

UNIVERSITI PUTRA MALAYSIA

SOFTWARE-DEFINED RADIO-BASED MODULATION AND DEMODULATION SCHEME

AHMED MOHAMED SALIH BAKHRAIBA

FK 2009 71

SOFTWARE-DEFINED RADIO-BASED MODULATION AND DEMODULATION SCHEME

By

AHMED MOHAMED SALIH BAKHRAIBA

Thesis submitted to the School of Graduate Studies, University Putra Malaysia, In Fulfilment of the Requirement for the Degree of Master of Science

April 2009

DEDICATION

This thesis is dedicated to

ALL WHOM I LOVE

Specially My BELOVED PARENTS

> And My SISTERS

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

SOFTWARE-DEFINED RADIO-BASED MODULATION AND DEMODULATION SCHEME

By

Ahmed Mohamed Salih Bakhraiba

April 2009

Chairman: Associate Professor Sabira Khatun, PhD

Faculty: Engineering

Software Defined Radio (SDR) has been one of the new techniques developed to change the way the traditional wireless communication systems work. Through the definition of the SDR, this thesis aims at designing a modem system which can be adapted to many modulation schemes. Designing a multi-modulation schemes system in term of hardware will cost a lot and definitely consume power and increase the interference, and for this purpose, an adaptive algorithm is designed to be capable of detecting certain modulation schemes and identifying its type, and automatically demodulating the modulated signal after the decision of the identifier has been taken using digital signal processing techniques.

Different digital modulation schemes were employed in this study for adaptation according to need. These include the Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Binary Phase Shift Keying (BPSK), and Gaussian Minimum Shift Keying (GMSK).

The adaptive system was mainly dependent on the following digital signal processing techniques: Continuous Wavelet Transform (CWT) and Fast Fourier Transform

(FFT). For this purpose, the MATLAB was used as the simulation software throughout this thesis, where the SIMULINK tool had been used for the simulation of the demodulation process.

The performance evaluation of the identification system, under each technique, had been derived in terms of signal-to-noise ratio (SNR) for the range from 4dB up to 15dB. Result's showed, the identification system was found to have a lower performance in identifying the ASK signal when using the CWT technique, particularly for low SNR value. Whereas the identification system could identify the ASK signal with the best performance using the FFT technique, even with the presence of high noise compared with other modulation schemes. Generally, most of the modulation schemes, under both techniques, have more than 90% accurate identification ability when the SNR is equal to and above 9dB. However, the identification ability of the system may vary from one modulation scheme to another, and from CWT to FFT; therefore, designing an identification system which combines both the techniques will be able to increase the ability for accurate identification.

Tesis abstrak yang dikemukakan kepada Senat Universiti Putra Malaysia dalam memenuhi keperluan ijazah Sarjana Sains

PERISIAN TERTAKRIF RADIOBERPANGKALAN MODULASI DAN PENGENYAHMODULAN SKIM

Oleh

Ahmed Mohamed Salih Bakhraiba

April 2009

Pengerusi: Professor Madya Sabira Khatun, PhD

Fakulti: Kejuruteraan

Perisian Tertakrif Radio (SDR) adalah satu daripada teknik-teknik terbaru untuk mengubah sistem kerja telekomunikasi tradisional tanpa wayar. Melalui definisi SDR, tesis ini bertujuan bagi mereka satu sistem modem yang boleh diadaptasi pada banyak skema modulasi. Rekaan satu multi modulasi sistem dari segi perkakasan akan menelan belanja yang banyak dan akan menggunakan kuasa serta meningkatkan gangguan, maka untuk tujuan ini, satu algoritma adaptif telah direkabentuk dan berupaya mengesan modulasi skim-skim tertentu serta mengenal pasti jenisnya, dan secara automatik demodulasi mengubah isyarat setelah keputusan pengecaman diambil menggunakan teknik-teknik pemprosesan isyarat digital.

Skim-skim modulasi digital berbeza telah digunakan dalam kajian ini untuk diadaptasi mengikut keperluan. Ini termasuklah Amplitude Shift Keying (MEMINTA), Frequency Shift Keying (FSK), Binary Phase Shift Keying (BPSK), dan Gauss Minimum Shift Keying (GMSK).

Sistem mudah suai adalah bergantung pada teknik-teknik pemprosesan isyarat digital : Gelombang Kecil Selanjar Mengubah (CWT) dan Fast Fourier Transform (FFT). Untuk tujuan ini, MATLAB telah digunakan sebagai perisian simulasi sepanjang tesis, manakala alat SIMULINK telah digunakan untuk simulasi pengenyahmodulan proses.

Penilaian prestasi sistem pengenalpastian, dibawah setiap teknik, telah diterbitkan dalam nisbah isyarat kepada gangguan (SNR) untuk julat daripada 4dB sehingga 15dB. Keputusan menunjukkan, sistem pengenalpastian telah didapati untuk mempunyai satu prestasi yang lebih rendah dalam mengenal pasti isyarat ASK bila menggunakan teknik CWT, terutama untuk nilai SNR yang rendah. Manakala sistem pengenalpastian boleh mengenalpasti isyarat ASK dengan persembahan terbaik menggunakan teknik FFT, meskipun dengan kehadiran gangguan bunyi berbanding dengan skim modulasi lain.

Umumnya, kebanyakan skim-skim modulasi, dibawah kedua-dua teknik, mempunyai lebih daripada 90% keupayaan pengenalpastian yang tepat apabila SNR sama dengan 9dB dan lebih. Bagaimanapun, keupayaan pengenalpastian sistem ini boleh berubah daripada satu skim modulasi kepada modulasi yang lain, dan daripada CWT kepada FFT; oleh itu, mereka satu sistem pengenalpastian yang menggabungkan kedua-dua teknik ini akan dapat mempertingkatkan keupayaan untuk pengenalpastian yang lebih tepat.

ACKNOWLEDGEMENTS

First of all, I would like to express my greatest gratitude to Allah the most Benevolent, Merciful and Compassionate, for giving me the most strength, patience and guidance to have this work completed.

I would like to express my appreciation and help gratitude to my supervisor Associate Professor Dr. Sabira Khatun for her wise council, guidance, endless encouragement and patience towards completing the research.

My deepest gratitude and appreciation goes to members of my supervisory committee, Associate Professor Dr. Nor Kamariah Noordin, Dr. Alyani Ismail and Professor Dr. Borhanuddin Mohd Ali for their support, great efforts, and their willing to spend their precious time in helping and guiding me to accomplish my research.

Special thanks from me to MALAYSIA and to the Malaysian people in general, for their perfect hospitality in their green land during my studies there.

I will never forget to extend my thanks to all of my second family members in Malaysia, including the colleges' students and the staff, Khalid, Vahid, Bassam, Ali, Wisam and our lab technical Ana for providing me with a great experience in both my academic and social life.

Warm thanks go to all of my friends, especially Mohamed, Yassir, Mutaz, Majed, Amro, Dr. Waleed Sultan and all those whom I've shared beautiful memories with.

Last but not least, I would like to express my indebtedness to my beloved father, mother and sisters for their encouragement and understanding. Their Spiritual support, *do'a* and motivation inspired me to do this research. Finally, to those who involved directly or indirectly in contributing to the success of this research, I express my highly gratitude for their precious time spent. Thank you very much.

APPROVAL

I certify that a Thesis Examination Committee has met on 27 April 2009 to conduct the final examination of Ahmed Mohamed Salih Bakhraiba on his thesis entitled "Software Defined Radio Based Modulation and Demodulation Scheme" in accordance with UNIVERSITIES AND UNIVERSITY COLLEGES ACT 1971 AND THE CONSTITUTION OF THE UNIVERSITI PUTRA MALAYSIA [P.U.(A) 106] 15 MARCH 1998. The Committee recommends that the candidate be awarded the Master of Science degree. Members of the Examination Committee are as follows:

Mohd Adzir Bin Mahdi, PhD

Professor Faculty of Graduate Studies Universiti Putra Malaysia (Chairman)

Sudhanshu Shekhar Jamuar, PhD

Professor Faculty of Graduate Studies Universiti Putra Malaysia (Internal Examiner)

Raja Syamsul Azmir Bin Raja Abdullah, PhD

Lecturer Faculty of Graduate Studies Universiti Putra Malaysia (Internal Examiner)

External Examiner, PhD

Professor Faculty of Graduate Studies Universiti Putra Malaysia (External Examiner)

> **BUJANG KIM HUAT, PhD** Professor /Deputy Dean

School Of Graduate Studies University Putra Malaysia

Date: 2 July 2009

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Sabira Khatun, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Nor Kamariah Noordin, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Alyani Ismail, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Borhanuddin Mohd. Ali, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School Of Graduate Studies University Putra Malaysia

Date: 9 July 2009

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

AHMED M.S. BAKHRAIBA

Date:

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGMENT	vii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF ABBREVIATION/SYMBOLS	XX

CHAPTER

1

INTI	INTRODUCTION				
1.1	Background	1			
1.2	Problem Statement And Motivation	3			
1.3	Aim And Objectives	5			
1.4	Scope Of The Study	6			
1.5	The Study Module	7			
1.6	Thesis Organization	9			

2 REVIEW AND ANALYSIS OF THE SOFTWARE DEFINED RADIO AND DIGITAL MODULATION TECHNIQUES AND DIGITAL SIGNAL PROCESSING

2.1	Introduction	11
2.2	Overview of Software Defined Radio	12
2.3	The SDR Architecture	13
	2.3.1 The conventional Radio Architecture	14
	2.3.2 An Ideal Software-Defined Radio Architecture	15
2.4	The Adaptive Modulation and Demodulation System	16
2.5	Overview of the Digital Modulation Techniques	19
	2.5.1 ASK Modulation	20
	2.5.2 FSK Modulation	21
	2.5.3 BPSK Modulation	22
2.6	The concept of I and Q Channels	23
2.7	Symbols, Bits and Bauds	24
2.8	Advanced Modulation Techniques (GMSK)	25
2.9	Overview of the Signal Processing	28
	2.9.1 The Time-Frequency Signal Processing	29
	2.9.2 The Short Time Fourier Transform (STFT)	30
	2.9.3 The Fast Fourier Transform (FFT)	32
2.10) The Wavelet Transform	33
	2.10.1 Continuous Wavelet Process	36
	2.10.2 Analysis the modulation schemes by CWT	42
2.11	A comprehensive study of the research	45
2.12	2 Summary	46

3 THE RESEARCH METHODOLOGY

3.1	Overview	48
3.2	The overall design flow of the adaptive modulation	49
	identification and demodulation system	
3.3	Signal Detection and Identification	51
	3.3.1 Identification of the Digital Modulation Signal by	52
	the Wavelet Transform	
	3.3.2 Identification of the Digital Modulation Signal by	59
	Fast Fourier transforms	
3.4	Signal Demodulation	60
	3.4.1 ASK Demodulation	60
	3.4.2 FSK Demodulation	62
	3.4.3 BPSK Demodulation	64
	3.4.4 GMSK Demodulation	65
3.5	Modulation Adaptation Rule	67
3.6	The Hardware Experiment	69
3.7	Summary	71

4 **RESULTS AND DISCUSSION**

4.1	Overvie	ew	73
	4.1.1	Parameters values	73
4.2	The Ma	atlab Simulation Results	76
	4.2.1	Identification System Using the Wavelet Transforms	76
	4.2.2	Identification System Using the Fast Fourier	91
		Transforms (FFT)	
	4.2.3	Comparison of different statistical tools	101
	4.2.4	The cross correlation method	101
	4.2.5	The variance versus FSK and BPSK with different	105
		amplitude	
4.3	Digital	Demodulation Procedure	105
4.4	Experir	nental Results	115
4.5	Summa	ury	119
		-	

5 CONCLUSION			
	5.1	Conclusion	122
	5.2	Thesis contribution	123
	5.3	The limitation of the research work	124
	5.4	Future Research Direction	125
REFERENCES		126	
APPE	NDICI	ES	130
BIOD	ATA C	OF THE AUTHOR	134
LIST OF PUBLICATIONS		135	

LIST OF TABLES

Table		Page
2.1	A comprehensive study of previous and present research	45
4.1	The parameters used in identifying the modulated signal by CWT and FFT for ASK, FSK, and BPSK	74
4.2	The parameters used in identifying the modulated signal by CWT and FFT for GMSK	74
45.3	The parameters used in demodulating the modulated signal by Simulink for ASK, FSK, and BPSK	74
4.4	The parameters used in demodulating the modulated signal by Simulink for GMSK	75
4.5	The threshold values for the ASK noise signal, using the CWT	82
4.6	The percentages of the correct identification according to their corresponding SNR values for the ASK signal	82
4.7	The threshold values for the FSK noise signal by the CWT	84
4.8	The percentage of the correct identification to its corresponding SNR value for the FSK signal	85
4.9	The threshold values for the BPSK noise signal by the CWT	86
4.10	The percentage of the correct identification to its corresponding SNR value for the BPSK signal	87
4.11	The threshold values for the GMSK noise signal using the CWT	88
4.12	The percentages of the correct identification to their corresponding SNR values for the GMSK signal	88
4.13	The threshold values of the ASK noise signal FFT	92
4.14	The percentage of correct identification to its corresponding SNR value for the ASK signal using FFT	93
4.15	The threshold values of the FSK noise signal by the FFT	94
4.16	The percentage of correct identification to its corresponding SNR value for the FSK signal using FFT	94
4.17	The threshold values for the BPSK noise signal by FFT	96

4.18	The percentage of correct identification to its corresponding SNR value for the BPSK signal using FFT	96
4.19	The threshold values for the GMSK noise signal by the FFT	97
4.20	The percentage of correct identification to its corresponding SNR value for the GMSK signal using FFT	98
4.21	Variance comparison under different level of amplitude	104
4.22	ASK bit error rate with respect to SNR	107
4.23	The FSK bit error rate with respect to SNR	109
4.24	The BPSK bit error rate with respect to SNR	112
4.25	GMSK bit error rate with respect to SNR	113

LIST OF FIGURES

Figure		Page
1.1	Study Module of the Research	8
2.1	Conventional design of a radio	14
2.2	Actual SDR transceiver block diagram	15
2.3	General block diagram of SDR receiver system	17
2.4	The Baseband information sequence – 0010110010	21
2.5	The Binary ASK (OOK) signal for (0010110010)	21
2.6	The Binary FSK signal for (0010110010)	22
2.7	The Binary PSK Carrier (Note the 180° phase shifts at bit edges) for (0010110010)	22
2.8	The signal vector plotted on signal space	23
2.9	Digital information travels on an analogue carrier	24
2.10 a,b	GMSK I and Q modulated signal	27
2.11	Common signal processing system	28
2.12	Windowing approach (short-time Fourier transforms)	30
2.13	(a) time domain signal (15Hz) and (4Hz); (b) STFT for (a)	31
2.14	(a) sin wave (b) wavelet	35
2.15	(a) Scaling property of the wavelets; (b) Sym8; and (c) db6	36
2.16	Steps 1 and 2	37
2.17	Step 3	38
2.18	Step 4	38
2.19	(a) time domain signal; (b) time-scale representation	39
3.1	Methodology model diagram	50
3.2	Typical SDR receiver block diagram	52

3.3	Generated ideal signals for (a) ASK, (b) FSK, (c) BPSK, (d) GMSK	54
3.4	Generated noise signals at 7 dB for (a) ASK, (b) FSK, (c) BPSK, (d) GMSK	55
3.5	Block diagram of the identification system steps using CWT	57
3.6	Block diagram of the identification system steps using FFT	60
3.7	The ASK demodulation blocks	61
3.8	The FSK demodulation blocks	63
3.9	The FSK demodulator block diagram	63
3.10	The BPSK demodulation blocks	64
3.11	The GMSK demodulation blocks	65
3.12	The Flow chart of the overall system	68
3.13	Receiver module	69
3.14	Transmitter module	70
3.15	Transmitting the signal	70
3.16	Transmitted signal from the transmitter	71
3.17	Received signal at the receiver and before the demodulation stage	71
4.1	ASK and FSK modulation versus different scale respectively	75
4.2	BPSK and GMSK modulation versus different scale respectively	75
4.3	The coefficient diagrams for the ASK and FSK signals respectively, after applying the CWT	76
4.4	The coefficient diagrams for the BPSK and GMSK signals respectively, after applying the CWT	77
4.5	The absolute value of coefficient diagram for ASK and FSK	77
4.6	The absolute value of coefficient diagram for BPSK and GMSK	77
4.7	The filter coefficient diagrams for the ASK and FSK signals respectively, after applying the digital filter	78
4.8	The filter coefficient diagrams for the BPSK and GMSK signals respectively, after applying the digital filter	78

4.9	Comparing the ASK signal with the unknown modulated signal, after calculating the statistical variance	79
4.10	Comparing the FSK signal with the unknown modulated signal, after calculating the statistical variance	80
4.11	Comparing the BPSK signal with the unknown modulated signal, after calculating the statistical variance	80
4.12	Comparing the GMSK signal with the unknown modulated signal, after calculating the statistical variance	81
4.13	Threshold range setup for ASK noise signal in CWT case	83
4.14	Threshold range setup for FSK noise signal in CWT case	85
4.15	Threshold range setup for BPSK noise signal in CWT case	87
4.16	Threshold range setup for GSK noise signal in CWT case	89
4.17	All modulated signals using the CWT technique	90
4.18	Power spectrum measurements versus frequency for the ASK and FSK, respectively by FFT	91
4.19	Power spectrum measurements versus frequency for the BPSK and GMSK, respectively, by FFT	91
4.20	Threshold range setup for ASK noise signal in FFT case	93
4.21	Threshold range setup for FSK noise signal in FFT case	95
4.22	Threshold range setup for BPSK noise signal in FFT case	97
4.23	Threshold range setup for GSK noise signal in FFT case	98
4.24	All modulated signals using the CWT technique	99
4.25	comparison of CWT and FFT for ASK and FSK schemes	100
4.26	comparisons of CWT and FFT for BPSK and GMSK schemes	100
4.27	autocorrelation of ASK and BPSK respectively	101
4.28	autocorrelation of ASK noise signal and BPSK noise signal at 8 and 15 dB respectively	102
4.29	cross correlation between ASK ideal signal and ASK noise signal at	102

8, 12, and 15dB respectively

4.30	cross correlation between BPSK ideal signal and BPSK noise signal at 8, 12, and 15dB respectively	103
4.31	Cross correlation ideal ASK with noise BPSK at 15 dB, (b) Cross correlation ideal BPSK with noise ASK at 15 dB	103
4.32	The ASK ideal signal	106
4.33	Eliminating the zero content by squared FFT	106
4.34	The location of the zero's place in the ASK signal	107
4.35	FSK ideal signals	108
4.36	FSK signal after calculating the hit crossing	108
4.37	The ideal BPSK signal	110
4.38	The BPSK signal without any phase changes	110
4.39	Phase change detection in the BPSK demodulation process	111
4.40	The BER ratios for all the modulation schemes	113
4.41	Transmitted signal and received signal in the receiver	114
4.42	Imported transmitted and received signals by Matlab	115
4.43	Transformed signals by CWT	116
4.44	Filtered signals by digital filter	116
4.45	The statistical variance of the received signal	117
4.46	The statistical variance of the original transmitted signal	117

LIST OF ABBREVIATIONS/ SYMBOLS

$4^{\rm m}$ G	Fourth Generation
ADC	Analog to Digital converter
AM	Amplitude Modulation
AMC	Automatic Modulation Classification
ASK	Amplitude Shift Keying
AWGN	Additive White Gaussian Noise
BER	Bit Error Rate
BPSK	Binary Phase Shift Keying
BT	Bandwidth multiplied by Time
CC	Cyclic Cumulants
CC CDPD	Cyclic Cumulants Cellular Digital Packet Data
CC CDPD CPBFSK	Cyclic Cumulants Cellular Digital Packet Data Direct Sequence Spread Spectrum
CC CDPD CPBFSK CNR	Cyclic Cumulants Cellular Digital Packet Data Direct Sequence Spread Spectrum Carrier to Noise Ratio
CC CDPD CPBFSK CNR CPM	Cyclic Cumulants Cellular Digital Packet Data Direct Sequence Spread Spectrum Carrier to Noise Ratio Continues Pulse Modulation
CC CDPD CPBFSK CNR CPM CWT	Cyclic Cumulants Cellular Digital Packet Data Direct Sequence Spread Spectrum Carrier to Noise Ratio Continues Pulse Modulation Continues Wavelet Transform
CC CDPD CPBFSK CNR CPM CWT DAC	Cyclic CumulantsCellular Digital Packet DataDirect Sequence Spread SpectrumCarrier to Noise RatioContinues Pulse ModulationContinues Wavelet TransformDigital to Analog Converter
CC CDPD CPBFSK CNR CNR CPM CWT DAC	Cyclic CumulantsCellular Digital Packet DataDirect Sequence Spread SpectrumCarrier to Noise RatioContinues Pulse ModulationContinues Wavelet TransformDigital to Analog ConverterDigital Down Converter

DECT	Digital European Cordless Telephone
DFT	Discrete Fourier Transform
DSP	Digital Signal Processing
DUC	Digital Up Converter
FFT	Fast Fourier Transform
FM	Frequency Modulation
FPGA	Field Programmable Gate Array
FSK	Frequency Shift Keying
GMSK	Gaussian Minimum Shift Keying
GPS	Global Position System
GSM	Global System for Mobile communication
HDR	Hardware Defined Radio
HWT	Haar Wavelet Transform
IF	Intermediate Frequency
LNA	Low Noise Amplifier
MSK	Minimum Shift Keying
OOK	On-Off Keying
PA	Power Amplifier
PC	Personal Computer
PSK	Phase Shift Keying

QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RF	Radio Frequency
SDR	Software Defined Radio
SNR	Signal to Noise Ratio
STFT	Short Time Fourier Transform
VCO	Voltage Control Oscillator

LIST OF SYMBOLS

w _c	Carrier frequency
θ_{c}	Carrier phase
Α	Signal Amplitude
<i>m</i> (<i>t</i>)	constant has value 0 in case of sent binary 0, value 1 in case of sent binary 1
S	Signal power
S(t)	Modulated Signal (Transmitted Signal)
X(t)	Modulated Signal (Received Signal)
Ν	Number of observed symbols
Т	Symbol duration and bit duration
<i>u</i> _t	Standard unit pulse of duration T
φ_i	$\varphi_i \in \left\{ \frac{2\Pi}{M} (m \approx 1), m = 1, 2,, M \right\}$
ω_i	$\omega_i \in \{\omega_1, \omega_2,, \omega_m\}, \theta_i \in (0.2\pi)$
α	The scale of the coefficient
b and $ au$	Translation (time)
*	Complex conjugates
$\psi(t)$	Mother wavelet
Ψ_a	Baby wavelet

σ^2	Statistical variance
Ι	In Phase Carrier
Q	Quadrature Carrier
B_b	Signal Bandwidth
ВТ	Factor of Bandwidth multiply by symbol time equal 0.3
j	Level of decomposition
$y_s(i)$	The smoothed value for the ith data point
N	Number of neighboring data points on either side of $y_s(i)$

