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This work focuses on studying the effect of composite corrugated tubes’ crushing 

behaviour and to identify the optimised energy-absorption orientation of composite 

material lamination subjected to the axially compressive load. Parametric study was 

conducted to investigate the effect of the corrugated angles and fibre orientations on 

the energy absorb using the E-Glass fibre/epoxy Corrugated Cylindrical Composite 

Tubes (CCCT) in woven roving form. Twenty different orientations ([0/0/0], 

[30/0/0], [0/45/0], [60/0/0], [30/0/30], [30/45/0], [60/0/30], [45/0/45], [60/45/0], 

[60/0/60], [30/30/30], [30/45/30], [60/30/30], [30/45/45], [60/45/30], [30/60/60], 

[45/45/45], [60/45/45], [60/45/60], [60/60/60]) of E-Glass fibre/epoxy in woven 

roving laminations were fabricated for this purpose. Nevertheless, only three 

randomly chosen corrugated angles (5 degrees, 20 degrees & 35 degrees) were used 

for finite element analysis. Typical failure histories of their failure mechanisms are 

presented and discussed. Results showed that the crushing behaviour and the energy-

absorption level of composite corrugated tube are found to be different when 

changes are made to the orientation of lamination of the composite material. CCCTs 
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with the lowest corrugation angles resulted with highest initial crushing load and the 

highest average crushing load, and vice-versa. Meanwhile, CCCTs with the low 

corrugated angle requires thorough study before being used as an energy absorption 

device because their initial crush load that is too much greater than the average crush 

load itself. However, the best energy absorbing CCCT for this work should have the 

highest possible energy absorbed per unit mass (Es) while compensating for least 

possible differences between initial crush load and average crush load. With this 

criterion, CCCT with a corrugated angle of 20 degrees and [60/0/60] lamination 

orientation fulfilled the requirement. At the same time, the result of this work also 

shows that the average Es for CCCT with a lower corrugated angle is higher than the 

CCCT with a higher corrugated angle. Subsequently, the usage of 5, 20 and 35 

degrees corrugated angles has generally covered the range of corrugated angles from 

0 degree to 45 degrees because as the corrugated angle of CCCTs increases, the 

average Es of CCCT will reduce and will no longer significant in this project. CCCT 

with a corrugated angle of beyond 45 degrees will cause the woven roving 

composite material of CCCT to perform beyond the intended strength of direction. 

In addition, corrugated angles between 45 degrees and 90 degrees are similar to 

corrugated angles from 0 degree to 45 degrees. Thus, no study on CCCTs with 

corrugated angle beyond 45 degrees is required. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

KELAKUAN TIUB KOMPOSIT BERLIPAT DIBAWAH DAYA 

MAMPATAN MENGGUNAKAN KAEDAH UNSUR TERHINGGA 

Oleh 

NG SEET WAI 

Desember 2008 

Pengerusi: Assoc. Prof. Dr. Ahmad Samsuri b. Mokhtar, Ph.D 

Fakulti: Kejuruteraan, UPM 

Kerja penyelidikan yang telah dijalankan tertumpu kepada kajian terhadap kelakuan 

renyukan tiub komposit yang berlipat disebabkan oleh daya mampatan dan 

penentuan orientasi lamina bahan komposit bagi mendapatkan serapan tenaga yang 

optimum. Kajian parametrik telah dilakukan untuk menyiasat kesan sudut lipatan 

dan orientasi fiber terhadap serapan tenaga dengan menggunakan tiub silinder gelas 

fiber jenis E yang berlipat. Dua puluh orientasi lamina ([0/0/0], [30/0/0], [0/45/0], 

[60/0/0], [30/0/30], [30/45/0], [60/0/30], [45/0/45], [60/45/0], [60/0/60], [30/30/30], 

[30/45/30], [60/30/30], [30/45/45], [60/45/30], [30/60/60], [45/45/45], [60/45/45], 

[60/45/60], [60/60/60]) gelas fiber jenis E dikaji bagi tujuan tersebut. 

Walaubagaimanapun, hanya tiga sudut lipatan yang dipilih (5 darjah, 20 darjah dan 

35 darjah) dan digunakan untuk analisis unsur terhingga. Perilaku kegagalan bagi 

mekanisme kegagalan dibentangkan dan dibincangkan. Hasil kajian yang diperolehi 

menunjukkan kelakuan renyukan dan paras serapan tenaga tiub komposit yang 

berlipat adalah berbeza mengikut perubahan yang dibuat ke atas orientasi lamina 
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bahan komposit. Tiub jenis CCCT dengan sudut lipatan yang terendah menghasilkan 

daya renyukan awalan dan daya renyukan purata yang tertinggi begitu juga 

sebaliknya. Sementara itu, tiub jenis CCCT dengan sudut lipatan yang rendah 

memerlukan kajian yang mendalam sebelum ia digunakan sebagai alat serapan 

tenaga kerana daya renyukan awalannya yang tinggi melebihi daya renyukan purata. 

Walaubagaimanapun, CCCT yang paling baik untuk dijadikan bahan serapan tenaga 

dalam kajian ini adalah CCCT yang mempunyai serapan tenaga yang setinggi 

mungkin dan mempunyai perbezaan di antara daya renyukan awalan dan daya 

renyukan purata yang serendah mungkin. Dengan itu, CCCT yang bersudut lipatan 

20 darjah dan berlapis arah [60/0/60] adalah pilihan yang paling sesuai untuk kriteria 

ini. Pada masa yang sama, hasil kajian ini juga menunjukan bahawa purata serapan 

tenaga (Es) untuk tiub jenis CCCT dengan sudut lipatan yang rendah adalah lebih 

tinggi daripada tiub jenis CCCT dengan sudut lipatan yang tinggi. Oleh itu, kajian 

kegunaan tiub jenis CCCT dengan sudut lipatan 5, 20 and 35 darjah secara am telah 

dapat merangkumi tiub jenis CCCT dengan sudut lipatan di antara 0 darjah hingga 

ke 45 darjah. Ini adalah disebabkan oleh sudut lipatan yang bertambah tinggi, di 

mana purata Es tiub CCCT akan berkurangan dan keadaan sedemikian tidak lagi 

menjadi penting dalam kajian ini. Tiub CCCT dengan sudut lipatan melebihi 45 

darjah akan mengakibatkan fiber komposit pada tiub CCCT ini berfungsi di luar 

kawasan kekuatannya dari arah yang sepatutnya. Tambahan pula, sudut lipatan di 

antara 45 darjah dan 90 darjah adalah sama seperti sudut lipatan di antara 0 darjah 

dan 45 darjah. Oleh yang demikian, kajian terhadap CCCT dengan sudut lipatan 

yang melebihi 45 darjah adalah tidak diperlukan. 
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TRIA    Triangle elements    - 

l     Fibre length     m 

lc    Critical fibre length    m 

lt    Load-transfer length    m 
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σ    Stress      kPa 

σf     Fibre stress in axial direction   kPa 
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∈    Strain      kPa 

τ    Shear stress     kPa 
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1. INTRODUCTION 

This chapter serves as the introductory page on this thesis. The major 

focus in this chapter is for the discussion on the subject matter and the overall 

objectives of this project. In this chapter, issues of interest, objectives and the 

overview of the thesis are discussed.  

 Background and Problem Statement  

Due to the human desire in designing high speed transport vehicles to 

reduce travelling time, the survivability of occupants in the vehicles had became 

the major concern to vehicles designers. Regardless of air, sea, and ground 

vehicles, the design features were increasingly driven by minimum weight 

considerations to increase carrying capacity and at the same time, tolerates for 

passenger safety. Upon introducing safety features in vehicles, which include the 

seat belts, safety helmets, vehicle crash protective bars, etc., has created an 

increased interest in the research and development of lightweight transportation 

vehicles. The primary goal to the lightweight vehicle is to achieve the superior 

strength-to-weight ratio and to improve the fuel economics of vehicles. This 

ideology had brought for the change of types of materials used from metallic to 

composite material. When composite structures or components are perfectly 

designed and fabricated, a very low stress loading, lightweight and high 

crashworthiness performance could be achieved. This will served as a high 

energy-dissipating device to most of the vehicle components. 

Eventually, the researches in composite crushing behaviour and energy 

absorption of composite components with customised shapes and geometries 
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serves as the primary but vital steps in producing the desired “Near Perfect” 

components. 

 Importance of Study 

Due to the simplicity in manufacturing and cost efficiency of hollow 

tubes as compared to solid tubes, hollow tubes are favourable for the used as 

structural components in today’s world. Subsequently, cylindrical shape tubes 

were chosen for this research mainly due to no sharp edges along the tube body 

that eventually serves as weak buckling points. Thus, giving optimal longitudinal 

strength. 

The study at the crushing & behaviours of the desired orientations of fibre 

lamination for axially loaded tubes using FEA software is beneficial as follows; 

• Optimisation of designed of crushing device with optimal geometrical 

shapes and fibre orientations. 

• Identification of the possibility of such designed prior to experimental 

approach. Time and cost saving as compared to prototypes building for 

trial-an-error experimental approach. 

 Aims & Objectives 

The objectives of this project are: 

• To investigate the effect of varying the corrugated angles on the 

crushing behaviour of CCCT under compression using FEM. 

• To determine the optimal orientations of composite (woven roving glass 

fibre/epoxy) laminas of several commonly used Corrugated Cylindrical 
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Composite Tubes (CCCT) when axial load applied onto one end of the 

tube using FEA (ABAQUS) method. 

 Method Statement 

This research focuses in studying the effect of composite material (woven 

roving glass fibre/epoxy) fabrication orientation in Corrugated Cylindrical 

Composite Tubes (CCCT) on energy absorption capacity, failure mechanism, and 

failure mode using the Finite Element Analysis (FEA) simulation method.  

In the beginning of the study, finite element models were built in the 

ABAQUS/CAE. Referring to Elgalai et al. (2004) work as the based study for 

this thesis; several corrugated tubes with reference to the journal were built for 

the study. Axially compressive loads were simulated and applied onto the 

selected tubes in the software environment. These corrugated tubes models were 

then be analysed using ABAQUS/Explicit for validation.  

Upon validation of several cases using the work, the study of several 

selected corrugated tubes with corrugated angle of 5, 20 & 35 degrees were used 

for the study. 20 corrugated tubes formed by 20 respective different orientations 

of E-Glass fibre/epoxy in woven roving form were simulated for axially 

compressed loading. The energy absorption capacity, failure mechanism, and 

failure mode of the composite corrugated tubes were then be analysed and 

discussed. 
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