

UNIVERSITI PUTRA MALAYSIA

SEQUENTIAL AND PARALLEL METHODS FOR NUMERICAL SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS

FUZIYAH ISHAK

IPM 2009 9

SEQUENTIAL AND PARALLEL METHODS FOR NUMERICAL SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS

By FUZIYAH ISHAK

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2009

To my family.

To the memories of my mother and my father.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

SEQUENTIAL AND PARALLEL METHODS FOR NUMERICAL SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS

By

FUZIYAH ISHAK

October 2009

Chair: Dato' Mohamed Suleiman, PhDInstitute: Institute for Mathematical Research

This thesis describes the development of sequential and parallel methods for solving delay differential equations. A new sequential code for the numerical solution of delay differential equations is considered. The variable order variable stepsize formulae based on the Adams-Bashforth-Moulton methods are represented in divided difference form. Derivative discontinuities are detected by local error estimate at the grid points. Large magnitude of the local error estimate indicates the presence of derivative discontinuity. Stepsize is then reduced and eventually the discontinuity point is included in the grid. The formulae representation proves to be efficient when compared with the existing method in modified divided difference form.

We also consider the development of two-point block methods on sequential and parallel computers. Formulae for three two-point block methods for solving delay differential equations are derived. The implicit block methods are implemented using variable stepsize variable order technique. The formulae for two-point diagonally and triangu-

larly implicit block methods using predictor-corrector application are represented in divided difference form. Meanwhile, the predictor-corrector formulae for two-point fully implicit block method are calculated beforehand and stored at the beginning of the code. All of the block methods rely on the local error estimates to detect derivative discontinuities. In all of the developed methods, regions of absolute stability are presented and compared. Comparison among the developed methods are efficient when compared with the sequential non-block method as the total steps taken can be reduced. The new block methods are then used for the parallel implementation in solving large system of delay differential equations. The parallel programs using Message Passing Interface are run on Sun Fire V1280 using two processors. Numerical results indicate that parallel implementation increases the performance of the block methods.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH-KAEDAH JUJUKAN DAN SELARI UNTUK PENYELESAIAN BERANGKA PERSAMAAN PEMBEZAAN LENGAH

Oleh

FUZIYAH ISHAK

Oktober 2009

Pengerusi: Dato' Mohamed Suleiman, PhDInstitut: Institut Penyelidikan Matematik

Tesis ini menghuraikan proses pembangunan kaedah-kaedah jujukan dan selari bagi penyelesaian persamaan pembezaan lengah. Satu kod berjujukan yang baru untuk penyelesaian berangka persamaan pembezaan lengah adalah dipertimbangkan. Formula saiz langkah dan peringkat berbeza-beza berdasarkan kaedah-kaedah Adams-Bashforth-Moulton dipersembahkan dalam bentuk beza terbahagi. Ketakselanjaran terbitan dikesan oleh nilai anggaran ralat setempat pada titik-titik grid. Magnitud yang besar bagi anggaran ralat setempat menunjukkan kehadiran ketakselanjaran terbitan. Saiz langkah kemudiannya dikurangkan supaya titik ketakselanjaran adalah tergolong dalam titik grid. Apabila dibandingkan dengan kaedah sedia ada dalam bentuk beza terbahagi berubah, formula yang dipersembahkan dalam bentuk beza terbahagi meng-hasilkan satu kaedah yang cekap.

Kami juga mempertimbangkan kaedah-kaedah blok dua-titik yang dilaksanakan pada komputer selari dan tak selari. Tiga formula bagi kaedah-kaedah blok dua-titik diter-

bitkan. Kaedah-kaedah blok tersirat ini dilaksanakan dengan menggunakan teknik saiz langkah dan peringkat berbeza-beza. Formula bagi kaedah-kaedah blok tersirat duatitik secara pepenjuru dan bentuk segitiga menggunakan aplikasi pembetul-peramal yang diwakili dalam bentuk beza terbahagi. Sementara itu, formula pembetul-peramal bagi kaedah blok dua-titik sepenuhnya tersirat dikira terlebih dahulu dan disimpan di awal kod. Semua kaedah-kaedah blok tersebut bergantung kepada nilai anggaran ralat setempat untuk mengesan ketakselanjaran terbitan. Rantau kestabilan bagi kaedahkaedah yang dibangunkan adalah dibentangkan. Perbandingan di antara kaedah-kaedah yang dibangunkan menunjukkan bahawa semua kaedah-kaedah tersebut mencapai tahap kejituan yang dikehendaki. Kaedah-kaedah blok adalah cekap apabila dibandingkan dengan kaedah jujukan tanpa blok kerana jumlah bilangan langkah yang diambil dapat dikurangkan. Kaedah-kaedah blok kemudiannya digunakan di dalam pelaksanaan selari bagi menyelesaikan sistem persamaan pembezaan lengah yang besar. Pelaksanaan program selari dijalankan dengan menggunakan komputer Sun Fire V1280 bersama dua buah pemproses dibantu oleh protokol mesej penghantar Message Passing Interface. Keputusan berangka menunjukkan bahawa teknik selari meningkatkan prestasi kaedah-kaedah blok tersebut.

ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim. First and foremost of all, I would like to express my sincere gratitude and thanks to my supervisor, Y. Bhg. Dato' Professor Dr. Mohamed bin Suleiman for his invaluable guidance and assistance during my study. I am very grateful to Prof. Mohamed for his advice which had directed me toward this research specifically and numerical analysis in general. My deepest thanks are also extended to the members in the supervisory committee, Associate Professor Dr. Fudziah bt. Ismail, Dr. Zanariah bt. Majid and Dr. Khairil Iskandar bin Othman for their generosity and patience.

This entire journey would not have been a memorable one without numerous help, support and encouragement from my dearest friends and colleagues. I am truly blessed with friends that continuously provide me with helpful suggestions and insights prior to the final preparation of this thesis.

I wish to thank the Institute for Mathematical Research (INSPEM), Universiti Putra Malaysia (UPM) for providing a place that is conducive for me to perform my experiments. Many thanks to Universiti Teknologi MARA (UiTM) and Ministry of Higher Education Malaysia for the study leave and sponsorship which enable me to pursue my degree.

Last but not least, I would like to express my gratitude to my family. I thank my daughters Elisa Farhana, Sarah, Nadira and son Zareef Hidayat for their love, patience and compromise. I am grateful for their understanding and support over this entire journey. My deepest and sincerest thank goes out to my husband Zulkiflee for believing in me. Without his encouragement, this thesis would not have been completed.

I certify that an Examination Committee has met on 30th October 2009 to conduct the final examination of Fuziyah binti Ishak on her Doctor of Philosophy thesis entitled "Sequential and Parallel Methods for Numerical Solutions of Delay Differential Equations" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the Examination Committee were as follows:

Azmi Jaafar, PhD

Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Chairman)

Malik Hj. Abu Hassan, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Leong Wah June, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Bahrom Sanugi, PhD

Professor Center for Industrial Relation and Service Universiti Sains Islam Malaysia (External Examiner)

BUJANG KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

DATO' MOHAMED SULEIMAN, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

FUDZIAH ISMAIL, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

ZANARIAH ABDUL MAJID, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Member)

KHAIRIL ISKANDAR OTHMAN, PhD

Lecturer Faculty of Computer and Mathematical Sciences Universiti Teknologi MARA (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 January 2010

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

FUZIYAH ISHAK

Date: 30 January 2010

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	XV
LIST OF FIGURES	XX
LIST OF ABBREVIATIONS	xxvii

CHAPTER

1	INT	RODUC	TION	1
	1.1	Backg	round	1
	1.2	Object	ive of the Thesis	3
	1.3	Outlin	e of the Thesis	4
2	LIT	ERATUI	RE REVIEW	7
	2.1	Introd	uction	7
	2.2	Difficu	Ilties in Solving Delay Differential Equations	7
	2.3	Nume	rical Methods for Delay Differential Equations	9
	2.4	Stabili	ty Analysis of Numerical Methods for Solving	
		DDEs		17
	2.5	Paralle	el Implementation for the Numerical Solutions	
		of Diff	ferential Equations	23
3	FUN	DAMEN	NTAL CONCEPTS IN NUMERICAL	
	SOL	UTION	OF ORDINARY DIFFERENTIAL	
	EQU	ATION	S AND PARALLEL PROCESSING	31
	3.1	Introd	uction	31
	3.2	Nume	rical Solution of Ordinary Differential Equations	31
	3.3		el Processing	34
		3.3.1	Flynn's Taxonomy	35
		3.3.2		
			Parallel Programming using MPI	36

3.3.3	Performance of Parallel Algorithms	41
3.3.4	High Performance Computer Sun Fire V1280	43

4

5

6

	VING DELAY DIFFERENTIAL EQUATIONS	
-	UENTIALLY BY USING VARIABLE STEPSIZE	
	IABLE ORDER ALGORITHM	45
4.1	Introduction	45
4.2	Formula Derivation	46
	4.2.1 Algorithm to Generate Integration Coefficients	48
	4.2.2 The Predictor-Corrector Formulae	49
4.3		52
4.4	Order and Stepsize Changing Strategy	53
4.5	Absolute Stability	56
4.6	Numerical Results	64
	4.6.1 Test Examples	64
	4.6.2 Results and Discussion	67
4.7	Conclusion	72
TWO	D-POINT DIAGONALLY IMPLICIT	
PRE	DICTOR-CORRECTOR BLOCK METHOD FOR	
SOL	VING DELAY DIFFERENTIAL EQUATIONS	73
5.1	Introduction	73
5.2	Formulae Derivation	74
5.3	Local Error Estimation	78
5.4	Order and Stepsize Changing Strategy	79
5.5	Absolute Stability	81
5.6	Numerical Results	89
5.7	Conclusion	101
TWO	D-POINT TRIANGULARLY IMPLICIT	
PRE	DICTOR-CORRECTOR BLOCK METHOD FOR	
SOL	VING DELAY DIFFERENTIAL EQUATIONS	102
6.1	Introduction	102
6.2	Formulae Derivation	103
	6.2.1 Predictor-Corrector Formulae at the Grid Points	103
	6.2.2 Calculation of Delay Terms	107
6.3	Local Error Estimation	108
6.4	Order and Stepsize Changing Strategy	110
6.5	Absolute Stability	112
0.0		-

- 6.5 Absolute Stability6.6 Numerical Results
- 6.7 Conclusion

115

126

7	TWO	D-POIN	T FULLY IMPLICIT VARIABLE	
	STEPSIZE VARIABLE ORDER BLOCK METHOD FOR THE NUMERICAL SOLUTION OF DELAY			
	DIFI	FEREN'	TIAL EQUATIONS	127
	7.1	Introd	luction	127
	7.2	Formu	ulae Derivation	128
		7.2.1	Two-Point One-Block Method	130
		7.2.2	Two-Point Two-Block Method	132
		7.2.3	Two-Point Three-Block Method	134
		7.2.4	Approximation of the Delay Solution	137
	7.3	Local	Error Estimation	138
	7.4	Order	and Stepsize Changing Strategy	139
	7.5	Absol	ute Stability	140
		7.5.1	Absolute Stability for Two-Point One-Block	
			Method	142
		7.5.2	Absolute Stability for Two-Point Two-Block	
			Method	147
		7.5.3	Absolute Stability for Two-Point Three-Block	
			Method	151
	7.6	Nume	erical Results	157
	7.7	Concl	usion	170
8	PAR	ALLEL	IMPLEMENTATION OF TWO-POINT	
	BLO	OCK ME	ETHODS FOR SOLVING DELAY	
	DIF	FEREN'	TIAL EQUATIONS	172
	8.1	Introd	luction	172
	8.2	Parall	el Implementation	174
	8.3	Nume	rical Results	184
	8.4	Concl	usion	219
9	CON	ICLUSI	ON AND FUTURE RESEARCH	220
	9.1	Concl	usion	220
	9.2	Future	e Research	223
REFERE	NCES			225
APPEND	ICES			231
A1	Flow	chart for	r INTEGDDE	232
A2	Flow	chart for	r YYHA	233
A3	Flow	chart for	r INTDDE	234

A4	Flowchart for INTLANGRANGE_R_ONE	235
B 1	Computer Code for YYHA	236
B2	Computer Code for INTDDE	238
B3	Computer Code for YALPHA	246
B4	Computer Code for INTLANGRANGE_R_ONE	247
B5	Parallel Computer Code for INTEGDDE	249
BIODATA C	258	
LIST OF PUBLICATIONS		

LIST OF TABLES

Table		Page
4.1	The integration coefficients generated by the triangular table	50
4.2	Numerical results of S1P and SNDDELM for solving Example 4.1	68
4.3	Numerical results of S1P and SNDDELM for solving Example 4.2	68
4.4	Numerical results of S1P and SNDDELM for solving Example 4.3	69
4.5	Numerical results of S1P and SNDDELM for solving Example 4.4	69
4.6	Numerical results of S1P and SNDDELM for solving Example 4.5	69
4.7	Numerical results of S1P and SNDDELM for solving Example 4.6	70
4.8	Numerical results of S1P and SNDDELM for solving Example 4.7	70
4.9	Numerical results of S1P and SNDDELM for solving Example 4.8	70
4.10	Numerical results of S1P and SNDDELM for solving Example 4.9	71
5.1	The coefficients of the predictor-corrector formulae that represent partial entries for matrices D and T	88
5.2	Numerical results of S2PBDI, S1P and SNDDELM for solving Example 4.1	91

5.3	Numerical results of S2PBDI, S1P and SNDDELM for solving Example 4.2	91
5.4	Numerical results of S2PBDI, S1P and SNDDELM for solving Example 4.3	92
5.5	Numerical results of S2PBDI, S1P and SNDDELM for solving Example 4.4	92
5.6	Numerical results of S2PBDI, S1P and SNDDELM for solving Example 4.5	93
5.7	Numerical results of S2PBDI, S1P and SNDDELM for solving Example 4.6	93
5.8	Numerical results of S2PBDI, S1P and SNDDELM for solving Example 4.7	94
5.9	Numerical results of S2PBDI, S1P and SNDDELM for solving Example 4.8	94
5.10	Numerical results of S2PBDI, S1P and SNDDELM for solving Example 4.9	95
6.1	The coefficients of the second point represented partly as entries of matrix T	113
6.2	Numerical results of S2PBTI, S1P and SNDDELM for solving Example 4.1	116
6.3	Numerical results of S2PBTI, S1P and SNDDELM for solving Example 4.2	117
6.4	Numerical results of S2PBTI, S1P and SNDDELM for solving Example 4.3	117
6.5	Numerical results of S2PBTI, S1P and SNDDELM for solving Example 4.4	118

6.6	Numerical results of S2PBTI, S1P and SNDDELM for solving Example 4.5	118
6.7	Numerical results of S2PBTI, S1P and SNDDELM for solving Example 4.6	119
6.8	Numerical results of S2PBTI, S1P and SNDDELM for solving Example 4.7	119
6.9	Numerical results of S2PBTI, S1P and SNDDELM for solving Example 4.8	120
6.10	Numerical results of S2PBTI, S1P and SNDDELM for solving Example 4.9	120
7.1	The first point coefficients for two-point one-block method	131
7.2	The second point coefficients for two-point one-block method	132
7.3	The first point coefficients for two-point two-block method	133
7.4	The second point coefficients for two-point two-block method	134
7.5	The first point coefficients for two-point three-block method β_{1i} , $i = 0, 1,, 4$	135
7.6	The first point coefficients for two-point three-block method β_{1i} , $i = 5, 6, 7, 8$	136
7.7	The second point coefficients for two-point three-block method $\beta_{1i}, i = 0, 1, \dots, 4$	136
7.8	The second point coefficients for two-point three-block method β_{1i} , $i = 5, 6, 7, 8$	137
7.9	Numerical results of S2PBFI, S1P and SNDDELM for solving Example 4.1	160
7.10	Numerical results of S2PBFI, S1P and SNDDELM for solving Example 4.2	160

7.11	Numerical results of S2PBFI, S1P and SNDDELM for solving Example 4.3	161
7.12	Numerical results of S2PBFI, S1P and SNDDELM for solving Example 4.4	161
7.13	Numerical results of S2PBFI, S1P and SNDDELM for solving Example 4.5	162
7.14	Numerical results of S2PBFI, S1P and SNDDELM for solving Example 4.6	162
7.15	Numerical results of S2PBFI, S1P and SNDDELM for solving Example 4.7	163
7.16	Numerical results of S2PBFI, S1P and SNDDELM for solving Example 4.8	163
7.17	Numerical results of S2PBFI, S1P and SNDDELM for solving Example 4.9	164
8.1	Numerical results for Example 8.1 when $n = 20$	186
8.2	Numerical results for Example 8.1 when $n = 50$	187
8.3	Numerical results for Example 8.1 when $n = 70$	188
8.4	Numerical results for Example 8.1 when $n = 100$	189
8.5	Numerical results for Example 8.1 when $n = 120$	190
8.6	Numerical results for Example 8.1 when $n = 150$	191
8.7	Numerical results for Example 8.1 when $n = 170$	192
8.8	Numerical results for Example 8.1 when $n = 200$	193
8.9	Numerical results for Example 8.2 when $n = 20$	194
8.10	Numerical results for Example 8.2 when $n = 50$	195

8.11	Numerical results for Example 8.2 when $n = 100$	196
8.12	Numerical results for Example 8.2 when $n = 150$	197
8.13	Numerical results for Example 8.2 when $n = 200$	198
8.14	Numerical results for Example 8.2 when $n = 250$	199
8.15	Numerical results for Example 8.2 when $n = 300$	200
8.16	The ratios of step and execution time for the block methods as compared with S1P, Example 8.1, when $n = 20$, $n = 50$, $n = 70$ and $n = 100$	201
8.17	The ratios of step and execution time for the block methods as compared with S1P, Example 8.1, when $n = 120$, $n = 150$, $n = 170$ and $n = 200$	202
8.18	The ratios of step and execution time for the block methods as compared with S1P, Example 8.2, when $n = 20$, $n = 50$, $n = 100$ and $n = 150$	203
8.19	The ratios of step and execution time for the block methods as compared with S1P, Example 8.2, when $n = 200$, $n = 250$, and $n = 300$	204
8.20	The speedup and efficiency of the parallel algorithms for Example 8.1	205
8.21	The speedup and efficiency of the parallel algorithms for Example 8.2	206

LIST OF FIGURES

Figure		Page
2.1	The asymptotic stability region of the DDE (2.3)	20
3.1	Shared memory machine with UMA memory access time, source: Barney (2009)	37
3.2	Shared memory machine with NUMA memory access time, source: Barney (2009)	37
3.3	Distributed memory architecture, source: Barney (2009)	38
3.4	Distributed-shared memory architecture, source: Barney (2009)	39
3.5	MPI program structure	40
3.6	The graph of processors vs. speedup	42
3.7	Hardware configuration for HPC Sun Fire V1280	44
4.1	P-stability regions for Adams methods, $k = 1, 2, 3, 4$	61
4.2	Q-stability regions for Adams methods, $k = 1, 2, 3, 4$	63
5.1	P-stability regions for two-point diagonally implicit predictor- corrector block method, $k = 1$	86
5.2	Q-stability regions for two-point diagonally implicit predictor- corrector block method, $k = 1$	86
5.3	Q-stability regions for two-point diagonally implicit predictor- corrector block method, $k=2$	87
5.4	Q-stability regions for two-point diagonally implicit predictor- corrector block method, $k = 3$	87

5.5	Q-stability regions for two-point diagonally implicit predictor- corrector block method, $k=4$	88
5.6	Algorithm of subprogram INTEGDDE for two-point implicit predictor-corrector block method	89
5.7	Algorithm of subprogram YYHA for two-point implicit predictor-corrector block method	90
5.8	TOL vs. MAXE graphs of S2PBDI, S1P and SNDDELM for Example 4.1	95
5.9	TOL vs. MAXE graphs of S2PBDI, S1P and SNDDELM for Example 4.2	96
5.10	TOL vs. MAXE graphs of S2PBDI, S1P and SNDDELM for Example 4.3	96
5.11	TOL vs. MAXE graphs of S2PBDI, S1P and SNDDELM for Example 4.4	97
5.12	TOL vs. MAXE graphs of S2PBDI, S1P and SNDDELM for Example 4.5	97
5.13	TOL vs. MAXE graphs of S2PBDI, S1P and SNDDELM for Example 4.6	98
5.14	TOL vs. MAXE graphs of S2PBDI, S1P and SNDDELM for Example 4.7	98
5.15	TOL vs. MAXE graphs of S2PBDI, S1P and SNDDELM for Example 4.8	99
5.16	TOL vs. MAXE graphs of S2PBDI, S1P and SNDDELM for Example 4.9	99
6.1	Q-stability regions for two-point triangularly implicit predictor-corrector block method, $k=2$	114

6.2	Q-stability regions for two-point triangularly implicit predictor- corrector block method, $k = 3$	114
6.3	Q-stability regions for two-point triangularly implicit predictor- corrector block method, $k=4$	115
6.4	TOL vs. MAXE graphs of S2PBTI, S1P and SNDDELM for Example 4.1	121
6.5	TOL vs. MAXE graphs of S2PBTI, S1P and SNDDELM for Example 4.2	121
6.6	TOL vs. MAXE graphs of S2PBTI, S1P and SNDDELM for Example 4.3	122
6.7	TOL vs. MAXE graphs of S2PBTI, S1P and SNDDELM for Example 4.4	122
6.8	TOL vs. MAXE graphs of S2PBTI, S1P and SNDDELM for Example 4.5	123
6.9	TOL vs. MAXE graphs of S2PBTI, S1P and SNDDELM for Example 4.6	123
6.10	TOL vs. MAXE graphs of S2PBTI, S1P and SNDDELM for Example 4.7	124
6.11	TOL vs. MAXE graphs of S2PBTI, S1P and SNDDELM for Example 4.8	124
6.12	TOL vs. MAXE graphs of S2PBTI, S1P and SNDDELM for Example 4.9	125
7.1	Two-point one-block method	129
7.2	Two-point two-block method	132
7.3	Two-point three-block method	134
7.4	P-stability regions for two-point one-block, $r = 1$	144

7.5	P-stability regions for two-point one-block, $r = 2$	145
7.6	P-stability regions for two-point one-block, $r = \frac{1}{2}$	145
7.7	Q-stability regions for two-point one-block, $r = 1$	146
7.8	Q-stability regions for two-point one-block, $r = 2$	146
7.9	Q-stability regions for two-point one-block, $r = \frac{1}{2}$	147
7.10	P-stability regions for two-point two-block, $\left(r=1,q=1\right)$	149
7.11	P-stability regions for two-point two-block, $(r = 2, q = 2)$	149
7.12	P-stability regions for two-point two-block, $(r=1,q=\frac{1}{2})$	150
7.13	Q-stability regions for two-point two-block, $(r = 1, q = 1)$	150
7.14	Q-stability regions for two-point two-block, $(r = 2, q = 2)$	151
7.15	Q-stability regions for two-point two-block, $(r=1,q=\frac{1}{2})$	151
7.16	P-stability regions for two-point three-block, $(r = 1, q = 1, p = 1)$	154
7.17	P-stability regions for two-point three-block, $(r = 2, q = 2, p = 2)$	154
7.18	P-stability regions for two-point three-block, $(r = 1, q = 1, p = \frac{1}{2})$	155
7.19	Q-stability regions for two-point three-block, $(r = 1, q = 1, p = 1)$	155
7.20	Q-stability regions for two-point three-block, $(r = 2, q = 2, p = 2)$	156
7.21	Q-stability regions for two-point three-block, $(r = 1, q = 1, p = \frac{1}{2})$	156

xxiii

7.22	Algorithm of subprogram INTDDE for two-point fully implicit block method	158
7.23	Algorithm of subprogram YALPHA for two-point fully implicit block method	158
7.24	Algorithm of subprogram INTLANGRANGE_R_ONE for two-point fully implicit block method	159
7.25	TOL vs. MAXE graphs of S2PBFI, S1P and SNDDELM for Example 4.1	164
7.26	TOL vs. MAXE graphs of S2PBFI, S1P and SNDDELM for Example 4.2	165
7.27	TOL vs. MAXE graphs of S2PBFI, S1P and SNDDELM for Example 4.3	165
7.28	TOL vs. MAXE graphs of S2PBFI, S1P and SNDDELM for Example 4.4	166
7.29	TOL vs. MAXE graphs of S2PBFI, S1P and SNDDELM for Example 4.5	166
7.30	TOL vs. MAXE graphs of S2PBFI, S1P and SNDDELM for Example 4.6	167
7.31	TOL vs. MAXE graphs of S2PBFI, S1P and SNDDELM for Example 4.7	167
7.32	TOL vs. MAXE graphs of S2PBFI, S1P and SNDDELM for Example 4.8	168
7.33	TOL vs. MAXE graphs of S2PBFI, S1P and SNDDELM for Example 4.9	168
8.1	Subprograms for the two-point diagonally implicit and triangularly implicit block methods	176