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In this study, a novel concept of lightweight multi-layered composite energy-absorber

blocks and beams have been developed that potentially can be retrofitted in aircraft and

helicopter sub-floors in order to improve their crashworthiness performance. This novel

structure encompassed of fibreglass fabric wrapped around two or three foam layer

cores. This technique eventually prevented from core-to-facing debonding, especially

during axial crashing, whereby the debonding tendency is controlled by a hoop stresses

in fibreglass layers. Manufactured block can be used alone as an energy-absorber

element in structure or a series of blocks integrate in the form of beam. Inline assembly

of the fibre-reinforced blocks is covered with fabric glass fibre reinforcement in order to

integrate the blocks in a beam configuration. Two types of triggering modifications had

been applied to the developed composite structures and they are "bevel trigger" and
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"groove trigger". In the experimental work the composite blocks and beams were

subjected to a quasi-static crushing load. After obtaining the load-displacement curves

and determination of crashworthy parameters, a fmite element explicit dynamic analysis

code module, incorporeity ANSYS/LS-DYNA implemented to the simulation of the

quasi-static crash behaviour and energy absorption characteristics of the developed

crashworthy composite structure. The results from the fmite element analysis were

validated against the experimental results and good agreement between two approaches

was observed. A dynamic crash analysis was also conducted numerically in order to

simulate the dynamic crash event and estimating crash behaviour and energy absorption

characteristics of the multi-layered structures which are subjected to high velocity

impacts. It has been 0 bserved that by increasing the crushing speed load and energy

absorption of the structures will inherently magnify. From this research work, it has been

demonstrated that, the double-layered and triple-layered block and beam sandwich

design concept is a practical means of producing cost-effective sandwich structures, that

crush in a stable, progressive manner with high crush force efficiency.

Crush force efficiency (CFE) for all specimen types changed between 0.5 to 0.78 and

specific absorption energy (SAE) up to 12.78 kJ/ kg for blocks and 23.53 kJ/ kg for

beams were recorded. Moreover the obtained quasi-static numerical results of axial

compression model of composite blocks and beams are compared with actual

experimental data of crash energy absorption, load-displacement history and crush zone

characteristics, showing very good agreement with and without use of two types of the

collapse trigger mechanisms. On the other hand, dynamic simulations also showed a
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stable, progressive crushing with high crush force efficiency but less than quasi-static

condition. Increasing the crushing speed magnified the resistant load and consequently

energy absorption of the structures. For example, in a non-triggered beam with quasi­

static SAE equal to 14.37 kJI kg, a magnification factor equal to 5.46 achieved in 20

mis, i.e. SAE of structure was 78.5 kJI kg that is an excellent value in composite

sandwich structures. High CFE and SAE of new design is desired feature of composite

structures in crashworthiness applications.
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Julai 2009

Pengerusi: Rizal Zahari, Ph.D.

Fakulti : Kejuruteraan

Di dalam kajian ini, suatu konsep inovatif blok dan rasuk penyerap-tenaga bahan rencam

berbilang-lapisan yang ringan telah dibangunkan untuk digunakan di dalam sub-lantai

bagi pesawat terbang dan helikopter bagi tujuan memperbaiki prestasi perlagaan. Di

dalam struktur semasa, fabrik gentian kaca dibalut dengan menggunakan dua atau tiga

lapisan teras busa bagi mengelakkan lekangan teras-kepada-permukaan iaitu semasa

lagaan paksi kecenderungan lekangan dikawal oleh tegasan gegelang di dalam lapisan

gentian kaca. Blok yang dibuat boleh digunakan dengan sendirinya sebagai elemen

penyerap tenaga di dalam struktur atau sebagai suatu siri blok yang digabungkan di

dalam bentuk rasuk. Himpunan blok gentian terkukuh dilapisi dengan fabrik gentian

kaca tetulang untuk menggabungkan blok untuk menjadikannya sebagai konfigurasi

rasuk . Juga, dua jenis pengubahsuaian pemicuan teleh dikenakan kepada struktur

komposit tersebut. Di dalam kerja ekperimen blok komposit dan rasuk telah dikenakan
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beban remukan kuasi-statik. Setelah lengkung beban - anjakan dan parameter pelagaan

diperolehi, analisa unsur terhingga dinamik tak-tersirat menggunakan modul kod

ANSYS/LS-DYNA telah dilaksanakan untuk mensimulasi kelakuan lagaan kuasi-statik

dan ciri penyerapan tenaga bagi struktur komposit tersebut. Keputusan daripada analisa

unsur terhingga telah disahkan dengan keputusan eksperimen dan kolerasi yang baik

telab diperhatikan. Analisa pelagaan dinamik juga dijalankan secara berangka bagi

mensimulasikan peristiwa perlagaan dinamik serta menganggarkan kelakuan lagaan dan

ciri penyerapan tenaga bagi struktur berbilang lapisan, yang dikenakan impak balaju

tinggi. Ianya telah diperhatikan bahawa dengan menambahkan kelajuan kehancuran

akan menambahkan daya rintangan dan penyerapan tenaga struktur tersebut. Daripada

penyelidikan ini, ianya telah ditunjukkan babawa konsep rekebentuk apit blok dan rasuk

dua dan tiga lapisan merupakan kaedah praktikal untuk menghasilkan struktur apit

keberkesanan kos yang bancur secara stabil, progresif dengan kecekapan daya hancuran

yang tinggi.

Kecekapan daya remukan (CFE) untuk semua jenis spesimen berubah di antara 0.5 dan

0.78 dan tenaga serapan tertentu (SAE) sehingga 12.78 kJ/kg untuk blok manakala 23.53

kJ/kg untuk rasuk dicatatkan. Tambahan lagi, keputusan berangka static-kuasi yang

didapati daripada model mampatan paksi untuk komposit blok dan rasuk dibandingkan

dengan data eksperimen yang sebenar bagi serapan tenaga remukan, sejarah daya­

anjakkan dan ciri-ciri zon remukan, menunjukkan persetujuan yang baik dengan dan

tanpa menggunakan dua jenis mekanisma cetusan runtuhan. Manakala, simulasi dinamik

pula menunjukkan remukan progressif yang stabil dengan kecekapan daya remukan
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yang tinggi tetapi lebih rendah daripada keadaan static-kuasi. Penambahan kelajuan

remukan telah membesarkan daya rintangan dan seterusnya tenaga serapan struktm

tersebut. Sebagai contoh, di dalam rasuk tanpa-cetusan dalam keadaan static-kuasi

tenaga serapan tertentu (SAE) adalah bersamaan dengan 14.37 kJ/kg, suatu factor

pembesaran bersamaan dengan 5.46 dicapai dalam 20 m/s iaitu SAE untuk struktm

adalah78.5kJ/kg yang mana merupakan nilai yang memberangsangkan di dalam struktur

sandwich. CFE dan SAE yang tinggi di dalam rekebentuk terbaharu adalah suatu ciri

yang dikehendaki bagi struktm komposit di dalam aplikasi perIanggaran.
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Comparison of typical progressive failure of! triggered, V triggered
and non-triggered composite sandwich beams

Actual comparison of progressive failure of I triggered, V triggered
and non-triggered beam specimens.

Peak and average load characteristics per sandwich composite
double-layered block (error bars denote standard deviations).

Peak and average load characteristics per triple-layered sandwich
composite block (error bars indicate standard deviations).

Peak and average load characteristics per double-layered sandwich
beam (error bars indicate standard deviations).

Peak and average load characteristics per triple-layered sandwich
composite beam (error bars indicate standard deviations).

Total absorbed crash energy E, and dissipated energy per stroke
EPS, characteristics for double-layered blocks (error bars denote
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and stroke efficiency, SE
beam speCImens (error bars
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standard deviations).

Total absorbed crash energy, E and dissipated energy per stroke,
EPS characteristics per triple-layered block specimen type (error
bars indicate standard deviations).

Total absorbed crash energy E, and dissipated energy per stroke
EPS, characteristics for double-layered beams (error bars denote
standard deviations).

Total absorbed crash energy, E and dissipated energy per stroke,
EPS characteristics per triple-layered beam specimen type (error
bars indicate standard deviations).

Specific energy SAE, and maximum compressive strength (Jmax, for
double-layered blocks (error bars denote standard deviations).

Specific energy, SAE and maximum compressive strength, (Jmax per
triple-layered block speCImen (error bars indicate standard
deviations) .

Specific energy SAE, and maximum compressive strength (Jmax, for
double-layered beams (error bars denote standard deviations).

Specific energy, SAE and maximum compressive strength, (Jmax per
triple-layered block speCImen (error bars indicate standard
deviations).

Crush force efficiency CFE, and stroke efficiency SE,
characteristics for double-layered blocks (error bars denote standard
deviations).

Crush force efficiency, CFE and stroke efficiency, SE
characteristics for triple-layered block speClillens (error bars
indicate standard deviations).

Crush force efficiency CFE, and stroke efficiency SE,
characteristics for double-layered beams (error bars denote standard
deviations) .

Crush force efficiency, CFE
characteristics for triple-layered
indicate standard deviations).

General layout offmite element model for a double-layered block

Blocks fmite element end modifications as collapse triggering
mechanism; (a, c) I type or groove trigger sand (b, d) V type or
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