MOLECULAR CHARACTERIZATION OF EMM-LIKE GENES IN THE MGA REGULON OF GROUP A STREPTOCOCCUS STRAIN ST4547

MAJID ESHAGHI

FSMB 2001 18
MOLECULAR CHARACTERIZATION OF EMM-LIKE GENES IN THE MGA REGULON OF GROUP A STREPTOCOCCUS STRAIN ST4547

By

MAJID ESHAGHI

Thesis Submitted in Fulfilment of the Requirement for the Degree of Doctor of Philosophy in the Faculty of Food Science and Biotechnology
Universiti Putra Malaysia

July 2001
Dedicated to

teachers who dedicate the best moments of their life to teach us for a better tomorrow
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

MOLeCULAR CHARACTERIZATION OF EMM-LIKE GENES IN THE MGA REGULON OF GROUP A STREPTOCOCCUS STRAIN ST4547

By

MAJID ESHAGHI

July 2001

Chairperson: Associate Professor Abdul Manaf Ali, PhD

Faculty: Food Science and Biotechnology

Sequence analysis of the 5' region of the emm gene was employed to differentiate 39 group A streptococci (GAS) isolates collected between 1989 to 1997 from patients and carriers in Kuala Lumpur. Sixty-one percent (24) of these isolates contained emm genes encoding the M protein for which M-antigen associations had not been made. The remaining strains had emm sequences in agreement with previously recorded M-antigen associations. In some cases antigenic variations were observed among individual M types as well as the isolates tested, compared to published M protein sequences. These differences were predominantly due to the non-synonymous base substitutions and occasionally, short insertions and deletions.
Nucleotide sequencing of the mga regulon of a new Malaysian emm type ST4547 group A streptococcus an opacity factor (OF) negative isolate, showed the existence of two emm-like genes, emm and mrp. The emm gene encoded the M protein whereas mrp gene encoded the IgG Fc receptor. The gene located upstream of the scpA gene, comprised 1305 nucleotides encoded a M protein of 435 amino acids in length with a predicted molecular weight of 49.0 kDa or a predicted mature protein of 394 amino acids with a molecular weight of 44.7 kDa. At the upstream of this gene and downstream of mga gene another gene was found and designated as mrpST4547. The sequence of this gene comprised 1167 nucleotides encoded a predicted protein of 388 amino acids in length with a predicted molecular weight of 42.2 kDa or a predicted mature protein of 347 amino acids with a molecular weight of 37.9 kDa. The mga regulon of the strain ST4547 had a mosaic structure consisting of DNA segments which were suggested to have originated from different OF positive and OF negative strains. The sequences flanking the hypervariable and C repeats of the emmST4547 gene showed high similarity to a corresponding region in the mga regulon of OF positive strains notably M15, M4, M22 and M50. In contrast, the sequence of the hypervariable and C repeats region of the emmST4547 gene revealed high similarity to equivalent regions in the OF negative strains. These data suggested that horizontal transfer of emm-like genes could occur between OF positive and OF negative strains resulting in divergence in the architecture of the mga regulon.

This study showed that sequencing of the 5' region of the emm gene of GAS isolates was effective for surveying the sequence variability of the M protein and useful for monitoring GAS strain diversity in Malaysia as well as showing the mechanisms
involved for antigenic diversity in M proteins. This study also illustrated a new mosaic in structure of mga regulon of OF negative strains with existence of mrp and emm genes. As far as this research was concerned to our knowledge, such a study has been done for the first time in a developing country.
Abtrak tesis yang dikemumakan kepada senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah untuk Doktor Falsafah.

PENCIRIAN MOLEKUL GEN SEOLAH EMMDIDALAM REGUKON MGA STRAIN 4547 DALAM STREPTOKOKUS KUMPLULAN A

Oleh

MAJID ESHAGHI

Julai 2001

Pengerusi: Profesor Madya Abdul Manaf Ali, PhD

Fakulti: Sains Makanan dan Bioteknologi

Urutan regulon mga daripada jenis emm ST4547 streptokokus kumpulan A dari Malaysia yang mempunyai faktor opasiti (OF) negatif menunjukkan kemungkinan kehadiran dua gen yang menyerupai gen emm (emm dan mrp). Gen emm mengkodkan protein M manakala gen mrp mengkodkan IgG resepto r Fe. Gen emm terletak sebelum gen scpA dan terdiri daripada 1305 nukleotida yang mengkodkan protein M yang mengandungi 435 asid amino dengan berat molekul 49.0 kDa atau protein matang yang terdiri daripada 394 asid amino dengan berat molekul 44.7 kDa. Terdapat satu lagi gen yang dinamakan sebagai mrpST4547 dijumpai
gen ini terdiri daripada 1167 nukleotid yang diramalkan mengkodkan protein yang
terdiri daripada 388 asid amino yang mempunyai berat molekul sebanyak 42.2 kDa atau
protein matang yang terdiri daripada 347 asid amino yang mempunyai berat molekul
sebanyak 37.9 kDa. Regulon mga dari strain ST4547 mempunyai struktur mozaik yang
terdiri dari segmen-segmen DNA yang berasal daripada strain OF positif dan strain OF
negatif yang berbeza. Jujukan yang hadir diantara kawasan hipervariable dan
pengulangan C dari emm ST4547 gene menunjukkan persamaan yang tinggi dengan
jujukan mga regulon dari strain OF positif, terutamanya M15, M4, M22 dan M50.
Sebaliknya, jujukan hypervariable dan pengulangan C dari gen emmST4547
menunjukkan persamaan dengan yang terdapat pada strain OF negatif. Ini menunjukkan
bahawa terdapat pemindahan secara mendatar emm gen dari strain OF positif ke strain
OF negatif yang menghasilkan pemisahan dalam struktur binaan mga regulon.

Di dalam kajian ini, penj uukan kawasan 5' gen emm dari isolat GAS adalah amat
berguna untuk mendapatkan maklumat mengenai variasi setiap jujukan protein M dan
untuk mengkaji kepelbagaian GAS di Malaysia seterusnya mengkaji mekanisma yang
terlibat di dalam kepelbagaian antigenik di dalam protein M. Kajian ini juga menunjukkan terdapatnya struktur mozaik yang baru oleh mga regulon dari strain OF negatif dengan kehadiran mrp dan emm gen. Kajian ini adalah yang pertama di lakukan di negara yang sedang membangun.
ACKNOWLEDGMENTS

I would like to express my most sincere gratitude and deep appreciation to my supervisors Associate Prof. Dr. Abdul Manaf Ali, Associate Prof. Datin Dr. Khatijah Mohd. Yusoff, Prof. Datin Dr. Farida Jamal and Dr. Zaiton Hassan for their invaluable contribution, generous offering of time and careful supervision throughout the study.

I am indebted to members of our weekly meeting group, with special appreciation to Dr. Tan Wen Siang, for his invaluable advice and support. I also wish to thank all my fellow graduate students, friends and staff members of the Department of Biotechnology and Department of Biochemistry and Microbiology of UPM.

Furthermore, I would like to acknowledge UPM for supporting the research and providing the Graduate Assistantship by the Malaysian Government through IRPA (Intensification of Research Priority Areas), grant No.

Last but not least, I would like to express my deepest gratitude to my beloved wife, for her understanding, sacrifices, patience and support.
I certify that an Examination Committee met on 23rd July 2001 to conduct the final examination of Majid Eshaghi on his Doctor of Philosophy thesis entitled “Molecular Characterization of emm-like Genes in the mga Regulon of Group A Streptococcus Strain 4547” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

SON RADU, Ph.D.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairman)

ABDUL MANAF ALI, Ph.D.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

KHATIJAH YUSOFF, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

FARIDA JAMAL, MBBS.
Professor
Faculty of Medicine
Universiti Putra Malaysia
(Member)

ZAION HASSAN, Ph.D.
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

SAZALY ABU BAKAR, Ph.D.
Associate Professor
Faculty of Medicine
Universiti Malaya
(Independent Examiner)

MOHD. GHAZALI MOHAYIDIN, Ph.D.
Professor/Deputy Dean of Graduate School,
Universiti Putra Malaysia

Date: 10 AUG 2001

x
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

AINI IDERIS, Ph.D.
Professor/Dean of Graduate School,
Universiti Putra Malaysia

Date: 08 Nov 2001
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Majid Eshaghi
Date: 9.8.01
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

I

- INTRODUCTION .. 1

II

- LITERATURE REVIEW .. 4

 - Epidemiology and Clinical Importance of GAS 4
 - The Molecular Basis of the Anti-phagocytic Activity of M Protein .. 6
 - Typing of Group A Streptococci 8
 - Serological Typing ... 8
 - Non-Serological Typing 9
 - GAS Toxins and Enzymes .. 13
 - Cross-Reaction .. 14
 - M Protein Vaccines ... 15
 - Type Specific Vaccines 15
 - Non-Type Specific Vaccines 16
 - Prospects for GAS Vaccination 17
 - Non-M Protein Approaches to Protect Against Streptococcal Infection ... 17

III

- MATERIALS AND METHODS ... 28

 - General Microbiological Procedure 28
 - Bacterial Strains ... 28
 - Culture Conditions 28
 - Opacity Factor Determination 30
 - Localization of the M Protein in the Recombinant E. coli 30
 - General DNA Procedure .. 31
Preparation of Streptococcal DNA .. 31
Plasmid Extraction ... 32
PCR Procedures ... 32
Randomly Amplified Polymorphic DNA Analysis 32
Phylogenetic Analysis of the Isolates by RAPD 33
Direct Sequencing of the PCR Products 34
Bi-directional Sequencing of the mga Regulon of ST4547 (SSI444) ... 37
Electrophoresis, Fixing and Autoradiography of Sequencing Gels ... 37
Emm Gene Sequence Analysis and Phylogenetic Study 38
TOPO TA Cloning ... 39
PTricHis2 TOPO TA Cloning ... 40
Analysis of Positive Transformations by PCR 41
Polyacrylamide Gel Electrophoresis and Western Blotting of Proteins ... 42
Preparation of Protein for Electrophoresis 42
Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) ... 42
Staining of Proteins with Comassie Blue 43
Western Blotting ... 43

IV RESULTS ... 45

RAPD Analysis of GAS Isolates .. 45
Sequencing of 5' Hypervariable Regions of emm Genes 54
Overall Structure of emm Sequences 64
Relationships Between emm Sequences 64
Sequence of the Conserved C Repeat Regions of emm Genes 66
Mechanisms involved in variation of emm genes 69
Sequence Analysis of MGA Regulon ST4547 (SSI444) 76
Expression of the emm and mpr Genes of the mga Regulon of Strain ST4547 .. 94

V DISCUSSION ... 97

VI GENERAL DISCUSSION AND CONCLUSION 108

BIBLIOGRAPHY ... 112

APPENDIX .. 124

VITA .. 140
LIST OF TABLES

Table	Page
1. Isolates studied and their history. NA, not available; M, male; Ma, Malay; C, Chinese; I, Indian; F, female; IVDU, intravenous drug use | 29
2. Isolates studied and GenBank accession numbers of corresponding emm sequences | 56
3. Primers used to amplify the three amplicons of the mga regulon of strain ST4547 | 78
4. Primers used to walk along the mga regulon of the strain ST4547 | 78
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The molecular basis of the anti-phagocytic activity of the M protein. The</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>M protein interferes with complement cascade (C1-C9, complement proteins;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCP, classical complement pathway, MAC, membrane attack complex; ACP;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>alternative complement pathway; H and I complement regulators)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Arrangement of the emm-like genes in the mga regulon of group A streptococci</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>A, B, C and D are RAPD patterns produced by primer H2. 1- (11); 2- (8);</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>3- (16); 4- (1); 5- (2); 6- (34); 7- (30); 8- (37); 9- (5); 10- (9); 11-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(17); 12- (13); 13- (3); 14- (35); 15- (18); 16- (36); 17- (22); 18- (10);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19- (20); 20- (32); 21- (31); 22- (7); 23- (28); 24- (4); 25- (12); 26- (38);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27- (14); 28- (24); 29- (25); 30- (19); 31- (15); 32- (33); 33- (23); 34-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(29); 35- (39); 36- (40); 37- (21); 38- (26); 39- (6); 40- (27); 41- (41).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Numbering in parentheses are according to Tables 1 and 2. M- 1000 bp ladder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mix marker (Fermentas, USA). Arrows indicating the polymorphic zones (bp)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Clustering of the 17 RAPD patterns produced by primer H2. Arrows</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>indicating the correct RAPD types compare with emm typing (numbering on the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>left of the branches are according to Tables 1 and 2).</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A, B and C are RAPD patterns produced by primer M13. M- 1000 bp ladder</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>mix marker (Fermentas, USA). Arrows indicating the polymorphic zones (bp).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Numbering the same as Figure. 12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Clustering of the 14 RAPD patterns produced by primer M13 (numbering</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>on the left of the branches are according to Tables 1 and 2).</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A, B and C are RAPD patterns produced by primer Gen 01. M- 1000 bp ladder</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>mix marker (Fermentas, USA). Arrows indicating the polymorphic zones (bp).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Numbering the same as Fig. 12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Clustering of the 17 RAPD patterns produced by primer Gen 01. Arrows</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>indicating the correct RAPD types compare with emm (numbering on the left</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of the branches are according to Tables 1 and 2).</td>
<td></td>
</tr>
</tbody>
</table>
The constructed dendrogram using UPMGA obtained with combined data of the three primers producing 25 RAPD patterns. Arrows indicating the correct RAPD types compare with emm (numbering on the right of the branches are according to Tables 1 and 2)......................... 53

Nucleotide sequence alignment of the 5' end (a) and 3' end (b) of the selected OF positive and OF negative strains to show locations of the forward (a) and reverse (b) primers (numbering at the left side are according to Table 1 and 2).. 55

Size variations in emm-gene PCR products of the selected isolates [lanes 1- (24), 2- (30), 3- (5), 4- (1), 5- (35), 6- (13), 7- (33), 8- (22), 9- (28), 10- (39), 11- (40), 12- (20), 13- (26), 14- (6), 15- (26)]. Numbering in parentheses are according to Tables 1 and 2.. 57

Predicted amino acid sequence alignment of the isolates. The repeated sequences are highlighted. Variations among individual M types are boxed. Cleavage sites indicated by arrow. Numbering is according to Tables 1 and 2.. 61

Plot similarity of the predicted amino acid sequences of emm gene of the isolates.. 63

Dendrogram showing the overall sequence relationships among the isolates (□: OF negative; ■:OF positive; numbering on the right of the branches are according to Tables 1 and 2).. 65

Alignment of the predicted amino acid sequences of the C repeats of emm genes. The C repeats are boxed. The Class specific amino acid are highlighted (D: asparagine; E: glutamic acid; K: lysine; R: argentine; S: seine; Q: glutamine; numbering at the left side are according to Table 1 and 2).. 68

Comparison of the predicted amino acid sequences of the C repeat region of isolate 34 (emm 18.1) with the C repeat region of typical OF negative [isolate 30 (emm 6)] and OF positive [isolate 32 (emm 9)] GAS. Class specific amino acids are highlighted. The regions of the homology are boxed... 70

N-terminal end amino acid sequence alignment of isolates 14 (P3619) and strain 2346M. (•- Fully conserved residue).. 72

N-terminal end amino acid sequence alignment of isolate 33 (P9184), M58 and strain ST2. The sequence of strain ST2 adapted from GenBank (•- Fully conserved residue).. 73
Amino acid sequence alignment of isolate 33 (P9184), M25 and 7 (IMR7) (* - Fully conserved residue; : - Conservation of strong groups; . - Conservation of weak groups). ... 75

PCR products produced by primers 1 and 2 (Lane 1), primers 3 and 5 (Lane 3), primers 4 and 6 (Lane 4). Lane 2 shows the DNA PCR product of the entire mrpST4547 gene (M: 1kb ladder, base pairs). 79

Nucleotide sequences of the mga regulon of Strain ST4547 comprises partial non-coding region between mga and mrpST4547 genes, mrpST4547 gene, non-coding region between mrpST4547 and emmST4547 genes, emmST4547 gene, and partial non-coding region between emmST4547 and scpA genes. The arrows indicating signal peptide, mature protein, proline/glycine region, membrane anchor region and polar tail respectively in each gene; C repeated regions are boxed; RBS- ribosomal binding site. ... 80

Prediction of the secondary structure of the protein encoded by emmST4547 gene using PlotStructure programme. All the predicted structures depend on the hydropathy profile of the protein. A window of 7 amino acids was used to calculate hydropathy. ... 85

Prediction of the secondary structure of the protein encoded by mrpST4547 gene using PlotStructure programme. All the predicted structures depend on the hydropathy profile of the protein. A window of 7 amino acids was used to calculate hydropathy. 87

Phylogenetic tree of mrpST4547 gene with the other mrp genes. The sequences of the mrp genes were adapted from GenBank. ... 89

Amino acid sequence alignment of the mrp genes. Except the sequence of mrpST4547, the rest of mrp gene sequences were adapted from GenBank. ... 90

Immunoblot showing binding of anti myc antibody to extract (1), cells treated with lysozyme (3), periplasmic fraction (4), spheroplasts fraction (5), cytoplasmic fraction (6) and debris (2,7) of E. coli containing cloned emmST4547 gene (M, marker). ... 96

Immunoblot showing binding of anti myc antibody (1) and human IgG to extract of E. coli containing cloned mrpST4547 gene (M, marker). ... 96
LIST OF ABBREVIATIONS

APS ammonium persulphate
bp base pairs
CFU colony forming unit
GAS group A streptococci
ET erythrogenic toxin
kDa kilodalton
HCR host cross reactive
Mr relative molecular weight
MLEE multilocus enzyme electrophoresis
OD opacity density
OF opacity factor
ORF open reading frame
PAGE polyacrylamide gel electrophoresis
PFGE pulsed field gel electrophoresis
PSGN post-streptococcal glomerulonephritis
RAPD randomly amplified polymorphic DNA
RFLP restriction fragment length polymorphism
SDS sodium dodecyl sulphate
CHAPTER I
INTRODUCTION

Streptococcus pyogenes of Lancefield group A (group A streptococci; GAS), which is distinguished from other β-haemolytic streptococci on the basis of the antigenic specificity of its cell wall carbohydrate, is a common and important human pathogen worldwide. The infection can occur either as an epidemic or an endemic. The main portal of entry for GAS and their principal site of residence in humans is the upper respiratory tract. Streptococcal pharyngotonsillitis is the most common of all bacterial throat infections. In most instances “streptococcal throat” is a self-limiting infection, but it may progress. A significant percentage of true pharyngeal infection, confirmed by a significant rise in streptococcal antibody titers, are clinically mild or even inapparent. They are, nevertheless, also associated with the risk of late sequelae, and may be active sources of spread of virulent streptococci, in contrast to chronic carriers. Of the primary skin infections caused by GAS, impetigo (pyoderma) is the most frequent, especially in tropical climates. The third site of primary streptococcal infection is the female genital tract, although uncommon, it is still encountered in many countries. Throat, skin and genital infections may develop into life threatening septicemia, streptococcal toxic shock syndrome, or metastatic supplicative infections such as arthritis, osteomyelitis, peritonitis, or even acute endocarditis in some individuals (Denny, 2000).

GAS express a range of cell surface and extracellular products which have the potential to act as virulence factors of which the M protein which is encoded by
emm gene is the most important and is the subject of this thesis. The M proteins were originally defined in the 1920's as type-specific, protective antigens (Lancefield, 1928) which are cell surface protein with conserved, wall-associated C-terminal regions and much more variable N-terminal regions protruding from the cell surface. Based on the antigenic specificity of the cell wall associated M proteins, GAS can be divided into more than 100 M types, provisional types and emm types (Facklam et al., 1999). The M protein is the virulence factor which blocks antiphagocytosis via the alternative complement pathway (Whitnack and Beachy, 1985). Complete sequencing of the many emm and emm-like genes show that they all possess a similar overall structure while relationships between these genes vary in detail (Whatmore and Kehoe, 1994). It has been proposed that the evolution of the emm-like genes is a very dynamic process, involving intragenic mutational events as well as intergenic recombination (Hollingshead et al., 1986; Hollingshead et al., 1987; Fischetti, 1989; Haanes and Cleary, 1989; Scott, 1990; Harbaugh et al., 1993; Whatmore and Kehoe, 1994; Whatmore et al., 1994).

Haanes et al. (1992) reported that the emm-like genes in all strains of GAS are located in the same position in the mga regulon locus and are flanked by the mga and scpA genes. Based on the ability of the GAS strains to produce an apoproteinase, an enzyme that causes mammalian serum to increase in opacity, they have been divided into two distinct groups, OF positive and OF negative strains (Beall et al., 2000). The mga regulon in OF positive strains contain mrp, emm and enn genes, whereas in OF negative strains it comprises only emm gene (Haanes et al., 1992; Hollingshead et al., 1993). However, the mga regulon in OF negative has been shown to be more variable with presence of the H protein in M1 strain (Gomi et al.,
1990) and an \textit{emm} gene in many other OF negative strains (Hollingshead, 1993; Podbielski, 1993; Whatmore and Kehoe, 1994). We believe that the \textit{mrp} gene might also be present in the \textit{mga} regulon of the OF negative GAS strains. Therefore, by designing primers and using PCR we screened the \textit{mga} regulon of OF negative Malaysian GAS strains to address above hypothesis.

Our understanding on the epidemiology of group A streptococcal infections is based primarily on M serotyping. However, it is presently difficult to detect the M protein in this way especially in South East Asia where it is difficult to obtain the appropriate antisera. Moreover, previous studies showed that a large number of GAS in Malaysia are not typeable with the standard M-typing antisera (Jamal et al., 1995; 1999). The usefulness of \textit{emm} gene sequence analysis has been recently evaluated in several epidemiological studies of GAS (Relf et al., 1992; Beall et al., 1997; Jamal et al., 1999). Therefore, OF detection and \textit{emm} gene sequencing are applied to differentiate several local GAS isolates to reveal that non-typeability of GAS in Malaysia by M serotyping is due to existence of new \textit{emm} types or provisional M types. Furthermore, the resulting sequences of the \textit{emm} genes might contribute to a better understanding of mechanisms involved in M protein antigenic diversity. In addition, attempts are made to evaluate the power of randomly amplified polymorphic DNA analysis (RAPD) for typing of the above isolates.
Epidemiology and Clinical Importance of GAS

The group A streptococcus (Streptococcus pyogenes) is responsible for a number of suppurative human infections, of which acute pharyngitis and impetigo are the most common. As a consequence of antibiotic therapy or no therapy, as many as 3 to 5% of individuals who suffer a group A streptococcal pharyngeal infection may develop acute rheumatic fever, a disease often resulting in cardiac damage. While not currently a major problem in developed countries, rheumatic fever is the leading cause of heart disease in school-aged children in developing nations (Kaplan, 1993). Acute glomerulonephritis, another sequelae of group A streptococcal disease, is usually the consequence of infection by specific strains of streptococci (nephritogenic strains) which infect either the throat or skin (Rammelkamp and Weaver, 1953). The ability of group A streptococci to persist in infected tissues is primarily due to the cell surface M protein, a molecule which confers to the streptococcus the ability to resist phagocytosis by polymorphonuclear leukocytes in the absence of type-specific antibodies to the M molecule (Lancefield, 1959; Lancefield, 1962). Since there are more than 100 different serotypes of M protein (such as M5, M6, M24), an individual may become infected by more than one group A streptococcal type during a lifetime (Lancefield, 1962).
The incidence of acute rheumatic fever and severe group A streptococcal (GAS) infection declined dramatically in the Western Hemisphere during the post-antibiotic era (Colman et al., 1993). Although the precise reasons are not known, various factors contributed towards this, possibly including improved standards of living and better health care. However, in the late 1980s, increase in the number of serious systemic infections, particularly associated with streptococci of M type 1 (M1), have been reported from the United States, Great Britain, Norway and Sweden (Beachey and Seyer, 1986). In the United States, the proportion of M types 1, 3 and 18 increased significantly and by contrast, M types 4 and 12 decreased. Similar changes in M type distribution and severity of GAS infection were also observed in England (Colman et al., 1993). These data suggest that the changes in the epidemiology of GAS infection are partly due to changes in the organism itself. GAS infection and its sequelae remain endemic in many Asian countries. However, no increase in the incidence and severity of GAS disease has been documented (Jamal, 1996). Although under-reporting could not be completely ruled out, it is unlikely that a change has gone unnoticed. Several other factors may account for this difference in the epidemiology of GAS disease. These include immunity towards an emergent clone, rendering it less virulent, or preventing it from colonizing the population. A study conducted in Thailand suggests that the M protein of GAS prevalent in this region may be different from those implicated in the recent resurgence in the West (Tran et al., 1994). GAS infections are endemic in aboriginal communities of Northern Australia, with up to 75% of children having impetigo due, in part, to infection of scabies lesions. The reported rates of acute rheumatic fever (ARF) and rheumatic heart disease (RHD) are some of the highest reported anywhere in the world. Acute streptococcal glomerulonephritis (APSGN) occurs frequently