primer 15002

6.12 % Similarity Between all *E. faecalis* Strains using Primer 15010
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviated</th>
<th>Full form</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adenosine</td>
</tr>
<tr>
<td>ABA</td>
<td>ABA (Asculin Bile Azide agar)</td>
</tr>
<tr>
<td>ADB</td>
<td>Azide Dextrose Broth</td>
</tr>
<tr>
<td>Ap</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>B</td>
<td>Bacitracin</td>
</tr>
<tr>
<td>BEAA</td>
<td>Bile Esculin Azide Agar</td>
</tr>
<tr>
<td>C</td>
<td>Cytosine</td>
</tr>
<tr>
<td>Car</td>
<td>Carbenicillin</td>
</tr>
<tr>
<td>CATC</td>
<td>Citrate Azide Tween Carbonate agar</td>
</tr>
<tr>
<td>Caz</td>
<td>Ceftazimide</td>
</tr>
<tr>
<td>CDC</td>
<td>Center for Disease Control</td>
</tr>
<tr>
<td>CHEF</td>
<td>Contour-clamped Homogenous gel electrophoresis</td>
</tr>
<tr>
<td>Cm</td>
<td>Chloremphenicol</td>
</tr>
<tr>
<td>D-Ala-D-Ala</td>
<td>D-alanyl-D-alanine</td>
</tr>
<tr>
<td>D-Ala-D-Ser</td>
<td>D-alanyl-D-serine</td>
</tr>
<tr>
<td>dATP</td>
<td>deoxy’ Adenosine Triphosphate</td>
</tr>
<tr>
<td>dCTP</td>
<td>deoxy’ Cytosine Triphosphate</td>
</tr>
<tr>
<td>dGTP</td>
<td>deoxy’ Guanosine Triphosphate</td>
</tr>
<tr>
<td>DNA</td>
<td>DeoxyriboNucleic Acid</td>
</tr>
<tr>
<td>dTTP</td>
<td>deoxy’ Thymine Triphosphate</td>
</tr>
<tr>
<td>EBVA</td>
<td>Enterococcosel broth with vancomycin</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine Tetraacetate</td>
</tr>
<tr>
<td>Er</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>fGTC</td>
<td>fluorogenic Gentamicin-Thallous Carbonate agar</td>
</tr>
<tr>
<td>G</td>
<td>Guanisine</td>
</tr>
<tr>
<td>g</td>
<td>gravity</td>
</tr>
<tr>
<td>Gm</td>
<td>Gentamycin</td>
</tr>
<tr>
<td>HLR</td>
<td>High Level Resistance</td>
</tr>
<tr>
<td>ID 32 Strep</td>
<td>Identificatin 32 Streptococcus Kit</td>
</tr>
<tr>
<td>IS1251</td>
<td>Insertion Sequence 1251</td>
</tr>
<tr>
<td>IS6770</td>
<td>Insertion Sequence 6770</td>
</tr>
<tr>
<td>KA</td>
<td>Crystal violet Azide agar</td>
</tr>
<tr>
<td>KAA</td>
<td>Kanamycin Asculin Azide agar</td>
</tr>
<tr>
<td>Kb</td>
<td>Kilo base</td>
</tr>
<tr>
<td>KDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>KF</td>
<td>Kenner faecalis agar</td>
</tr>
<tr>
<td>Km</td>
<td>Kanamycin</td>
</tr>
<tr>
<td>Na</td>
<td>Nalidixic acid</td>
</tr>
</tbody>
</table>
Nor
LAB
LAP
MAR
MDR
ME
μl
μmol
mmol
MRS
MRSA
P
PCR
PFGE
PyMS
PYR
R
RAPD
RNA
rpm
S
SBA
ScS
SF68
SFA
Sm
T
Ta
TBE
TE
Te
Tec
Th
TITG
Tn1546
Tn3
TNF
TSB
TSN
V
V.P.
vanA
VanA
VRE
WHO

Norfloxacin
Lactic Acid Bacteria
Leucine aminopeptidase
Multiple antibiotic resistant
Multi Drug Resistant
M-Enterococcus agar
microlitre
micromole
millimole
de Man Rogosa and Sharpe
Methicillin Resistant *Staphylococcus aureus*
Penicillin G
Polymerase Chain Reaction
Pulse Field Gel Electrophoresis
Pyrolysis Mass Spectrometry
Pyrolidonylarylamidase
Resistant
Random Amplification of Polymorphic DNA
Ribonucleic Acid
rotations per minute
Susceptible
Slanetz and Bartley Agar
Streptococci Selective agar
Streptococcus faecium 68
Streptococcus faecalis Agar
Streptomycin
Th
Annealing Temperature
Tris-Borate-EDTA
Tris-EDTA
Tetracycline
Teicoplanin
Sulfamethizole
Thallous Acetate Tetrazolium Glucose agar
Transposon 1546
Transposon 3
Tumor Necrosis Factor
Tryptic Soya Broth
The Surveillance Network
Vancomycin
Voges Prosker's test
gene A of vancomycin resistance (italic)
Phenotypic resistance to vancomycin (no italic)
Vancomycin Resistant Enterococci
World Health Organization
CHAPTER 1

GENERAL INTRODUCTION

Enterococci, especially *E. faecium* and *E. faecalis*, may be considered as opportunistic pathogens. Infections usually occur nosocomially in persons who are debilitated, have an underlying disease, or have received medical instrumentation. However the incidence of infections caused by enterococci, their seriousness, and the increasing difficulty of treating such infections because of multiple antibiotic resistance, put these organisms among the most important emerging human pathogens. Sources of enterococci involved in human infection were thought to be from the patient’s endogenous microflora; however, person-to-person transmission of enterococci in hospital outbreaks as well as stool carriage of strains has been reported (Moellering, 1991; Jordens et al., 1994; Gordts et al., 1995; Gin et al., 1996).

As regular inhabitants of the intestine, enterococci may serve as indicators of fecal contamination, and are therefore of particular importance in food and public health microbiology. *E. faecalis* and *E. faecium* have been suspected, but remained unconfirmed, as causative agents of foodborne illness (Dack, 1956; Stiles, 1989). Several strains are used as probiotics and others are involved in a number of food fermentation for the production of certain cheeses and other fermented milk products. They are associated with natural fermentations such as in olives and fermented African products (Olasupo et al., 1994; Franz et al., 1997) and enterococci may become the predominant
population of in-package, heat-treated meats (Houben, 1982; Bell and DeLacey, 1984; Andre, Gordon and Ahmad, 1991). *E. faecalis* has assumed major importance in clinical microbiology as one of the leading causes of nosocomial infections, and both *E. faecium* and *E. faecalis* strains have developed resistance to most clinically used antibiotics, including the glycopeptide antibiotics vancomycin and teicoplanin. It is therefore important for food microbiologists to assess the significance of these bacteria in the foods.

Here the study is focused on whether pathogenic enterococci can be transmitted by foods and cause disease in a hospital setting, particularly with emphasis on vancomycin resistant enterococci (VRE). It was also thought that VRE originated in hospital environment and that they are disseminated to the community, but several researchers have proposed the opposite (Bates et al., 1993, 1994; Klare et al., 1995a,b; Das et al., 1997). A proposed source of VRE is farm animals in which there has been ergotropic use of avoparcin, a glycopeptide feed additive (Klare et al., 1995a,b; Das et al., 1997; Simonsen et al., 1998; Kruse et al., 1999). VRE have been isolated from a wide variety of farm animals, and these constitute an important reservoir of VRE that could be transmitted to hospital environment via contaminated meat (Klare et al., 1995a,b; Devriese et al., 1996). Chadwick et al. (1996) isolated VRE from chicken, pork and beef samples from retail markets in the UK and suggested that *vanA* resistance genes may be introduced into the community via the food chain. VRE were also isolated from sewage, farm animals and uncooked chicken by Bates et al. (1994), and more importantly, they showed that blood and urine isolates from different hospital patients and a porcine isolate
shared the same ribotyping pattern. These findings strongly suggest that food transmission occurred and, as a result, two European countries (Denmark and Germany) banned the use of avoparcin (Morrison et al., 1997), followed by a European Union-wide ban (McDonald et al., 1997).

In the USA the situation with respect to nosocomial VRE infections appear to differ considerably from that in Europe, because avoparcin has not been licensed for use as a feed additive (McDonald et al., 1997). A community prevalence survey failed to isolate VRE from healthy volunteers without hospital exposures and from environmental sources or probiotic preparations (Coque et al., 1996). In contrast to Europe, transmission of VRE in the USA does not appear to be from the community to the hospital, and food has not been implicated as a possible vehicle for transmission. This raises the question of the source of VRE isolates in the USA. McDonald et al. (1997) proposed that undetected community transmission of VRE might occur at low levels. Alternatively, it was proposed that enterococci acquired vancomycin resistance genes from an unknown gastrointestinal bacterium (Rice, 1996; Morrison et al., 1997).

The important question is whether enterococci originating from food and community sources possess an equally pathogenic potential, or whether a difference in pathogenicity exists among enterococci from different sources. Using molecular characterization of resistance determinants for enterococci isolated from processed meat products and cheeses, Teuber et al. (1996) showed them either to be similar or identical to corresponding determinants known from clinical samples. Valdivia et al. (1996) showed
that the incidence of antibiotic resistance, as well as aggregation response to sex pheromones, was much higher in clinical strains than isolates from municipal wastewater. Regarding the food chain, it is not clear whether and with which frequency VRE strains are transferred.

It has been reported that strains of enterococci from dairy products do not produce hemolysin (Arihara et al., 1993; Giraffa, 1995), and it was suggested that absence of hemolytic activity should be a selection criterion for starter strains for dairy use (Giraffa, 1995). It is now known that hemolytic activity is not necessarily associated with all clinical isolates; therefore, absence of hemolytic activity in enterococci isolated from food does not mean that these bacteria are non-virulent. So, in this study we have carried out on the presence of VRE in frozen imported beef, local beef, frankfurters and burgers and analyzed the distribution of different VRE species. We also investigated, whether enterococci isolated from foods has any potential for virulence by examining the hemolysin production.

Antibiotic resistant enterococci have been isolated from foods such as raw milk cheeses, raw meats and sausages (Batish and Ranganathan, 1986; Knudtson and Hardtman, 1993b). Perreten and Teuber et al. (1995) showed that enterococci isolated from Salami and Landjager-types of fermented sausage were frequently resistant to streptomycin and lincomycin, while isolates from Emmental and Appenzeller cheeses showed a high frequency of resistance to erythromycin, gentamicin, tetracycline and/or