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A study on the microstructure, magnetic and electrical properties of La0.67Sr0.33MnO3 

substituted with Ba at Sr site and Ti at Mn site have been performed. Samples of 

La0.67(Sr1-xBax)0.33 Mn1-yTiyO3 (LSBMT) with x = 0.00, 0.25, 0.50, 0.75 and 1.00; 

and y = 0.00, 0.05, 0.10, 0.15, 0.20, 0.40 and 0.60 were prepared using solid state 

reaction method. Quantitative compositional percentage data of the elements results 

confirmed the expected La:Sr:Ba:Mn:Ti ratios for the prepared samples. X-ray 

Diffractometer (XRD) spectrum showed single phase compounds, except for samples 

with y = 0.60 which have La2Ti2O7 peaks. Sr substitution with Ba changed the 

rhombohedral R-3c structure to cubic Pm3m, however Mn substitution with Ti only 

increased the lattice parameters values, without changing the whole structure. 

Scanning Electron Microscope (SEM) images showed a few porous structured 

samples, with coarse and fine grains while the others showed large closely packed 

grains with clear shapes and grain boundaries. The magnetization studies showed 

that samples with y = 0.00 exhibited a transition from the ferromagnetic to the 

paramagnetic phase as temperature increased and the Curie temperature, TC 

decreased from 371 K to 341 K when x increased from 0.00 to 1.00. TC also 
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decreased when y increased. Magnetization versus field patterns did not differ much 

with x composition. The ferromagnetic behaviour for 0.00 ≤ y ≤ 0.15 change to 

paramagnetic when y ≥ 0.20. Resistivity versus temperature study showed that 

samples with y = 0.00 had metal-like behaviour. Nearly all samples with 0.00 < y < 

0.20 showed metallic and semiconducting-like behaviour. LSBMT with y ≥ 0.20 

exhibited only semiconducting behaviour. The metal-insulator transition temperature, 

TP decreased with increment of x and/or y. At T < TP the resistivity curves can be 

fitted with the ρ = ρ0 + ρ2T
2 relations. For T > Tp the curves can be fitted with the 

variable range hopping (VRH) model and small polaron hopping (SPH) model. The 

density of states at Fermi level, N(EF) values were between 1018 to 1022 eV-1cm-3. 

Polaron activation energy, Ep increased with y ranging from 47 meV to 210 meV. 

Magnetoresistance (MR) measurement showed an increment of the MR % when the 

magnetic field increased and temperature decreased. The maximum MR % was ~34 

% for LSBMT with x = 0.00 and y = 0.15 at 100 K and 1.0 Tesla. Samples with y ≤ 

0.10 showed low field magnetoresistance (LFMR) effect. At 1000 Hz LSBMT with x 

= 0.00, 0.25 and 0.75 exhibit a ferroelectric-paraelectric transition peak at 200 K, 250 

K and 225 K respectively, with the highest ε' value of 6.54 x 105 when x = 0.25, y = 

0.20.  The Nyquist plots of Z" versus Z' showed depressed semicircles contributed by 

the grain, grain boundary and/or electrode effect. Two relaxation processes occurred 

in the AC conductivity curve due to the grain and grain boundary. Materials with 

very high dielectric constant ~ 105 at 1000 kHz were successfully synthesized with x  

≤ 0.75; y = 0.20 and all samples with y = 0.40. Samples with y = 0.40 have wide 

range of nearly frequency and temperature independent high dielectric constant. 

These samples are excellent for capacitors fabrication.  
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Kajian ke atas mikrostruktur, sifat magnet dan sifat elektrik La0.67Sr0.33MnO3 yang 

diganti dengan Ba di tempat Sr dan Ti di tempat Mn telah dilakukan. Sampel-sampel 

La0.67(Sr1-xBax)0.33 Mn1-yTiyO3 (LSBMT) dengan x = 0.00, 0.25, 0.50, 0.75 dan 1.00; 

dan y = 0.00, 0.05, 0.10, 0.15, 0.20, 0.40 dam 0.60 telah disediakan mengguna 

kaedah tindak balas keadaan pepejal. Data peratusan komposisi kuantitatif bagi unsur 

mengesahkan nisbah La:Sr:Ba:Mn:Ti jangkaan bagi sampel yang disediakan. 

Spektrum Pembelauan Sinar-X (XRD) menunjukkan sebatian berfasa tunggal, 

kecuali bagi sampel dengan y = 0.60 yang mempunyai puncak-puncak La2Ti2O7. 

Penggantian Sr dengan Ba mengubah struktur rhombohedral R-3c kepada kubik 

Pm3m, tetapi penggantian Mn dengan Ti hanya meningkatkan nilai pemalar kekisi, 

tanpa mengubah struktur keseluruhan. Imej Mikroskop Elektron Imbasan (SEM) 

menunjukkan beberapa sampel berstruktur poros, dengan butiran yang kasar dan 

halus manakala yang lainnya menunjukkan butiran besar yang tersusun padat dengan 

bentuk dan sempadan butiran yang jelas. Kajian pemagnetan menunjukkan bahawa 

sampel dengan y = 0.00 mempamerkan peralihan daripada fasa feromagnet kepada 

paramagnet apabila suhu ditingkatkan dan suhu Curie, TC berkurang dari 371 K 
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kepada 341 K apabila x meningkat dari 0.00 kepada 1.00. TC turut berkurang apabila 

y meningkat. Corak pemagnetan tidak banyak berubah dengan komposisi x. Sifat 

feromagnet bagi 0.00 ≤ y ≤ 0.15 berubah kepada paramagnet bagi y ≥ 0.20. Kajian 

kerintangan melawan suhu menunjukkan bahawa sampel dengan y = 0.00 

mempunyai kelakuan seperti logam. Hampir kesemua sampel dengan 0.00 < y < 0.20 

menunjukkan kelakuan seperti logam dan semikonduktor. LSBMT dengan y  ≥ 0.20 

hanya menunjukkan kelakuan semikonduktor. Suhu peralihan logam-penebat, TP 

berkurang dengan penambahan x dan/atau y. Pada T < TP lengkung kerintangan 

boleh dipadankan dengan hubungan ρ = ρ0 + ρ2T
2
. Bagi  T > TP lengkung boleh 

dipadankan dengan model Loncatan Julat Boleh ubah (VRH) dan model Loncatan 

Polaron Kecil (SPH). Nilai ketumpatan keadaan di aras Fermi adalah di antara 1018 

to 1022 eV-1cm-3. Tenaga pengaktifanpolaron, Ep meningkat dengan y dalam julat 47 

meV kepada 210 meV. Pengukuran magnetorintangan menunjukkan peningkatan 

MR % apabila medan magnet meningkat dan suhu berkurang. MR % maksimum 

adalah ~34 % bagi LSBMT dengan x = 0.00 dan y = 0.15 pada 100 K dan 1.0 Tesla. 

Sampel dengan y ≥ 0.10 menunjukkan kesan magnetorintangan medan rendah 

(LFMR). Pada 1000 Hz sampel dengan x = 0.00, 0.25 and 0.75 menunjukkan puncak 

peralihan feroelektrik-paraelektrik pada 200 K, 250 K dan 225 K masing-masing, 

dengan nilai ε'  tertinggi iaitu 6.54 x 105 apabila x = 0.25, y = 0.20. Plot Nyquist bagi 

Z" melawan Z' menunjukkan separa bulatan terhimpit yang disumbangkan oleh 

butiran, sempadan butiran dan/atau elektrod. Dua proses perehatan berlaku pada 

lengkung kekondusian AC disebabkan oleh sempadan butiran pada frekuensi rendah 

dan butiran pada suhu tinggi. Bahan dengan pemalar dielektrik sangat tinggi ~ 10
5
 

pada 1000 kHz telah berjaya dihasilkan dengan sampel x  ≤ 0.75; y = 0.20 dan semua 

sampel dengan y = 0.40. Sampel dengan y = 0.40 mempunyai pemalar dielektrik 
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tinggi yang hampir tidak bergantung pada suhu dan frekuensi dalam suatu julat yang 

lebar. Sampel-sampel ini sangat sesuai untuk pembuatan kapasitor. 
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CHAPTER 1 

 

INTRODUCTION 

 

Perovskite manganite, Ln1-xAxMnO3 where Ln is an element from the lanthanide 

group such as La, Nd, Pr, Y and A is a divalent ion such as Ca, Sr, Ba, Pb, with a 

Mn3+/Mn4+ mixed valence has stimulated an increasing interest due to their unique 

spin-dependent magneto-transport properties. A variety of phases such as 

ferromagnetic metallic (FMM), antiferromagnetic insulator (AFI), ferromagnetic 

insulator (FMI), cluster glass and spin glass emerged due to the unique coupling 

among charge, spin, orbital and lattice degree of freedom of the 3d electrons in this 

system. From the technological point of view, the most intriguing phenomena of this 

manganese system is the colossal magnetoresistance (CMR) that exists near the 

Curie temperature, TC where it experiences a transition from the ferromagnetic (FM) 

to paramagnetic (PM) state. Extensive research, experimentally and theoretically, on 

the properties of this material are being done by researchers worldwide (Zener, 1951; 

Asamitsu et al., 1996; Tokura, 2000; Ziese, 2002; Tokura, 2007) for better 

understanding of the principles lying behind all those phenomena and hoping that its 

improved feature could be useful in the technological industries.  

 

The magnetic exchange, structure properties and electronic transport of manganites 

crucially depend on the Mn
3+

/Mn
4+

 ratio and the effective ionic radius of the A-site 

cations. These properties are believed to be determined by a competition between the 

superexchange (SE) and the double exchange (DE) mechanism (Zener, 1951). 

Further studies of these materials have shown that other mechanism also influences 


