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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of

the requirement for the degree of Doctor of Philosophy

SEQUENTIAL AND PARALLEL METHODS FOR NUMERICAL

SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS

By

FUZIYAH ISHAK

October 2009

Chair : Dato’ Mohamed Suleiman, PhD

Institute : Institute for Mathematical Research

This thesis describes the development of sequential and parallel methods for solving

delay differential equations. A new sequential code for the numerical solution of de-

lay differential equations is considered. The variable order variable stepsize formulae

based on the Adams-Bashforth-Moulton methods are represented in divided difference

form. Derivative discontinuities are detected by local error estimate at the grid points.

Large magnitude of the local error estimate indicates the presence of derivative discon-

tinuity. Stepsize is then reduced and eventually the discontinuity point is included in

the grid. The formulae representation proves to be efficient when compared with the

existing method in modified divided difference form.

We also consider the development of two-point block methods on sequential and paral-

lel computers. Formulae for three two-point block methods for solving delay differen-

tial equations are derived. The implicit block methods are implemented using variable

stepsize variable order technique. The formulae for two-point diagonally and triangu-
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larly implicit block methods using predictor-corrector application are represented in

divided difference form. Meanwhile, the predictor-corrector formulae for two-point

fully implicit block method are calculated beforehand and stored at the beginning of

the code. All of the block methods rely on the local error estimates to detect deriva-

tive discontinuities. In all of the developed methods, regions of absolute stability are

presented and compared. Comparison among the developed methods indicates that all

of the methods achieve the desired accuracy. Block methods are efficient when com-

pared with the sequential non-block method as the total steps taken can be reduced.

The new block methods are then used for the parallel implementation in solving large

system of delay differential equations. The parallel programs using Message Passing

Interface are run on Sun Fire V1280 using two processors. Numerical results indicate

that parallel implementation increases the performance of the block methods.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia

sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH-KAEDAH JUJUKAN DAN SELARI UNTUK PENYELESAIAN
BERANGKA PERSAMAAN PEMBEZAAN LENGAH

Oleh

FUZIYAH ISHAK

Oktober 2009

Pengerusi : Dato’ Mohamed Suleiman, PhD

Institut : Institut Penyelidikan Matematik

Tesis ini menghuraikan proses pembangunan kaedah-kaedah jujukan dan selari bagi

penyelesaian persamaan pembezaan lengah. Satu kod berjujukan yang baru untuk

penyelesaian berangka persamaan pembezaan lengah adalah dipertimbangkan. For-

mula saiz langkah dan peringkat berbeza-beza berdasarkan kaedah-kaedah Adams-

Bashforth-Moulton dipersembahkan dalam bentuk beza terbahagi. Ketakselanjaran

terbitan dikesan oleh nilai anggaran ralat setempat pada titik-titik grid. Magnitud yang

besar bagi anggaran ralat setempat menunjukkan kehadiran ketakselanjaran terbitan.

Saiz langkah kemudiannya dikurangkan supaya titik ketakselanjaran adalah tergolong

dalam titik grid. Apabila dibandingkan dengan kaedah sedia ada dalam bentuk beza

terbahagi berubah, formula yang dipersembahkan dalam bentuk beza terbahagi meng-

hasilkan satu kaedah yang cekap.

Kami juga mempertimbangkan kaedah-kaedah blok dua-titik yang dilaksanakan pada

komputer selari dan tak selari. Tiga formula bagi kaedah-kaedah blok dua-titik diter-
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bitkan. Kaedah-kaedah blok tersirat ini dilaksanakan dengan menggunakan teknik saiz

langkah dan peringkat berbeza-beza. Formula bagi kaedah-kaedah blok tersirat dua-

titik secara pepenjuru dan bentuk segitiga menggunakan aplikasi pembetul-peramal

yang diwakili dalam bentuk beza terbahagi. Sementara itu, formula pembetul-peramal

bagi kaedah blok dua-titik sepenuhnya tersirat dikira terlebih dahulu dan disimpan di

awal kod. Semua kaedah-kaedah blok tersebut bergantung kepada nilai anggaran ralat

setempat untuk mengesan ketakselanjaran terbitan. Rantau kestabilan bagi kaedah-

kaedah yang dibangunkan adalah dibentangkan. Perbandingan di antara kaedah-kaedah

yang dibangunkan menunjukkan bahawa semua kaedah-kaedah tersebut mencapai tahap

kejituan yang dikehendaki. Kaedah-kaedah blok adalah cekap apabila dibandingkan

dengan kaedah jujukan tanpa blok kerana jumlah bilangan langkah yang diambil dapat

dikurangkan. Kaedah-kaedah blok kemudiannya digunakan di dalam pelaksanaan se-

lari bagi menyelesaikan sistem persamaan pembezaan lengah yang besar. Pelaksanaan

program selari dijalankan dengan menggunakan komputer Sun Fire V1280 bersama

dua buah pemproses dibantu oleh protokol mesej penghantar Message Passing Inter-

face. Keputusan berangka menunjukkan bahawa teknik selari meningkatkan prestasi

kaedah-kaedah blok tersebut.
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