

UNIVERSITI PUTRA MALAYSIA

GROUND TARGET DETECTION IN FORWARD SCATTERING RADAR USING HILBERT TRANSFORM AND WAVELET TECHNIQUES

MOHAMED KHALAF ALLA.H.M.H

FK 2009 60

Ground Target Detection in Forward Scattering Radar Using

Hilbert Transform and Wavelet Techniques

By

MOHAMED KHALAF ALLA.H.M.H

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

April, 2009

DEDICATION

This thesis is dedicated to

ALL WHOM I LOVE

Specially

My Beloved Parents

Abstract of thesis presented to the Senate of University Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

GROUND TARGET DETECTION IN FORWARD SCATTERING RADAR USING HILBERT TRANSFORM AND WAVELET TECHNIQUES

By

MOHAMED KHALA ALLA.H.M.H

April 2009

Chairman: Raja Syamsul Azmir Bin Raja Abdullah, PhD

Faculty: Engineering

This thesis analyzed the electromagnetic signal scattered from the target crossing the Forward Scattering Radar system baseline. The aim of the analysis was to extract the Doppler signal of the target, under the influence of high ground clutter and noise interference. The scattered Doppler signal was processed by the proposed signal processing techniques to predict the existence of a target for the automatic target detection (ATD) in the FSR system. This thesis is dedicated to the detection of ground target, and for this purpose, a typical car was used as target. Two signal processing techniques, namely Hilbert Transform and Wavelet Technique, were used for target detection. The results gathered in this study showed that the detection using Hilbert Transform was only applicable for some conditions and it was used to confirm the wavelet efficiency in the detection process. Similarly, it was also found that the detection using Wavelet Technique became more robust to higher clutter and noise level. At the worst condition of the scenario, the successful detection rate is more than 75%. This good result suggest that the transmit signal can be as low as possible and open a new horizons for FSR to be applied in real

applications for example in Radar Sensor Network and Microwave Fence .Two sets of field experimentations were carried out, and the target's signal under the influence of the high clutter was successfully detected using the proposed method. Finally, an algorithm for an automatic detection of the ground target detection in FSR is proposed.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master of Sains

PENGESANAN SASARAN DARAT DALAM 'FSR' MENGGUNAKAN TRANSFORMASI 'HILBERT' DAN TEKNIK 'WAVELET'

Oleh

MOHAMED KHALAF ALLA HASSAN MOHAMED

April 2009

Chairman: Raja Syamsul Azmir Bin Raja Abdullah, PhD

Faculty: Kejuruteraan

Tesis ini menganalisis isyarat elektromagnet yang diserakkan daripada sasaran kepada tapak sistem FSR. Analisis ini bertujuan untuk penyarian isyarat 'Doppler' di bawah pengaruh sepahan tanah yang tinggi dan gangguan hingar. Isyarat 'Doppler' yang terhasil di proses untuk meramal kewujudan sasaran bagi pengesanan sasaran automatik dalam sistem FSR. Tesis ini bertujuan untuk mengesan sasaran di tanah dimana kenderaan tipikal telah digunakan sebagai sasaran. Dua jenis pemproses isyarat iaitu 'Hilbert Transform' dan 'Wavelet Technique' digunakan sebagai pengesan sasaran. Keputusan yang diperolehi menunjukkan pengesanan menggunakan 'Hilbert Transform' hanya boleh digunakan untuk beberapa keadaan dan ini megesahkan kecekapan 'wavelet' dalam pengesanan sasaran. Tambahan lagi, pengesanan menggunakan 'Wavelet Technique' menjadi lebih kuat kepada sepahan tanah yang tinggi dan hingar. Dua set eksperimen dijalankan dan isyarat sasaran di bawah pengaruh sepahan yang tinggi telah berjaya

dikesan oleh pengesan yang dicadangkan. Akhir sekali algoritma untuk pengesanan sasaran secara automatik telah diperkenalkan.

ACKNOWLEDGEMENTS

This work would have not been accomplished without the help of so many people. Here, a brief account of some of the people who deserve my thanks:

First, I would like to thank **Dr. Raja Syamsul Azmir Bin Raja Abdullah** for the help, inspiration, guidance, motivation and support he gave to me throughout my studies and for taking the burden of supervising me in this research.

Secondly, I would like to thank Dr. Mohamed Fadle for his help and advice.

My deepest gratitude and appreciation goes to Dr. Abubakar Mustafa Mohamed, the chairman of Computer Man College, Sudan, for sponsoring me throughout my study period.

My sincere gratitude also goes to all of my family members, especially to my father KHALAF ALLA HASSAN, my mother AMNA AHMED ALI, as well as my brother and sisters, for their continuous support.

I also want to thank all of my second family members in Malaysia, including the colleges' students and the staff, for providing me with a great experience in both my academic and social life.

Special thanks from me to MALAYSIA and to the Malaysian people in general, for their perfect hospitality in their green land during my studies there.

I will never forget to the guidance and assistance rendered by Dr. Waleed Sultan in supporting me during in my studies.

Finally, my warm thanks go all of my friends, especially Ahmed, Mutaz, Ashraf, Khalid, Omar and all those whom I've shared beautiful memories with.

APPROVAL

I certify that an Examination Committee has met on 3 April 2009 to conduct the final examination of Mohamed Khalaf Alla Hassan Mohamed on his Master of Science thesis entitled, "Ground Target Detection In Forward Scattering Radar Using Hilbert Transform and Wavelet Technique," in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Chairman, PhD

Professor Faculty of Graduate Studies Universiti Putra Malaysia (Chairman)

Examiner 1, PhD

Professor Faculty of Graduate Studies Universiti Putra Malaysia (Internal Examiner)

Examiner 2, PhD

Professor Faculty of Graduate Studies Universiti Putra Malaysia (Internal Examiner)

External Examiner, PhD

Professor Faculty of Graduate Studies Universiti Putra Malaysia (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor /Deputy Dean School Of Graduate Studies University Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Raja Syamsul Azmir Bin Raja Abdullah, PhD Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohamed Fadlee B.A.Rashid, PhD Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 8 June 2009

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MOHAMED KHALAF ALLA.H.M.H

Date:

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xiv
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS/ SYMBOLS	xix

CHAPTER

2

3

1 INTRODUCTION

1.1	Background	1
1.2	Brief History of Forward Scattering Radar	3
1.3	problem statement and motivation for present work	5
1.4	Aims and objectives	6
1.5	Thesis Organization	7
LITE	RATURE REVIEW	10
2.1	Introduction	10
2.2	Basic principles of Forward Scattering Radar	10
	2.2.1 Forward Scattering Radar equation	12
	2.2.2 Forward Scattering Radar Cross Section	13
	2.2.3 Doppler Effects	15
	2.2.4 Literature survey on Forward Scattering Radar	18
2.3	Signal processing and Detection Technique in FSR	21
2.4	Signal processing and signal de-noise overview	22
	2.4.1 Time- Frequency signal processing	23
	2.4.2 Short-Time Fourier Transform(STFT)	23
2.5	Hilbert Transformation	26
2.6	The Instantaneous Frequency	27
2.7	Wavelet Transform	29
	2.7.1 Continues Wavelet Transform	32
2.8	Wavelet De- noise	35
	2.8.1 Decompositions	36
	2.8.2 Tershould Detail Cofficient	37
	2.8.3 Reconstruction	37
2.9	Summary	37
ME	THODOLOGY	39
3.1	Introduction	39
3.2	The Ground Forward Scattering System	39

3.2 The Ground Forward Scattering System3.3 Received Doppler Frequency in Forward Scattering Radar

42

	3.4	Detection using Hilbert Transform	47
	3.5	Detection using Wavlet De-noise	51
		3.5.1 Decomposition	51
		3.5.2 Threshold Detail Cofficient	55
		3.5.3 Reconstruct	56
	3.6	Summary	56
4	FSR	EXPERIMENT SETUP AND DATA COLLECTION	58
	4.1	Introduction	58
	4.2	Out Door Experimental Setup	58
	4.3	Experimental Setup differences between Layout 2 and previous	
		experimental layout 1(RSA)	66
	4.4	Summary	72
5	RES	ULTS AND DISCUSSION	73
	5.1	Introduction	73
	5.2	Experimental Results from Layout 1(RSA)	73
	5.3	Experimental Results from Layout 2	76
		5.3.1 Results From 20 Meter transmitter-receiver Separation	
		Distance:	77
		5.3.2 Results from Layout 2 .40 meter transmitter-receiver	
		Separation Distance	85
	5.4	Challenges in wavelet de-noise	91
	5.5	Automatic target detection (ATD)	96
	5.6	Summary	99
6	CON	ICI LISION CONTRIBUTION AND FUTURE WORK	100
U	61	Conclusion	100
	6.2	Thesis Contributions	100
	63	Future Research Direction	101
	6.J	List of Publications	101
	0.4		103
REFE	REFERENCES 105		
APPE	ENDIC	ES	109
BIOD	BIODATA OF THE STUDENT 122		

LIST OF TABLES

Table		Page
4.1	Components and Equipments Used in Outdoor Experiment	65
4.2 .	The different set up between the two layouts	68
4.3	Example of Vehicle Types Used in Experiment Layout 2	71
5.1	Statistics for the obtained results from layout 2	93
5.2	values to drive the supportive threshold equation	95

LIST OF FIGURES

Figure			
1.1	(a) Radar systems based on the transmitter-receiver topology,(b) FSR topology	2 age	
1.2	Methodology flow chart for the study of FSR for ground target Detection	8	
1.3	Scope of the work	9	
2.1	Forward scattering radar condition i.e. when bistatic angle, $\beta \approx 180^{\circ}$	11	
2.2	Forward scattering radar geometry showing the diffraction angles α_v and α_h	14	
2.3	Babinet's model for the forward scatter case with $\beta = 180^{\circ}$	14	
2.4	Doppler Effect	16	
2.5	Geometry for forward scattering radar target Doppler calculation	17	
2.6	Forward scattering radar performance	19	
2.7	Common signal processing system	22	
2.8	Windowing approach (short time Fourier transforms)	24	
2.9	(a) time domain signal (15Hz) and (4Hz), (b) STFT for (a)	25	
2.10	Hilbert transform of sine wave	26	
2.11	(a) time domain chirp signal, (b) its instantaneous frequency	29	
2.12	(a) sine wave, (b) wavelet	31	
2.13	(a) Scaling property of the wavelets, (b) Sym8, (c) dB6	32	
2.14	Step 1 and 2	32	
2.15	Step3	33	
2.16	Step 4	33	
2.17	(a) time domain signal (b) time-scale representation	34	
2.18	Details and approximations at different levels of resolution	36	
3.1	Forward Scattering Radar System Simplified Block Diagram for Vehicle	3	
	Detection	40	

3.2	(a) Overall FSR system layout from above (a, b and c are the vehicle	
	positions) And (b) experimentation scenario during test day	43
3.3	Target in the xMz-plane	44
3.4	Sinc function pattern	45
3.5	Doppler frequency variation relative to the scattering point on the vehicle	47
3.6	Analytical Signal in (a) time domain and (b) its instantaneous frequency at	ìter
	Hilbert	49
3.7	Analytical signal from three targets in (a) time domain and (b) its	
	Instantaneous Frequency	50
3.8	Approximations and Details at Different Levels of Resolution	53
3.9	Sym8 wavelet and scaling function and its associated coefficients	54
3.10	Selection of best Threshold Technique for FSR	55
3.11	The Overall Process of Decomposing a Signal $s(t)$ and Reconstructing the	
	Approximations and the details	56
4.1	Forward Scattering Radar Outdoor Experimental Set-up for Vehicle	
	detection	59
4.2	FSR Experimentation Layout	60
4.3	Simplified Block Diagram for Doppler Extraction by Diode and LPF	61
4.4	(a) Receiver Components used for Outdoor Experiment and (b) receiver blo	ock
	Diagram	62
4.5	The BPF Frequency Response.	63
4.6	Omni Directional Antenna Elevated Directly on the Ground	67
4.7	Transmitter side of the experiment in Layout 2	68
4.8	Experiment scene layout 2 (a), (b) Vehicle passing the Tx-Rx base line, (c)	
	Two cars pass through the base line	70
4.9	Sample of the received signal from Layout 2	71
4.10	Receiver Components used for Outdoor Experiment Layout 2	71

5.1	Resulted Signal (Astra) from Layout 1 (RSA)	73
5.2	Resulted signal (Astra) Vehicle Moves through Sensor (reducing Doppler	
	shift) In layout 1 (b) its instantaneous frequency	74
5.3	(a) Resulted signal (Combi) Vehicle Moves through Sensor (reducing Dopp	oler
	shift) in layout 1 (b) its instantaneous frequency	75
5.4	Resulted signal (Myvi) Vehicle moves through Sensor (reducing Doppler	
	shift) in layout 2 with SNR 10 dB (b) its instantaneous frequency	79
5.5	Resulted signal (Myvi) Vehicle moves through sensor (reducing Doppler	
	shift) in layout 2 with SNR 13 dB (b) its instantaneous frequency	80
5.6	Resulted signal (Myvi and saga) Vehicle moves through sensor (reducing	
	Doppler shift) in layout 2 with SNR 13 dB (b) its instantaneous frequency	81
5.7	Approximation and details at level 5 for Myvi car SNR 10 dB figure (5.4a	83
5.8	De-noised signal for Myvi car SNR 10 dB [Figure (5.4a)	84
5.9	De-noised signal for Mercedes car SNR 13 dB [Figure (5.5a)]	84
5.10	De-noised signal for Myvi and Mercedes [figure (5.5a)]	85
5.11	(a) Resulted signal (Myvi) in layout 2 SNR-10 dB (b) its instantaneous	
	frequency,(c) de-noised signal	86
5.12	(a) Resulted signal (Myvi) in layout 2 SNR -8 dB (b) its	
	Instantaneous frequency, (c) de-noised signal	90
5.13	(a) Received signal for Saga and Savvy with separation distance	
	40m SNR -9 dB(b) It's instantaneous frequency,(c)de-noised signal	88
5.14	(a) Received signal for Saga and Myvi with separation distance	
	40m SNR -8 dB(b) It's instantaneous frequency,(c)de-noised signal	89

93

LIST OF ABBREVIATIONS/ SYMBOLS

- RADAR Radio Detection and Ranging
- EM Electromagnatic
- FSR Forward Scattering Radar
- RCS Radar cross Section
- RAM Radio Absorbing Material
- CW Continues Wave
- OTH Over The Horizon
- ATD Automatic Target Detection
- FS Forward Scattering
- SNR Signal to Noise Ratio
- MIT Moving Target Indication
- KNN K-Nearest Neighbours
- PCA Principle Components Analysis
- FFT Fast Fourier Transform
- DFT Discrete Fourier Transform
- AD Amplitude Detector
- NF Notch Filter
- LPF Low Pass Filter
- ADC Analogue to Digital Converter
- STFT Short Time Fourier Transform
- CWT Continues Wavelet Transform

- DWT Discrete Wavelet Transform
- GPR Ground Penetrating Radar
- MRA Multi Resolution Analysis
- SISAR Shadow Inverse Synthetic Aperture Radar
- FSCS Forward Scattering Cross Section
- EM Electromagnetic Field
- IDWT Inverse Discrete Wavelet Transform
- ISM Industrial Scientific Medical
- LNA Low Noise Amplifier
- HPBW Half Power Beam width

LIST OF SYMBOLS

β	Bistatic Angle
E_{sum}	Total Electrical field
Г	Solf Souttoring Fields
E_s	Self Scattering Fields
E_{sh}	Shadow Field
P_T	Transmitted Power
G_T	Transmitter Gain
G_R	Receiver Gain
λ	Wavelength
$\sigma_{\!B}$	Target's Bistatic RCS
F_T	Constants defined by Willis
F_R	Constants defined by Willis
K_b	Boltzman's constant
T_o	Reference temperature (290K)
F	Noise figure
R_T	Transmitter to Target Distance
R_R	Receiver to Target Distance
d	Distance
L_T	Transmitter Loss
L_R	Receiver Loss
σ_{F}	Forward scattering RCS
$lpha_{v}$	Receiver Vertical Diffraction Angle of the Target
	Observation

under

Receiver horizontal Diffraction Angle of the Target under
Observation
Area of the Aperture
Monostatic RCS
Velocity Vector
Doppler Frequency
Angle between Target Trajectory and Speed Vector
Receiver to imaginary line of Target Trajectory
Transmitter to imaginary line of Target Trajectory
Angle between imaginary line of Target Trajectory and
Transmitter Receiver Distance
Diffraction Angle with respect to Transmitter
Diffraction Angle with respect to Receiver
Analytical signal
The phase
Input Signal
Wavelet Function
Wavelet Function with Scale (a) and Translation (b)
Scale
Translation
Level of Decomposition
Dyadic wavelet
Centre Frequency
Transmitter Receiver Separation Distance

E Electrical Field

- ϕ Magnetic Field
- *Er* Electrical Field in *r* direction (cylindrical coordinates)
- $E\theta$ Electrical Field in θ direction (cylindrical coordinates)
- *E_y* Electrical Field in y direction (cylindrical coordinates)
- *l* Length of the Target
- *h* High of the Target
- c Speed of Light
- θ Transmitter Horizontal Diffraction Angle
- f_{Tgt} Target Frequency
- f_{dbr} Doppler Frequency
- *f*_{dma} Maximum Doppler Frequency
- $\hbar_{k,0}$ Scaling Filter (low pass)
- $\hbar_{k,1}$ Wavelet Filter (high pass)
- $g_{L,0}$ Reconstruction Filter (Low Pass)
- $g_{k,1}$ Reconstruction Filter (high Pass)
- A_i Approximation at Level j
- D_J Detail at Level j

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

The word RADAR is an acronym for *Radio Detection* and *Ranging*. The radar systems and radar stations are intended for detecting various objects in space and establishing their current position, as well as determining velocities and trajectories for moving objects [1].

From the basic point of view, this is achieved by transmitting an electromagnetic (EM) wave from the transmitting antenna. If the target is present within the radar coverage area, the wave will be reflected back to the receiving antenna, and all the information collected at the receiver will then be analysed to determine the above parameters [2].

There are different types of radar systems, based on the transmitter-receiver topology shown in Figure 1.1 in the monostatic radar, the transmitter and the receiver are spatially combined. On the other hand, the multistatic radar designates a single radar with one transmitter and several spatially distributed receiving stations with joint processing of received information. Multisite radar is radar which has several specially separated transmitting-receiving facilities in such a way information gathered from each target (from all sensors) can be fused and jointly processed. Bistatic radar consists of a single transmitter and single receiver which are separated specially by a distance, which is comparable to that of the maximum range of target [3].

