

# **UNIVERSITI PUTRA MALAYSIA**

# SPEED ESTIMATION IN FORWARD SCATTERING RADAR USING STANDARD DEVIATION AND IMPROVED ZERO-CROSSING METHOD

# **MUTAZ SALAH MOHAMED SADIG**

FK 2009 58



# Speed Estimation in Forward Scattering Radar Using Standard

# **Deviation and Improved Zero-crossing Method**

By

## MUTAZ SALAH MOHAMED SADIG

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

February, 2009



## **DEDICATION**

I dedicate this thesis to my parents. Without their patience, understanding, support, and most of all love, the completion of this work would not have been possible.



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

## Speed Estimation in Forward Scattering Radar Using Standard Deviation and Improved Zero-crossing Method

By

#### MUTAZ SALAH MOHAMED SADIG

February 2009

#### Chairman: Raja Syamsul Azmir Bin Raja Abdullah, PhD

#### Faculty: Engineering

Current research on Forward Scattering Radar (FSR) dedicates to the target detection and classification. In the classification technique, the target's speed information is required prior to the classification processes. Unfortunately, the speed is hidden inside the received signal and cannot be extracted directly. This is due to the loss in range resolution in FSR system. This is the main disadvantage of FSR. Thus, this thesis presents a work on speed estimation in FSR. Theory of FSR systems is briefly described together with practical experiments to evaluate the feasibility of such a system in real-life scenarios. The data collected from the practical experimentation and typical ground vehicle is used as the target (e.g. car, lorry). The overall speed estimation system is described. For vehicle speed estimation, two methods are proposed: the first method applies Standard Deviation (STD) theory to the raw radar signal. In the second method, the number of zero-crossing in the received signal is analyzed for speed estimation. On top of that, de-noising pre-processing is introduced to increase the accuracy of speed result. These two methods show a good result in estimating the vehicle speed crossing FSR baseline.



From the analysis, speeds estimation using STD work best for high SNR value. By analyzing 917 experimentally obtained car signatures, the performance of the system is evaluated and the effectiveness of the system is confirmed.



Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master of Sains

#### SPEED ESTIMATION DALAM PENYERAKAN FORWARD RADAR MENGGUNAKAN SISIHAN PIAWAI DAN KAEDAH-KAEDAH IMPROVED ZERO LINTASAN

Oleh

#### MUTAZ SALAH MOHAMED SADIG

Februari 2009

Chairman: Raja Syamsul Azmir Bin Raja Abdullah, PhD

Faculty: Kejuruteraan

# Abstrak

Kajian terkini ke atas Forward Scattering Radar (FSR) tertumpu kepada teknik klasifikasi dan mengenalpasti sasaran. Maklumat kelajuan sasaran diperlukan dalam teknik pengkelasan. Walaubagaimanapun, maklumat tersebut tersembunyi dalam isyarat penerimaan dan tidak boleh diekstrak secara langsung. Ini disebabkan oleh kehilangan julat resolusi sistem FSR dan ini merupakan kelemahan utama FSR. Tesis ini mengetengahkan kajian ke atas penganggaran kelajuan dalam FSR. Teori sistem FSR diterangkan secara ringkas disusuli dengan eksperimen bagi menilai kebolehan sistem. Data diperolehi daripada eksperimen menggunakan kenderaan bermotor sebagai sasaran (seperti kereta, lori). Sistem penganggaran kelajuan diperihalkan. Dua kaedah dicadangkan bagi menganggarkan kelajuan kenderaan. Kaedah pertama mengaplikasi teori Sisihan Piawai (STD) kepada sasaran radar asal manakala bagi kaedah kedua, bilangan lintasan sifar dalam isyarat penerimaan dianalisis bagi menganggarkan kelajuan. Selain itu, de- noising sebelum pemprosesan



diperkenalkan untuk meningkatkan ketepatan hasil kelajuan. Ini dua kaedah-kaedah menunjukkan satu kebaikan mengakibatkan menganggarkan kelajuan kenderaan lintasan garis tapak FSR. Daripada analisis, mempercepatkan anggaran menggunakan STD bekerja paling baik untuk nilai SNR tinggi. Dengan menganalisa 917 tandatangan-tandatangan kereta yang memperolehi secara eksperimen, prestasi sistem adalah dinilaikan dan keberkesanan sistem penyampaian disahkan.



#### ACKNOWLEDGEMENTS

This research project would not have been possible without the support of many people. First of all I want to express my gratitude to my supervisor, **Dr. Raja Syamsul Azmir Bin Raja Abdullah** who was abundantly helpful and offered invaluable assistance, support and guidance. Deepest gratitude is also due to the members of the supervisory committee, **Dr. Mohd. Fadlee b. A.Rasid** without his knowledge and assistance this study would not have been successful.

Special thanks also to all my graduate friends, especially Waleed sultan, Khalid Eltahir, Sabre, Mohamed Khalaf allah, Omer Gafaar, Yassir A.ELraheem, Ahmed Bakh, Amro widaa, Omer Senar and Elsadig nubera for sharing the literature and invaluable assistance.

Also I would also like to convey thanks to the Faculty of Engineering lecturers and research assistances for providing the knowledge and laboratory facilities.

Special Thanks from me to MALAYSIA and to Malaysian people in general for their perfect hospitality in their green land during my study period.

Finally I want to express my love and gratitude to my beloved families; especially, my father, my mother, my brothers and my lonely sister Malaz, for their continuous support, understanding and endless love, through the duration of my studies.



#### APPROVAL

I certify that an Examination Committee has met on 27 FEB 2009 to conduct the final examination of Mutaz Salah Mohamed on his Master of Science thesis "Speed Estimation in Forward scattering Radar using Standard Deviation and Improved Zerocrossing methods" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

#### Mohammad Hamiruce b. Marhaban, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

#### Nor Kamariah bt. Noordin, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

#### Helmi Zulhaidi b. Mohd. Shafri, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

#### Mohamad Kamal B. A. Rahim, PhD

Associate Professor Faculty of Engineering Universiti Teknologi Malaysia (External Examiner)

HASAN AH MOHD GHAZALI, PhD

Professor /Deputy Dean School Of Graduate Studies University Putra Malaysia

Date:



This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

### Raja Syamsul Azmir Bin Raja Abdullah, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

## Mohd.Fadlee B.A.Rasid, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

#### HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 May 2009



#### DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MUTAZ SALAH MOHAMED

Date:



## TABLE OF CONTENTS

## CHAPTER TITLE

#### PAGE

| DEDICATIO   | DN         | ii   |
|-------------|------------|------|
| ABSTRACT    | <b>,</b>   | iii  |
| ABSTRAK     |            | V    |
| ACKNOWL     | EDGEMENT   | vii  |
| APPROVAL    | _          | viii |
| DECLARAT    | TION       | Х    |
| LIST OF TA  | BLES       | XV   |
| LIST OF FIC | GURES      | xvi  |
| LIST OF AB  | BREVIATION | XX   |
|             |            |      |

# 1 <u>INTRODUCTION</u>

1

2

| 1.1 | Background                                | 1 |
|-----|-------------------------------------------|---|
| 1.2 | Brief History of Forward Scattering Radar | 4 |
| 1.3 | Motivation and Problem Statement          | 7 |
| 1.4 | Objectives and original contribution      | 8 |
| 1.5 | Thesis Organization                       | 9 |

## 2 <u>LITERATURE REVIEW</u>

| 2.1 | Introdu | ction                                   | 12 |
|-----|---------|-----------------------------------------|----|
| 2.2 | Princip | les of Forward Scattering Radar         | 12 |
|     | 2.2.1   | The Forward Scattering Radar Equation   | 14 |
|     | 2.2.2   | Forward Scattering Radar Cross Section  | 15 |
|     | 2.2.3   | Doppler Effect                          | 18 |
|     | 2.2.4   | Literature Survey on Forward Scattering | 21 |
|     |         | Radar                                   |    |
| 2.3 | CW Ra   | dar                                     | 22 |



| 2.4 | Theore   | tical and experimental study of forward   | 23 |
|-----|----------|-------------------------------------------|----|
|     | scatteri | ng Radar (FSR)                            |    |
|     |          |                                           |    |
|     | 2.4.1    | Received Signal Waveform and Spectrum for | 23 |
|     |          | a Rectangular target in FSR               |    |
|     | 2.4.2    | Radar Case                                | 27 |
| 2.5 | Speed e  | estimation                                | 29 |
|     | 2.5.1    | Radar gun                                 | 31 |
|     | 2.5.2    | LIDAR                                     | 32 |
|     | 2.5.3    | Photo radar                               | 33 |
|     | 2.5.4    | Comparison of test and theoretical data   | 33 |
|     | 2.5.5    | Zero-crossing method                      | 35 |
| 2.6 | Wavele   | et de-noise                               | 37 |
|     | 2.6.1    | Decomposition                             | 38 |
|     | 2.6.2    | Threshold Detail Coefficients             | 40 |
|     | 2.6.3    | Reconstruct                               | 41 |
| 2.7 | Standa   | rd deviation method                       | 42 |

## 

# SPEED ESTIMATION IN FSR

| 3.1 | Introduction                                        | 44 |
|-----|-----------------------------------------------------|----|
| 3.2 | FSR data collection                                 | 45 |
| 3.3 | Outdoor Experiment for Data Collection              | 48 |
| 3.4 | Received Signal                                     | 53 |
| 3.5 | Training and Testing Data                           | 57 |
| 3.6 | An Overview of the Speed Estimation System by       | 58 |
|     | Using Standard Deviation Method                     |    |
| 3.7 | Standard deviation method                           | 60 |
| 3.8 | Procedure to Relate Standard Deviation to the Speed | 66 |
|     | of Vehicle in FSR                                   |    |
| 3.9 | An overview of the speed estimation system by using | 71 |



Zero-crossing with de-noise method

| 3.10 | De-nois | sing the time domain signal   | 72 |
|------|---------|-------------------------------|----|
|      | 3.10.1  | Decomposition                 | 73 |
|      | 3.10.2  | Threshold Detail Coefficients | 77 |
|      | 3.10.3  | Reconstruct                   | 81 |
| 3.11 | Zero-cr | ossing method                 | 81 |
|      | 3.11.1  | Full waveform comparison      | 82 |
|      | 3.11.2  | Partial waveform comparison   | 84 |
|      | 3.11.3  | Counting 'n' Crossings        | 86 |
| 3.12 | Analysi | S                             | 88 |

### 4 <u>RESULTS AND DISCUSSION</u>

5

4.1 89 Introduction 4.2 Standard deviation method 89 Speed Accuracy against Standard Deviation Method 4.3 94 Conclusion on STD 95 4.4 4.5 Zero-Crossing with De-noise Method 96 Speed Accuracy Vs Zero-crossing with De-noise 4.6 105 Method Comparison between Standard Deviation and Zero-4.7 106 crossing with de-noise method 4.8 108 Summary

| CONCL       | USION, CONTRIBUTION AND FUTURE | 109 |
|-------------|--------------------------------|-----|
| <u>WORK</u> |                                |     |
| 5.1         | Summary and Conclusions        | 109 |
| 5.2         | Thesis contribution            | 111 |
| 5.3         | Future Work                    | 112 |
| 5.4         | List of publications           | 114 |



89

| REFERENCES            | 115 |
|-----------------------|-----|
| APPENDICES            | 118 |
| BIODATA OF THE AUTHOR | 121 |



## LIST OF TABLES

| Page |                                                                | Table |
|------|----------------------------------------------------------------|-------|
| 3.1  | Number of Collected Data for Each of the Refrence Vehicle Type | 52    |
| 3.2  | Minimisation of Error through Choice of n                      | 87    |



## LIST OF FIGURES

| Figu | re                                                                                 | Page |
|------|------------------------------------------------------------------------------------|------|
| 1.1  | Radar Classification and the Scope of work                                         | 3    |
| 1.2  | Causes of loss in range resolution                                                 | 8    |
| 1.3  | General steps for thesis                                                           | 11   |
| 2.1  | Forward scattering radar condition when bistatic angle $\beta \approx 180^{\circ}$ | 13   |
| 2.2  | Forward scattering radar geometry showing the diffraction angles                   | 15   |
| 2.3  | Babinet's Model for the Forward Scatter case with $\beta = 180^{\circ}$            | 16   |
| 2.4  | Forward scatter RCS lobe                                                           | 17   |
| 2.5  | Doppler Effect                                                                     | 19   |
| 2.6  | Geometry for FSR target Doppler calculation                                        | 20   |
| 2.7  | FSR performance                                                                    | 22   |
| 2.8  | Simple CW radar block diagram at forward scattering                                | 23   |
| 2.9  | The Rectangular Shape Dimension for the Sample Target                              | 24   |
| 2.10 | Rectangular Aperture Antenna Geometry and Coordinate                               | 24   |
| 2.11 | SISAR Geometry for Speed Estimation                                                | 27   |
| 2.12 | Analytical Received Signal Waveform                                                | 29   |
| 2.13 | Zero-crossing Digitization of Real Signal and analytical Doppler variation         | 34   |
| 2.14 | Zero-crossing in a waveform representing voltage vs. time                          | 36   |
| 2.15 | Details and approximations at different levels of resolution                       | 38   |
| 3.1  | Forward Scattering Radar Outdoor Experimental Set-up                               | 46   |
| 3.2  | Photo of the Transmitting Antenna across the Road and Connected Directly           | 7    |
|      | to the Signal Generator                                                            | 47   |
| 3.3  | Simplified Block Diagram for Doppler Extraction by Diode and LPF                   | 48   |
| 3.4  | FSR Outdoor Experimentation Layout                                                 | 49   |
| 3.5  | Typical Video from the Test Day                                                    | 51   |
| 3.6  | Test Vehicle Dimensions                                                            | 52   |



| 3.7  | Received signals after refinement for the test vehicles                    | 53     |
|------|----------------------------------------------------------------------------|--------|
| 3.8  | Example of Collected Vehicles in the Database for Classes                  | 55     |
| 3.9  | Block Diagram of the FSR System for Speed Estimation                       | 56     |
| 3.10 | Block diagram for Speed Estimation using standard deviation method         | 58     |
| 3.11 | Bell shape when the standard deviation value is 1                          | 61     |
| 3.12 | Bell shape when the standard deviation value is 2                          | 62     |
| 3.13 | Bell shape when the standard deviation value is 3                          | 62     |
| 3.14 | Theoretical Doppler signal for different speed for target with rectangular |        |
|      | shape                                                                      | 64     |
| 3.15 | Real signal received for different std and speed value                     | 65     |
| 3.16 | Overall FSR System Layout                                                  | 66     |
| 3.17 | Doppler Frequency Variation Relative to the Scattering Point on the Vehic  | ele 69 |
| 3.18 | Rectangular Plate of Length                                                | 69     |
| 3.19 | Time Domain Signal for Vehicle Speed 10m/s                                 | 70     |
| 3.20 | Amplitude with Different Speed                                             | 70     |
| 3.21 | Block diagram for automatic speed estimation using zero-crossing with      | 71     |
|      | denoise method                                                             | 71     |
| 3.22 | Approximations and details at different levels of resolution               | 75     |
| 3.23 | The mother wavelets used in this study                                     | 76     |
| 3.24 | Sym8 wavelet and scaling function and its associated coefficients          | 76     |
| 3.25 | Mean WE against different noise levels for the different mother wavelet    | 77     |
| 3.26 | The overall process of decomposing a signal $s(t)$ and reconstructing the  |        |
|      | approximations and the details                                             | 78     |
| 3.27 | Mean WE of hard and soft thresholding for different noise levels using     |        |
|      | Symmlet 8 wavelet                                                          | 79     |



| 3.28 | Received signal with high noise                                      | 80  |
|------|----------------------------------------------------------------------|-----|
| 3.29 | Time domain signal a) the threshold is 1.5. b) the threshold is 1.9  | 80  |
| 3.30 | Zero-crossing Counting between Entry and Departure Points            | 82  |
| 3.31 | Exclusion of Data from the Zero-crossing Count                       | 85  |
| 3.32 | Illustration Speed Calculation by Counting 'n' Crossings             | 86  |
| 4.1  | Plot of Std Values Against the Measured Speed for Astra              | 90  |
| 4.2  | Plot of Std Values Against the Measured Speed for Combo              | 91  |
| 4.3  | Vehicle length Vs Standard Deviation                                 | 92  |
| 4.4  | Plot of Training data using Standard Deviation method                | 93  |
| 4.5  | Plot of Testing data using Standard Deviation method                 | 94  |
| 4.6  | Plot of number of Zero-Crossing against the Measured Speed for Astra |     |
|      | by using 'n' crossing technique                                      | 97  |
| 4.7  | Plot of number of Zero-Crossing against the Measured Speed for Astra |     |
|      | by using full waveform comparison technique                          | 98  |
| 4.8  | Plot of number of Zero-Crossing against the Measured Speed for Honda |     |
|      | by using 'n' crossing technique                                      | 99  |
| 4.9  | Plot of number of Zero-Crossing against the Measured Speed for Honda |     |
|      | by using full waveform comparison technique                          | 100 |
| 4.10 | Plot of number of Zero-Crossing against the Measured Speed for Combo |     |
|      | by using 'n' crossing technique                                      | 101 |
| 4.11 | Plot of number of Zero-Crossing against the Measured Speed for Combo |     |
|      | by using full waveform comparison technique                          | 102 |
| 4.12 | Plot of Training data using Zero-crossing with de-noise method       | 103 |
| 4.13 | Plot of testing data using Zero-crossing with de-noise method        | 104 |
| 4.14 | Performance comparison                                               | 107 |
| 4.15 | Procedure of selecting best method                                   | 107 |





## LIST OF ABBREVIATION

| ADC   | Analogue to Digital Converter           |
|-------|-----------------------------------------|
| BPF   | Band Pass Filter                        |
| CPF   | Complex Profile Function                |
| CW    | Continuous Wave                         |
| DSP   | Digital Signal Processing               |
| EM    | Electromagnetic                         |
| FSCS  | Forward Scattering Cross Section        |
| FSR   | Forward Scattering Radar                |
| GMM   | Gaussian Mixture Modelling              |
| HPF   | High Pass Filter                        |
| IC    | Integrated Chip                         |
| IF    | Intermediate Frequency                  |
| ISAR  | Inverse Synthetic Aperture Radar        |
| ISM   | Industrial, Scientific and Medical      |
| LNA   | Low Noise Amplifier                     |
| LO    | Local Oscillator                        |
| LPF   | Low Pass Filter                         |
| RAM   | Radar Absorbing Material                |
| RCS   | Radar Cross Section                     |
| RF    | Radio Frequency                         |
| SAR   | Synthetic Aperture Radar                |
| SISAR | Shadow Inverse Synthetic Aperture Radar |
| StD   | Standard Deviation                      |
| SNR   | Signal to Noise Ratio                   |
| WE    | Walker Error                            |



## LIST OF SYMBOLS

| $\beta$          | Bistatic Angle                                                        |
|------------------|-----------------------------------------------------------------------|
| E <sub>sum</sub> | Total Electrical field                                                |
|                  |                                                                       |
| $E_{s}$          | Self Scattering Fields                                                |
| $E_{sh}$         | Shadow Field                                                          |
|                  |                                                                       |
| $P_T$            | Transmitted Power                                                     |
| $G_T$            | Transmitter Gain                                                      |
| $G_R$            | Receiver Gain                                                         |
| λ                | Wavelength                                                            |
| $\sigma_{\!B}$   | Target's Bistatic RCS                                                 |
| $F_T$            | Constants defined by Willis                                           |
| $F_R$            | Constants defined by Willis                                           |
| $K_b$            | Boltzman's constant                                                   |
| $T_o$            | Reference temperature (290K)                                          |
| F                | Noise figure                                                          |
| $R_T$            | Transmitter to Target Distance                                        |
| $R_R$            | Receiver to Target Distance                                           |
| d                | Distance                                                              |
| $L_T$            | Transmitter Loss                                                      |
| $L_R$            | Receiver Loss                                                         |
| $\sigma_{F}$     | Forward scattering RCS                                                |
| $\alpha_v$       | Receiver Vertical Diffraction Angle of the Target under Observation   |
| $lpha_h$         | Receiver horizontal Diffraction Angle of the Target under Observation |
| A                | Area of the Aperture                                                  |
| $\sigma_{M}$     | Monostatic RCS                                                        |
| v                | Velocity Vector                                                       |
| $f_{dbr}$        | Doppler Frequency                                                     |
| δ                | Angle between Target Trajectory and Speed Vector                      |
| $Z_a$            | Receiver to imaginary line of Target Trajectory                       |
| $z_b$            | Transmitter to imaginary line of Target Trajectory                    |



| Ψ                            | Angle between imaginary line of Target Trajectory and Transmitter Receiver Distance |
|------------------------------|-------------------------------------------------------------------------------------|
| $\alpha_T$                   | Diffraction Angle with respect to Transmitter                                       |
| $\alpha_R$                   | Diffraction Angle with respect to Receiver                                          |
| Z(t)                         | Analytical signal                                                                   |
| $\theta(t)$                  | The phase                                                                           |
| x(t)                         | Input Signal                                                                        |
| ψ (t)                        | Wavelet Function                                                                    |
| $\psi_{ab}(t)$               | Wavelet Function with Scale (a) and Translation (b)                                 |
| a                            | Scale                                                                               |
| b                            | Translation                                                                         |
| j                            | Level of Decomposition                                                              |
| $\psi_{\gamma^j}(t)$         | Dyadic wavelet                                                                      |
| $f_c$ ,                      | Centre Frequency                                                                    |
| d                            | Transmitter Receiver Separation Distance                                            |
| Ε                            | Electrical Field                                                                    |
| $\phi$                       | Magnetic Field                                                                      |
| Er                           | Electrical Field in <i>r</i> direction (cylindrical coordinates)                    |
| $E\theta$                    | Electrical Field in $\theta$ direction (cylindrical coordinates)                    |
| $E_{\mathcal{Y}}$            | Electrical Field in y direction (cylindrical coordinates)                           |
| l                            | Length of the Target                                                                |
| h                            | High of the Target                                                                  |
| С                            | Speed of Light                                                                      |
| $\theta$                     | Transmitter Horizontal Diffraction Angle                                            |
| $f_{Tgt}$                    | Target Frequency                                                                    |
| $f_{dbr}$                    | Doppler Frequency                                                                   |
| fdma                         | Maximum Doppler Frequency                                                           |
| $\hbar_{k,0}$                | Scaling Filter (low pass)                                                           |
| $\hbar_{k,1}$                | Wavelet Filter (high pass)                                                          |
| $g_{\scriptscriptstyle L,0}$ | Reconstruction Filter (Low Pass)                                                    |
| ${m g}_{k,1}$                | Reconstruction Filter (high Pass)                                                   |
| $A_{j}$                      | Approximation at Level <i>j</i>                                                     |
| $D_{I}$                      | Detail at Level <i>j</i>                                                            |



# SPEED ESTIMATION IN FORWARD SCATTERING RADAR USING STANDARD DEVIATION AND IMPROVED ZERO-CROSSING METHODS

By

## MUTAZ SALAH MOHAMED SADIG

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

June, 2008



## **DEDICATION**

I dedicate this thesis to my parents. Without their patience, understanding, support, and most of all love, the completion of this work would not have been possible.

