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The topic of this study is the computation of Maass cusp form, i.e. the eigenfunctions 

of the hyperbolic Laplace-Beltrami operator on punctured surfaces namely singly 

punctured two-torus and triply punctured two-sphere. Punctured surfaces are surfaces 

with points removed or located infinitely far away and they have complex 

topological and geometrical properties. The presence of the punctures or cusps 

means that there is a continuous spectrum as well as the discrete one. This work 

focuses on the discrete part of computational nature.  

 

Hejhal developed an algorithm to compute Maass cusp form on triangle groups. The 

algorithm of Hejhal is based on automorphy condition and also applies to the 

computation of the Maass cusp forms on Fuchsian group whose the fundamental 

domain has exactly one cusp.  
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In this work the method due to Hejhal was recalled and extended for computation of 

Maass cusp on singly punctured two-torus which still has one cusp but a nonzero 

genus. The algorithm was modified further to carry out the computation for the 

surfaces with three cusps i.e. triply punctured two-sphere. All the computations were 

implemented in Mathematica and built in a way accessible to any one with an 

introductory knowledge in Mathematica.  

 

The results of the study are the first low-lying eigenvalues, examples of Fourier 

coefficients and graphic plots of Maass cusp forms each for modular group, singly 

punctured two-torus and triply punctured two-sphere. The eigenvalues and the 

Fourier coefficients were computed with the desired accuracy. Some comparisons 

between singly punctured two-torus and triply punctured two-sphere are also 

presented.  
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Topik kajian ini adalah pengiraan fungsi bentuk juring Maass, yang merupakan fungsi 

eigen operator hiperbolik Laplace-Beltrami di atas permukaan berjuring iaitu 2- torus 

berjuring tunggal dan 2-sfera berjuring tiga. Permukaan berjuring adalah permukaan 

dengan beberapa titik diasingkan atau diletakkan pada jarak infiniti dan permukaan 

seumpama ini mempunyai ciri  topologi dan geometri yang kompleks. Kewujudan juring 

bermakna terdapat  kedua-dua spektrum yang selanjar dan yang diskrit. Hejhal telah 

membangunkan satu algoritma untuk mengira fungsi bentuk juring Maass untuk 

kumpulan segi tiga berdasarkan syarat automorfi  dan turut dapat digunakan untuk 

mengira fungsi bentuk juring Maass untuk kumpulan Fuchsian, yang domain asasnya 

mempunyai satu juring.  

Dalam kajian ini, kaedah penyelesaian Hejhal diguna kembali dan diperluaskan kepada 

pengiraan fungsi bentuk juring Maass bagi 2-torus berjuring tunggal yang masih 
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mempunyai satu juring tetapi bergenus bukan sifar. Algoritma ini kemudian diubah 

seterusnya untuk membuat pengiraan bagi permukaan yang mempunyai tiga juring, iaitu 

2 sfera berjuring tiga. Semua pengiraan dibuat menggunakan Mathematica dan dibangun 

dengan cara yang boleh digunakan oleh sesiapa sahaja yang mempunyai pengetahuan 

awal  Mathematica. 

Hasil peyelidikan ini adalah nilai eigen paras rendah, contoh pekali Fourier dan plot 

grafik fungsi bentuk juring Maass untuk kumpulan modular, 2-torus berjuring tunggal 

dan 2-sfera berjuring tiga. Nilai eigen dan pekali Fourier telah dikira mengikut kejituan 

yang diingini. Perbandingan juga dibuat antara 2-torus berjuring tunggal dengan 2 sfera 

berjuring tiga.  
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