

UNIVERSITI PUTRA MALAYSIA

A PROGRAMMING MODEL FOR THE DETERMINATION OF BENEFITS OBTAINABLE FROM THE MANAGEMENT OF OPEN-WATER INLAND (RIVERINE) FISHERIES OF BANGLADESH

K.M. Mahfuzuddin Ahmed

FEP 1989 8

A PROGRAMMING MODEL FOR THE DETERMINATION OF BENEFITS OBTAINABLE FROM THE MANAGEMENT OF OPEN-WATER INLAND (RIVERINE)FISHERIES OF BANGLADESH

Ву

K.M. Mahfuzuddin Ahmed

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Resource Economics in the Faculty of Economics and Management Universiti Pertanían Malaysia

July 1989

ACKNOWLEDGEMENTS

would like to sincerely thank Т my chief Ismail Ahmad, members of the supervisor Dr. Mohd. supervisory committee Dr. Ghazali Mohayidin and Dr. Eddie Chew F. Chong from the Faculty of Economics and Management and Dr. Max Aquero of ICLARM for their quidance and support throughout the preparation of this thesis. Special thanks and gratitude are due to Dr. Max Aguero for giving me the opportunity to work on a topic on Bangladesh.

Professor Harlan Lampe was a constant source of inspiration throughout the preparation of this work. I am grateful to him for his time and guidance.

I would like to acknowledge the financial and technical assistance of Ford Fc ation, ICLARM (International Center for Living Aquatic Resources Management), Winrock International and the Public Service Department of Malaysia in my present endeavour.

I wish to acknowledge also the personal blessings of Mr. Gerry Rixhon, Dr. Gerry Gill, Dr. Charles Bailey and Mr. Anthony Bottrall during the course of my graduate study. I am thankful to Dr. Ian Smith, Dr. Daniel Pauly, Dr. Roger Pullin, and Mr. Jay Maclean, and other ICLARM staff for their support and friendship

ii

during my stay at ICLARM while undertaking this research.

Special thanks to Ms. Letty Dizon and Ms. Regina Morales for editing the manuscript and to Mr. Ovidio Espiritu Jr. and Mr. Chris Bunao for assisting me with the drawings.

I also wish to thank my brothers and sisters, and friends, relatives and well-wishers who supported me in the course of this work.

This dissertation is dedicated to my father Kazi Golam Rabbani, and to the memory of my loving mother Mrs. Kazi Saleha Begum.

TABLE OF CONTENTS

														Page
ACKNOWLEDGEMENTS	•	•	•	•	•	•	•	•	•	•	•	•	٠	ii
LIST OF TABLES	•		•		•	•		•	•	•	•	•	•	x
LIST OF FIGURES	٠	•	•	•	•	•		•	•	•	•	•	•	xiii
LIST OF ABBREVIATION	8		•		•	٠	•	•	•	•	•	•	•	xvi
ABSTRACT	•	•	•	•	•	•	•	•	•	•	•	•	•	xvii
ABSTRAK	•	•	•	•	٠	•	•	•	•	•	•		•	xx

CHAPTERS

I	INTRODUCTION	1
	The Problem	1
	Objectives	3
	General Objective	3
	Specific Objectives	3
	Justification	4
	Approach to the Problem	5
	Organisation of Thesis	7
II	OPEN-WATER INLAND FISHERIES OF BANGLADESH	10
	Introduction	10
	The Fishery Production System	12
	Nature and Composition	12
	Major Fisheries of Open-Water	16

	Production Organization and	
	Dynamics of Fleet Operation	25
	Demand Relations and Markets	31
	Management and Tenure - Its Implications .	33
	Summary and Conclusion	41
III	REVIEW OF LITERATURE	44
	Introduction	44
	Resources Externalities and Economic Inefficiency in Open-Access Fisheries	45
	Management Alternatives	48
	Analysis of Existing Economic Models of Fisheries	58
	Use of Models	58
	Models for Fisherics Management	60
	Conclusion	65
IV	METHODOLOGY	68
	Introduction	68
	Formulation of the Fishery Model	69
	Theoretical Framework	69
	Structure of a Price Endogenous Fisheries Programming Model	77
	The Open-Water Inland Fishery Model of Bangladesh	89
	General Characteristics	89
	Model Structure	90
	Model Parameters and Functional Relations	100

Bio-Economic Production and	
Market Sub-Models	102
Introduction	102
Bio-Economic Production and Fishery Supply	103
Production Models for Open-Water Fisheries of Bangladesh	111
The Market Sub-Model	130
Price Differences Between Market Levels and Post-harvest Cost	151
Summary	154
PARAMETER ESTIMATION: BIO-ECONOMIC AND MARKET SUB~MODELS	155
Introduction	155
Bio-Economic Sub-Model	156
Production and Cost Equations	156
Data	158
Estimation and Results	160
Market Sub-model	164
Market Demand Equations and Data	164
Data Evaluation	170
Estimation and Results	173
Summary	182

V

VI	MODEL IMPLE	MENTATION:	
		DISCUSSION	. 187
	Introductio	on	. 187
	Results of	the Base Model	. 189
	Sensitivity	Y Analysis	. 199
	Variatio Model Re	on of Effort and esponse	. 199
		ion cf Cost and Demand Changes lications for Policy	L, . 212
VII	SUMMARY, PO	OLICY IMPLICATIONS	. 239
			• 209
	Summary		. 239
	Policy Imp	lications and Conclusion	. 245
		s of the Study and tions for Further Research .	. 248
BIBI	LIOGRAPHY		. 250
APPI	ENDICES		261
	A Tables		. 261
	B Question	nnaire	. 295
VIT	A		. 302

LIST OF TABLES

Tabl	e	Page
1	Areas of Inland Fishery and Annual Production in Bangladesh	13
2	Catch Statistics of Various Species from the Rivers of Bangladesh	17
3	Distribution of Hilsa Stocks by Regions in Inland and Inshore Waters of Bangladesh	19
4	Percentage Share of Annual Landings of Various Species from Rivers in Different Regions of Bangladesh	25
5	Seasonal Share (Percentage) of Landings of Various Species from Rivers in Different Regions of Bangladesh	26
6	Distribution of Annual Catch from the Rivers of Bangladesh by Type of Gear	29
7	A Schematic of the LP Tableau for Inland Open-Water Fisheries of Bangladesh	101
8	Regre ssi on of Average Cost for a Fi s hing Unit in Different Riverine Fi s heries of Bangladesh	162
9	Computed Average Cost Equations for a Hilsa Fishing Unit in Various Seasons in the Riverine Fisheries of Bangladesh	165
10	Aggregate Average Cost Equations for Hil sa Fis hery in Various Seasons in the Riverine Fisheries of Bangladesh	165
11	Estimates of Monthly Retail Demand Models for Various Species Harvested from the Rivers of Bangladesh	176
12	Estimates of Monthly Ex-Vessel Demand Models for Various Species Harvested from the Rivers of Bangladesh	177

13	Price Flexibility Coefficients for Retail Demand Parameters of Various Riverine Species in Bangladesh	181
14	Price Flexibility Coefficients for Ex-Vessel Demand Parametors of Various Riverine Specie in Bangladesh	181
15	Computed Monthly Retail Demand Equations for Various Species Landed framerications the Rivers of Bangladesh	183
16	Computed Monthly Ex-Ves: Demand Equations for Various S: 25 Landed from the Rivers or Bangladesh	184
17	Summary of Results for the Base Model for Riverine Fisheries of Bangladesh	190
18	Distribution of Catch (mt) of Various Species and Level of Effort (gear hr) in the Base Model for Riverine Fisheries of Bangladesh by River Group	192
19	Regional Share of Total Landings and Post-Harvest Cost in the Base Model for Riverine .sheries of Bangladesh	197
20	Aggregate Values of Different Variables at Various Levels ^f Total Effort in the Base Model for Riverine Fisheries of Bangladesh	201
21	Changes in Effort Availability for Each Fishery in the Base Model (Rive fisheries of Bangladesh)	20!
22	Shadow Prices of Effort s Fisheries	210
23	Behaviour of the Riverine Fisheries of Bangladesh Under Alternative Cost Conditions	214
24	Total Catch, Price and Effort for Individual Species Under Alternative Cost Conditions	216

25	Changes in the Availability of Effort for a 25% Increase in the Cost of Harvest from the Base Model (Riverine Fisheries of Bangladesh)	219
26	Changes in the Availability of Effort for a 25% Decrease in the Cost of Harvest from the Base Model (Riverine Fisheries of Bangladesh)	220
27	Behaviour of Effort Use and Landings of Major Species at Various Levels of Effort Availability and Under Alternative Cost Conditions	224
28	Shadow Prices of Effort Under Alternative Conditions of Cost of Harvest	226
29	Behaviour of the Different Riverine Fisheries of Bangladesh Under Alternative Demand Conditions	228
30	Total Catch, Price and Effort for Individual Species Under Alternative Demand Conditions	230
31	Changes in the Availability of Effort for a 10% Decrease in the Aggregate Demand from the Base Model (Riverine Fisheries of Bangladesh)	233
32	Changes in the Availability of Effort for a 10% Increase in the Aggregate Demand from the Base Model (Riverine Fisheries of Bangladesh)	234
33	Area of Large Water Bodies in Each Region of Bangladesh by District	262
34	Number of Fishing Units and Fishing Boats Operating in Diffferent Riverine Waters of Bangladesh	263
35	Distribution of Sample Fishing Units in the Selected Areas of Riverine Fishing in Bangladesh	263
36	Distribution of Sample by River and Species in Each Season	264

·

37	Computed Average Cost of Catch (AC) Equations for Representative Fishing Units in Different Rivers of Bangladesh by Species and Season	265
38	Aggregate Average Cost of Catch (AC) Equations for Various Fisheries in the Rivers of Bangladesh	266
39	Monthly Market Margin Equations for Various Species Landed from Rivers of Bangladesh by Region and Season	267
40	Annual Retail Demand Equations for Various Species of Fish Harvested from the Riverine Waters of Bangladesh	268
41	Average Cost Per Unit of Effort for Various Fisheries in Each Season in the Rivers of Bangladesh	268
42	Percentage By-Catch to Direct Catch from Various Fisheries in Different Rivers of Bangladesh in Each Season	269
43	Percentage Distribution of Harvest of Various Species from Each River in Different Regions of Bangladesh in Each Fishing Season	270
44	Percentage Distribution of Total Prawn Catch Between Big Prawn and Small Shrimps Harvested from the Rivers of Bangladesh	271
45	Average Export Price of Big Prawns in Bangladesh	271
46	Average Annual Fishing Time for Sample Fishing Units Operating in Various Fisheries in the Rivers of Bangladesh	272
47	Average Size of Fishing Gear (Net) Per Fishing Unit for Various Fisheries in the Rivers of Bangladesh	273

48	Changes in Aggregate Effort Availability in the Base Model for Riveri Fisheries of Banglad h	•	•	•	•	274
49	Behaviour of Different Fisheries in the Rivers of Bangladesh Under Alternative Cost Conditions	•	•	•	•	277
50	Changes in the Availability of Effor for a 25% Increase in the Cost of Harvest from the Base Model.for Riverine Fisheries of Bangladesh	t ·	•	•	•	280
51	Changes in the Availability of Effor for a 25% Decrease in the Cost of Harvest from the Base Model for Riverine Fisheries of Bangladesh	t •	•	•		283
52	Behaviour of Different Fisheries in the Rivers of Bangladesh Under Alternative Demand Conditions		•	•	•	286
53	Changes in the Availability of Effor for a 10 % Decrease in the Aggregate Demand from the Base Model for Riverine Fisheries of Bangladesh		•	•		289
54	Changes in the Availability of Effor for a 10% Increase in the Aggregate Demand from the Base Model for Riverine Fisheries of Bangladesh	t.		•		292

LIST OF FIGURES

Fig	ure	Page
1	Map of Bangladesh: River Systems and Geographic Regions	11
2	Major Freshwater Fish and Prawn Activities in the Open Waters of Bangladesh	15
3	Percentage Composition of Yearly Catch in the Rivers of Bangladesh	27
4	Percentage Composition of Catch of Different Species in the Rivers of Bangladesh by Gear Type	30
5	Main Marketing Channels of Fresh Fish from the Inland Open-waters of Bangladesh	32
6	Monthly Average Retail Prices of Major Riverine Species in Bangladesh	34
7	Capture of Fish and Number of Fishermen in the Inland Fisheries of Bangladesh	39
8	The Schaefer-Gordon Model for Fishery Bio-Economics	46
9	Fundamental Relationships Between Catch, Effort and Cost in a Fishery	72
10	Market Equilibrium of Fishery Sector in a Supply-Demand Model	76
11	Segmentation of Demand and Benefit Functions for Linear Programming Approximation	88
12	Short-run Yield Curves as a Function of Nominal Efforts	108
13	Short-run Total Cost as a Function of Fish Output	125
14	Short-run Average and Marginal Cost Curves for Fish Output	125

15	Long-run Average Cost Curve of Fish Output in a Steady-State Fishery	127
16	Relationships Between Market Levels in Terms of Marketing Margins of Fish Output	153
17	Comparison of Base Model Landings and Official Landings from the Rivers of Bangladesh	193
18	Aggregate Catch and Effort Relationships in the Base Model	203
19	Benefit, Cost and Effort Relationships in the Base Model	203
20	Benefit, Cost and Catch Relationships in the Base Model	203
21	Shadow Prices of Effort in the Base Model	203
22	Catch and Effort Relationships for Individual Species in the Base Model	208
23	CPUE and Effort Relationships for Individual Species in the Base Model	208
24	Shadow Prices of Effort for Various Fisheries in the Rivers of Bangladesh	210
25	Catch and Effort Under Alternative Cost Conditions	221
26	CPUE and Effort Under Alternative Cost Conditions	221
27	Gross Benefit and Effort Under Alternative Cost Conditions	221
28	Cost and Effort Under Alternative Cost Conditions	221
29	Net Benefit and Effort Relationships Under Alternative Cost Conditions	225

30	Shadow Prices of Effort Under Alternative Cost Conditions	•	•	•	•	225
31	Catch and Effort Under Alternative Demand Conditions	•	•	•	•	235
32	CPUE and Effort Under Alternative Demand Conditions	•	•	•	•	235
33	Gross Benefit and Effort Under Alternative Demand Conditions	•	•	•	•	235
34	Cost and Effort Under Alternative Demand Conditions	•	•	•	•	235
35	Net Benefit and Effort Relationships Under Alternative Demand Conditions		•	•	•	236
36	Shadow Prices of Effort Under Alternative Demand Conditions	•	•		•	236

LIST OF ABBREVIATIONS

BCAS BDT	Bangladesh Centre for Advanced Studies Bangladesh Taka (M\$ 1 = BDT 12)
BFRSS	Bangladesh Fisheries Resources Survey System
CPI	Consumer Price Index
CPUE	Catch Per Unit of Effort
DOF	Department of Fisheries
FAO	Food and Agricultural Organisation
MPO	Master Plan Organisation
NFMP	New Fisheries Management Policy
NSB	Net Social Benefit
UNDP	United Nations Development Programme

Abstract of the thesis presented to the Senate of Universiti Pertanian Malaysia in partial fultilment of the requirements for the Degree of Doctor of Philosophy

A PROGRAMMING MODEL FOR THE DETERMINATION OF BENEFITS OBTAINABLE FROM THE MANAGEMENT OF OPEN-WATER INLAND (RIVERINE) FISHERIES OF BANGLADESH

by

A.K.M. Mahfuzuddin Ahmed

July 1989

Chief Supervisor : Mohd. Ismail Ahmad, Ph.D., Associate Professor, Faculty of Economics and Management, UPM

In Bangladesh, most of the inland open-water fisheries had retained an open-access character in the absence of a consistent and effective management policy. Consequently the resulting pattern of fishing activities is characterised by economic inefficiency. In view of this, the current concern of the Government is to increase economic performance of the industry through some direct measures of control on the allocation of fishing rights, fishing effort and fish catch.

The objective of this research is to derive an operational model, which can be used to analyse the performance of the fisheries under different simulated

xvii

alternatives of techno-economic and biological conditions.

Functions and parameters of a Base Model were estimated by deriving two sub-models: (a) bio-economic production and (b) the market, using regression techniques. Both primary and secondary data were used for empirical estimation of the sub-models.

Accordingly, the model was developed, in a linear programming (LP) framework, to represent various fisheries in the riverine waters of Bangladesh. Results of the base model suggest that the riverine fisheries of Bangladesh are capable, under optimal conditions, of generating a total net benefit of BDT (Bangladesh Taka) 1,383 million per annum (US\$1 = BDT32), of which 96% accrues as producer Also, a significant overcapacity (118%) surplus. exists in the existing fleet in terms of application of effort relative to the resource availability.

Simulation of cost and demand changes reveal that the effect of changes in the cost condition of harvest will in general be related negatively to the intensity of total effort use, total langings, benefits and costs; while the effects of changes in the aggregate demand on total effort, total costs, landings, prices and net benefits will be positive. The implication of the results for management is that

kviii

intervention into the fisheries through control on sffort intensity would produce substantial net benefits from the open-water fisheries.

Abstrak tesis yang dikemukakan kepada Senat, Universiti Pertanian Malaysia sebagai memenuhi sebahagian daripada Keperluan bagi Ijazah Doktor Falsafah

A PROGRAMMING MODEL FOR THE DETERMINATION OF BENEFITS OBTAINABLE FROM THE MANAGEMENT OF OPEN-WATER INLAND (RIVERINE) FISHERIE: NGLADESH

oleh

A.K.M. Mahfuzuddin Ahmed

Julai 1989

Penyelia : Mohd. Ismail Ahmad, Ph.D., Associate Professor, Faculty of Economics and Management, UPM

Di Bangladesh, kebanyakan perikanan pedalaman masih bersifat terbuka kerana tiada terdapat polisi pengurusan yang kekal dan berkesan. Ini mengakibatkan pola aktiviti perikanan yang tidak cekap dari segi ekonomi. Oleh sebab itu, tumpuan kerajaan sekarang ialah untuk meningkatkan prestasi ekonomi industri perikanan melalui langkah-langkah pengawasan langsung di dalam pengagihan hak dan usaha perikanan serta jumlah tangkapan.

Objektif kajian ini adalah untuk mendapatkan satu model operasi pengurusan dan penternakan ikan yang boleh digunakan bagi menganalisa prestasi dan keberkesanan penternakan ikan di dalam pelbagai kaedah dan alternatif teknologi, ekonomi dan keadaan biologi.

ХΧ

dan parameter model asas Fungsi dianggarkan melalui dua sub-model: (a) pengeluaran bio-ekonomi dan (b) pasaran, yang menggunakan teknik regrasi. Keduadua jenis data primer dan sekundar digunakan untuk penganggaran empirik sub-model tersebut di atas. Seterusnya, satu model telah dibina dalam rangka linear untuk menggambarkan pelbagai pemprograman perikanan sungai di Bangladesh. Hasil dari model asas ini menunjukkan bahawa perusahaan ikan sungai di Bangladesh mampu menghasilkan untung bersih sebanyak BDT (Bangladesh Taka) 1,383 juta setahun (US\$1 = BDT32) di dalam keadaan optimum, di mana 96% daripadanya adalah merupakan 'lebihan pengeluar'. Juga kapasiti berlebihan (118%) wujud di dalam jumlah kapal nelayan yang ada sekarang dari segi penggunaan usaha relatif kepada sumber yang tersedia ada.

Simulasi kos dan perubahan dalam permintaan menunjukkan bahawa kesan perubahan di dalam keadaan kos penangkapan ikan, secara amnya berhubung seCara negatif dengan jumlah usaha yang digunakan, jumlah tangkapan, faedah dan kos; sementara kesan perubahan dalam permintaan agregat ke atas jumlah usaha, jumlah kos, tangkapan, harga dan faedah bersih adalah Implikasi di positif. keputusan atas k ada pengurusan menunjukkan bahawa campurtangan kerajaan di

dalam perikanan melalui pengaw--an tingk usaha akan menghasilkan faedah bersih yang sangat besar daripada perusahaan perikanan yang terbuka.

CHAPTER I

INTRODUCTION

The Problem

The pervasive tendency of open-access fisheries to expand effort to the point where resource rent is dissipated, first pointed out by Gordon (1954) and many others after him, has been a major cause of concern for managers all over the world. fisheries In many fisheries, the tendency to economically overexploit the resources has driven stocks to levels below their maximum yield potentials and to gradual worsening economic conditions of the fishing community, especially of small-scale traditional fishermen.

In Bangladesh, most of the inland open-water fisheries exploitation activities are small-scale and traditional. Over the years, these fisheries have retained an open-access character in the absence of a consistent and effective management policy. For a long time fisheries in the open-waters had been managed by a group of middlemen who secured yearly lease from the government through auctions. Consequently, increasingly large number of fishing dependent population and an oversized effort intensity relative to the availability

1

of stock have contributed to declining catches of some or all species and a deteriorating fishing income. As such, the fisheries will require some kind of control directed to regulate the exploitation activity over the stock and effort intensity, in order to improve their economic performance.

In response to these problems, a comprehensive policy for open-water fisheries management is in the proCess of implementation by the government. The objective of the new policy, called New Fisheries Management Policy (NFMP) is mainly to redirect the potential benefits of fisheries exploitation activities to actual fishermen and at the same time maintaining improving the productivity of the and open-water fisheries on sustainable basis. In this effort, a system of licensing of water bodies to genuine fishermen or groups of fishermen has been introduced in selected areas of inland open-water fisheries. This would replace the traditional system of leasing out the water-bodies to the private individuals. The economic consequences of these new practices are yet to be addressed and studied.

A major problem confronting policies with regard to management is the determination of the type and level of control which should be applied to the fisheries order best in to achieve the above objectives. This necessitates the understanding of the performance-response of the fisheries to alternative

