

UNIVERSITI PUTRA MALAYSIA

EVALUATION OF A LABORATORY ASPHALT ROTARY COMPACTOR

HAMED HAGHIGHI

FK 2009 51

EVALUATION OF A LABORATORY ASPHALT ROTARY COMPACTOR

BY HAMED HAGHIGHI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

April 2009

DEDICATION

This thesis is especially dedicated to:

My lovely Wife: Masoomeh Tehranirokh

My Praiseworthy Parents: Mohammad Ali Haghighi & Batool Ghofranpanah

My Reverent In-laws: Hossein Tehranirokh & Fatemeh Ghasemi

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

EVALUATION OF A LABORATORY ASPHALT ROTARY COMPACTOR

By

HAMED HAGHIGHI

April 2009

Chairman: Associate Professor Ratnasamy Muniandy, PhD

Faculty: Engineering

Several studies have shown that Marshall Compactor, California Kneading Compactor and Gyratory Compactor, the most conventional compactors, are not able to produce laboratory specimens that can truly represent the mixtures compacted in the field. However gyratory compactor fairly gives good simulation of the field roller compactor but no universally approved laboratory compactor has been developed to compact slabs for the wheel tracking and fatigue test. Compacting and preparing more than one sample at the same time is another matter of concern which these conventional compactors cannot achieve. Hence, a suitable laboratory compactor was developed by researches from Universiti Putra Malaysia (UPM). This study was conducted to evaluate the performance of rotary compactor as a laboratory asphalt compactor and incorporated three objectives: to establish a laboratory protocol including procedures and standards for using the UPM rotary compactor, to evaluate the consistency of SMA slabs in terms of thickness and frictional resistance properties, and to validate the use of UPM rotary compactor in achieving the SMA

mixtures' requirements for bulk specific gravity, voids, Marshall stability and flow, resilient modulus and resistance to degradation. To compact a rotary slab to the desired thickness of 65 mm and 4% air voids, the applied pressure was recommended to start from 0 bar (as pre compaction) and stop at 1.5 bar with intervals of 0.25 bar. For each value of applied pressure, 6 number of passes (rotations) were needed (3) passes per each direction). The speed of rotation was recommended to be fixed on 10 Hz (3.29 RPM). Based on checking 315 points of three slabs to measure the thickness and the statistical analysis of these three slabs, the overall thickness of the slabs was almost uniform along the slabs. According to analyzing the performance of 132 core specimens it was concluded that rotary compactor was able to produce slabs with uniformly distributed properties such as volumetric properties, Marshall stability, flow and resilient modulus. Finally a degradation study was carried out to check and evaluate whether the aggregate structure was changed during the mixing and compacting. It was found that two aggregate fractions (12.7 mm and 9.5 mm) were affected and crushed during mixing and compacting procedures. To compensate the observed loss percentages a value called weight factor was introduced to provide the loss of materials.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia Sebagai memenuhi keperluan untuk Ijazah Master Sains

PENILAIAN MESIN PENGGELEK PEMADATAN PEMADAT ASFALT DI MAKMAL

Oleh

HAMED HAGHIGHI

April 2009

Penyelia: Prof. Madya Ratnasamy Muniandy, PhD

Fakulti: Kejuruteraan

Hasil beberapa kajian telah menunjukkan bahawa mesin pemadat Marshall, pemadat uli California dan pemadat berputar, adalah jenis mesin pemadat global yang paling konvensional, ia tidak mampu menghasilkan spesimen makmal yang yang benarbenar mewakili campuran yang telah dipadatkan seperti di tapak. Walaupun pemadat berputar dapat menghasilkan simulasi yang baik seperti mesin penggelek di tapak untuk tujuan pemadatan, tetapi ia tidak secara umumnya untuk diperkembangkan sebagai pemadat kepingan untuk wheel tracking dan ujian kelesuan. Pemadatan dan penyediaan lebih dari satu sampel pada satu masa yang sama adalah satu perkara yang perlu diberi perhatian yang mana ia tidak dapat diperolehi melalui pemadat konvensional. Oleh itu, satu prosedur pemadatan di makmal yang sesuai perlu diwujudkan. Mesin pemadat rotary, sejenis mesin penggelek telah dihasilkan dan diperkenalkan oleh penyelidik dari Universiti Putra Malaysia (UPM). Penyelidikan dan kajian ini dijalankan untuk menilai prestasi mesin penggelek ini sebagai pemadat asfalt dan telah menggabungkan tiga objektif utama; untuk menghasilkan protokol di makmal termasuk prosedur dan piawai dalam menggunakan alat ini, untuk menilai

konsistensi kepingan SMA dari segi ketebalan dan ciri- ciri rintangan geseran, dan untuk mengesahkan penggunaan mesin penggelek UPM dalam mencapai keperluan campuran SMA untuk spesifik graviti pukal, kandungan udara, kestabilan Marshall dan aliran, ketahanan modulus dan rintangan degradasi. Untuk memadatkan kepingan kepada ketebalan yang dikehendaki iaitu 65 mm dan 4% kandungan udara, tekanan yang disyorkan untuk dikenakan permulaannya dari 0 bar (sebagai pemadatan awal) dan berhenti pada 1.5 bar dengan selang rehat 0.25 bar. Untuk setiap nilai tekanan yang dikenakan enam nombor putaran diperlukan (3 untuk setiap arah putaran). Kelajuan putaran yang disyorkan adalah 10 Hz (3.29 RPM). Berdasarkan pemeriksaan ke atas 315 titik untuk tiga kepingan dalam mengukur ketebalan dan analisis statistik, kesemua tebal kepingan adalah hampir sama untuk setiap kepingan. Merujuk kepada analisis prestasi 132 spesimen, dapat disimpulkan yang mesin penggelek ini mampu menghasilkan kepingan yang hampir sama rata agihan sifatnya seperti kestabilan Marshall dan modulus ketahanannya. Akhir sekali, satu kajian penurunan (degradasi) dijalankan untuk mengkaji dan menilai sama ada struktur agregat telah berubah ketika proses campuran dan pemadatan. Telah dibuktikan yang dua pecahan agregat (12.7 mm dan 9.5 mm) telah dikesan dan telah pecah melalui proses campuran dan pemadatan. Untuk menggantikan peratus kekurangan yang telah dikesan, satu nilai yang dipanggil faktor berat telah diperkenalkan untuk memperlengkap kekurangan di dalam bahan yang digunakan.

ACKNOWLEDGEMENTS

In the Name of Allah, Most Gracious, Most Merciful, all praise and thanks are due to Allah, and peace and blessings be upon His Messenger. I would like to express the most sincere appreciation to those who made this work possible; supervisory members, Friends and Family.

Firstly I would like to thank my supervisor Prof. Madya Dr. Ratnasamy Muniandy for the many useful advice and discussions, for his constant encouragement, guidance, support and patience all the way through my study work. Equally the appreciation extends to the supervisory committee members Prof. Madya. Ir. Salihuddin Hassim and Prof. Madya Dr. Robiah Bt. Yunus for providing me the opportunity to complete my studies under their valuable guidance.

I would also like to acknowledge the Civil Engineering Department of Universiti Putra Malaysia for providing the numerous facilities and support for this research work.

Thanks and acknowledgements are meaningless if not extended to my wife who always gave relentless encouragement and support which made my education possible.

Last but not least, my very special thanks to all my friends who were directly and indirectly involved in this research and cooperated with this study.

I certify that a Thesis Examination Committee has met on 13 April 2009 to conduct the final examination of Hamed Haghighi on his thesis entitiled "Evaluation of a Laboratory Asphalt Rotary Compactor" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee are as follows:

Husaini b. Omar, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Hussain b. Hamid, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Wan Ishak b. Wan Ismail, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Meor Othman Hamzah, PhD

Professor Faculty of Engineering Universiti Sains Malaysia (External Examiner)

BUJANG KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 18 June 2009

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment on the requirement for the degree of Master of Science. The members of the supervisory committee are as follows:

Ratnasamy Muniandy, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Robiah bt. Yunus, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Ir Salihudin b. Hassim

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

HASANAH MOHD. GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 9 July 2009

DECLARATION

I hereby declare that the thesis is based on my original work as per program given to me, except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

HAMED HAGHIGHI

Date:

TABLE OF CONTENTS

D	EDIC	ATION	N	ii
	BSTR			iii
	BSTR			v
A	CKN(OWLE	DGEMENTS	vii
				Error! Bookmark not defined.
D	ECLA	RATI	ON	х
L	ST O	F TAB	BLES	xiii
L	ST O	F FIG	URES	xvi
LI	ST O	F ABB	BREVIATIONS	XX
Cl	НАРТ	TER		
1	INT	וחחקי	ICTION	1
T	1.1		al Background	1
			em Statement	4
			tives of Study	4 6
		•	e of Study	6
	1.4	1	s Layout	0 7
	1.5	11651	Layou	,
2	LIT	ERAT	URE REVIEW	8
	2.1	Classi	ification of Hot Mixes	8
	2.2	Aspha	alt Mix Design Methods	9
		2.2.1	Aggregate Selection and Testing	12
			Asphalt Binder Selection and Testing	12
			Cellulose Fiber Selection and Testing	13
			Optimum Asphalt Content	16
	2.3	-	alt Mixture Compaction	20
			Need for Compaction	21
			Mechanics of Compaction	21
			Factors Affecting Compaction	23
	2.4	•	Laboratory Asphalt Mixture Compactors	32
			California Kneading Compactor	32
			Marshall Impact Compactor	34
		2.4.3	Superpave Gyratory Compactor	36
	2.5		Types of Laboratory Compactors	41
			Rolling Wheel Compactor	41
			Linear Kneading Compactor	44
			French Plate Compactor	46
			Vibrocompression Specimen Compactor	
			Asphalt Vibratory Compactor Turamesin	48
				49
	26		UPM Rotary Compactor	52 Jothoda 52
	2.6 2.7	-	parative Study of Laboratory Compaction N	Aethods 52 56
	2.7		Compaction Matrix Asphalt (SMA) Mixtures	50 60
	2.0	2.8.1		60 61
			Advantages of SMA	63
		2.8.2	6	64
		2.0.5	sin i min Design and Specifications	04

		Frictional Properties of Mixture	70
	2.10	Summary	72
3	RES	EARCH METHODOLOGY	74
	3.1	Introduction	74
	3.2	Test Plan 1: Criteria Establishment of Rotary Compactor	79
		3.2.1 Slab Preparation and Compaction	79
		3.2.2 Correlation Study of Rotary Compactor Variables	90
	3.3	Test Plan 2: Consistency Analysis of SMA Slabs	90
		3.3.1 Physical Properties of the Aggregate	91
		3.3.2 Physical Properties of the Asphalt Binder	91
		3.3.3 Physical Properties of the Cellulose Fiber	92
		3.3.4 Marshall Method of Mix Design	93
	. .	3.3.5 Preparation and Thickness Analysis of Slabs	100
	3.4	Test Plan 3: Frictional Resistance Study on compacted slabs	and
		Performance Tests Analysis on Cored Specimens	100
		3.4.1 Skid Resistance	101
		3.4.2 Macro Texture Depth	102
		3.4.3 Resilient Modulus3.4.4 Cantabro Loss	105
		3.4.5 Degradation Study	106 107
	3.5	Summary	107
	5.5	Summary	107
4	RES	ULT AND DISCUSSION	110
	4.1	Test Plan 1: Criteria Establishment of Rotary Compactor	110
		4.1.1 Two Dimensions Drawings	110
		4.1.2 Three Dimensions Schematic Drawings	113
		4.1.3 Inventory and Specifications of Parts	115
		4.1.4 Procedure Establishment of Slab Preparation	121
	4.2	Test Plan 2: Consistency Analysis of SMA Slabs	137
		4.2.1 Material Selection and Testing	137
		4.2.2 Asphalt Mix Design	146
		4.2.3 Thickness Analysis	155
	4.3	Test Plan 3: Frictional Resistance Study on Compacted Slabs	and
		Performance Tests Analysis on Slab Cored Specimens	167
		4.3.1 Frictional Resistance Analysis	167
		4.3.2 Core Specimens Performance Analysis4.3.3 Degradation Study	173 186
		4.5.5 Degradation Study	100
5	CON	ICLUSION AND RECOMMENDATIONS	192
	5.1	Summary	192
	5.2	Conclusions	193
	5.3	Recommendation for Further Studies	195
RI	EFER	ENCES	197
	APPENDICES 204		
	BIODATA OF STUDENT 22		

LIST OF TABLES

Table	Page
2.1. Cellulose Content and Spiral Angle of Various	16
2.2. Elastic Properties of Cellulose, Hemicellulose, and Lignin	16
2.3. Summary of Influences on Compaction	31
2.4. Marshall Mix Design Criteria	35
2.5. Superpave Gyratory Compactive Effort	39
2.6. Some of the CRT-RC Roller Compactor Specifications	43
2.7. Summary of Thickness Analysis	51
2.8. Summary of Engineering Properties of Laboratory and Field Specimens	Compacted 57
2.9. Contact Pressure at various Penetration Depths	59
2.10. General Properties of 3 Types of HMA	64
2.11. Specifications for German Stone Matrix Asphalt	65
2.12. Specifications for Danish Stone Matrix Asphalt	65
2.13. Coarse Aggregate Quality Requirements	66
2.14. Fine Aggregate Quality Requirements	66
2.15. Example SMA Gradation Specification	67
2.16. SMA Mixture Specification for Marshall Compacted Designs	69
2.17. SMA Mixture Specification for Gyratory Compacted Designs	70
3.1. Aggregate Physical Properties Tests	91
3.2. Asphalt Binder Physical Properties Tests	92
3.3. Minimum Values for Skid Resistance	102
3.4. Texture Depth and Volume Relationship	103
3.5. Indirect Tensile Stiffness Modulus Parameters	106
4.1. Desired Amount of Aggregate Fractions	123

4.2. Required Amount of Materials per Batch	124
4.3. Hertz – Velocity Relations	127
4.4. Penetration Depth of Rotary Roller	129
4.5. Rotary Compactor Procedure of Compaction	135
4.6. Penetration Test Result	138
4.7. Softening Point Result	138
4.8. Viscosity of Asphalt Binder	138
4.9. Specific Gravity Result	139
4.10. Los Angeles Abrasion Result	140
4.11. Aggregate Impact Value Result	140
4.12. Flakiness Index Result	141
4.13. Elongation Index Result	141
4.14. Coarse Aggregate Angularity Results	142
4.15. Fine Aggregate Angularity Results	142
4.16. Bulk Specific Gravity of Aggregate Fractions	143
4.17. SMA Gradation Specification	143
4.18. Mesh Screen Analysis of Cellulose Fiber	145
4.19. Oil-Fiber Draindown Result	146
4.20. Maximum Specific Gravity Results	147
4.21. Bulk Specific Gravity Results for Marshall Mix Design	148
4.22. Air-Voids Analysis for Marshall Mix Design	149
4.23. Resilient Modulus Results for Marshall Mix Design	150
4.24. Marshall Stability and Flow Results	151
4.25. Summary of Marshall Mix Design Analysis	152
4.26. <i>t</i> Test Result for Slab One	158

4.27. t Test Result for Slab Two	161
4.28. <i>t</i> Test Result for Slab Three	164
4.29. Summary of Skid Resistance Results	168
4.30. Summary of ANOVA for Skid Resistance of Three Slabs	168
4.31. ANOVA Result for Skid Resistance of Three Slabs	168
4.32. Texture Depth Measurements	171
4.33. Summary of ANOVA for Texture Depth (Close to Inner)	171
4.34. ANOVA Result for Texture Depth (Close to Inner)	172
4.35. Summary of ANOVA for Texture Depth (Close to Outer)	172
4.36. ANOVA Result for Texture Depth (Close to Outer)	172
4.37. Summary of Bulk Specific Gravity and Air Voids	173
4.38. Summary of t Test for Air Voids in Ring Analysis	174
4.39. t Test Results of Outer Ring	174
4.40. Summary of ANOVA for Ring Analysis of Air Voids	176
4.41. ANOVA Result for Ring Analysis of Air Voids	176
4.42. Summary of t Test for Air Voids in Quadrant Analysis	177
4.43. Summary of ANOVA for Quadrant Analysis of Air Voids	179
4.44. ANOVA Result for Quadrant Analysis of Air Voids	179
4.45. Resilient Modulus Results – Slab One	180
4.46. Resilient Modulus Results – Slab Two	181
4.47. Resilient Modulus Results – Slab Three	182
4.48. Weight Factor Determination	189

LIST OF FIGURES

Figure	Page
1.1. Road Network Growth Trend	1
1.2. Comparison of Road Use for Passenger and Freight Transport	2
1.3. Percent of Total Annual Hot Mix Asphalt Production in 2006	3
2.1. An Empty Fruit Bunch (left) and Its Fibrous Form (right)	14
2.2. Percent Draindown without Cellulose Fiber	15
2.3. Percent Draindown with Cellulose Fiber	15
2.4. Diagram Illustrating Air Voids and Voids in Mineral Aggregate	18
2.5. Hot Mix Asphalt Component Diagram	18
2.6. Pavement Durability versus Air Voids	22
2.7. Forces at Work during Compaction	23
2.8. Time Allowed for Compaction	30
2.9. California Kneading Compactor	33
2.10. Composite Photo of Marshall Compactor Components	34
2.11. Schematic View of Superpave Gyratory Compactor	37
2.12. Superpave Gyratory Compactor Mold Configuration	38
2.13. Comparative Studies of Relative Stiffness of Laboratory Compac Field Compaction	tions due to 42
2.14. European Standard Roller Compactor (CRT-RC)	43
2.15. Linear Kneading Compactor	45
2.16. Rollers inside the Compactor	45
2.17. French Plate Compactor	46
2.18. Asphalt Vibratory Compactor	49
2.19. Turamesin	50

2.20. UPM Rotary Compactor	52
2.21. An Example of a Roller Pattern Using a Test Strip	58
2.22. Contact Angle of a Steel Drum	60
2.23. An Example of SMA Gradation Specification	67
2.24. Mortar in SMA	68
2.25. Skid Number for Different Types of Asphalt Mixes	72
3.1. Test Plan 1: Criteria Establishment of Rotary compactor	75
3.2. Test Plan 2: Consistency Analysis of SMA Slabs	76
3.3. Test Plan 3: Frictional Resistance Study on Compacted Slabs and Pe Tests Analysis on Slab Core Specimens	erformance 77
3.4. Comprehensive Experimental Design	78
3.5. Cut Marking of the Slab	86
3.6. Longitudinal and Cross Sectional Lines	86
3.7. Core Marking Plan for Slab Quadrant	87
3.8. Applying Coring Plan on Each Slab Quadrant	87
3.9. Marking the Cutter Blade	88
3.10. Coring 100 mm Specimen from Slab Quadrant	89
3.11. Sequences of Adding the Materials	95
3.12. Water Bath for Marshall Specimens	97
3.13. Marshall Test Apparatus	97
3.14. Loose Form of Specimen (i) and Wire Basket (ii)	99
3.15. British Pendulum on the Compacted Slab	102
3.16. Texture Depth Determination	103
3.17. Sand Patch Set-Up	104
3.18. Core Specimens Before (i) and After (ii) Cantabro	107
3.19. Asphalt Binder Extraction: Before (i), After (ii)	108

3.20. Quartering with Riffle Box	109
4.1. Mold Assembly Dimensions	111
4.2. Main Frame Assembly Dimensions	112
4.3. Roller Assembly Dimensions	113
4.4. Rotary Compactor 3D Schematic Drawing - 1	114
4.5. Rotary Compactor 3D Schematic Drawing - 2	114
4.6. Rotary Compactor Mold's Details	115
4.7. Rotary compactor Pressure Gauge	116
4.8. Rotary compactor Control Panel	117
4.9. Rotary compactor Motor	117
4.10. Rotary Compactor's Frame Wheel	118
4.11. Rotary compactor Rollers	118
4.12. Rotary Compactor's Hand Valve	119
4.13. Rotary Compactor's Pneumatic Pressure Cylinder	120
4.14. Rotary Compactor's Main Trunk	120
4.15. Velocity Conversion Diagram	126
4.16. Rotary Roller Penetration Depth	128
4.17. Pushing the Materials	129
4.18. Crushed Stones Due to the High Pressure Applied	130
4.19. Contact Area of the Rotary Roller	131
4.20. Humps on Finished Slab	132
4.21. Time versus Temperature for Trial Slab One	133
4.22. Time versus Temperature for Trial Slab Two	134
4.23. Time versus Temperature for Trial Slab Three	135
4.24. Pressure – Temperature Correlation	136

4.25. Temperature - Viscosity Relationship	139
4.26. SMA Gradation Specification	144
4.27. Particle Size Distribution of Cellulose Fiber	145
4.28. Percent Draindown vs. Time	146
4.29. Marshall Mix Design Property Curves	153
4.30. Testing the Hypothesis for the Mean of 65 mm	158
4.31. ANOVA Single Factor for Slab One Using Microsoft Excel [®]	159
4.32. Regions of Rejection and Nonrejection for ANOVA	160
4.33. Thickness Variation through the Slab One	160
4.34. ANOVA Single Factor Analysis for Slab Two	162
4.35. Thickness Variation through the Slab Two	163
4.36. ANOVA Single Factor Analysis for Slab Three	165
4.37. Thickness Variation through the Slab Three	166
4.38. Thickness Comparison of the Slabs	166
4.39. Surface Texture of Slab One	169
4.40. Two Positions for Texture Depth	170
4.41. Mean of Bulk Specific Gravity and Air Voids of Three Slabs	175
4.42. Mean of Bulk Specific Gravity and Air Voids of Three Slabs	178
4.43. Mean Resilient Modulus at 25 °C	183
4.44. Mean Value of Marshall Stability and Flow	185
4.45. Mean Value of Cantabro Loss at Different Revolutions	186
4.46. Percent Retained on Different Fractions	187
4.47. Percent Passing of Reclaimed Aggregates	188
4.48. Particle Shape of Reclaimed Aggregates	190
4.49. Reclaiming of Cellulose Fiber	191

LIST OF ABBREVIATIONS

- AAMAS Asphalt Aggregate Mixture Analysis System
- AASHTO American Association of State Highway and Transportation Officials
- AMIR Asphalt Multi-Integrated Roller
- ANOVA Analysis of Variation
- APA Asphalt Pavement Analyzer
- ASTM American Society for Testing and Materials
- AVC Asphalt Vibratory Compactor
- BS British Standard
- COV Coefficient of Variation
- EFB Empty Fruit Bunch
- ESAL Equivalent Single Axle Load
- FHWA Federal Highway Administration
- GTM Gyratory Testing Machine
- HMA Hot Mix Asphalt
- ITSM Indirect Tensile Modulus Test
- JIRCAS Japan International Research Center for Agricultural Sciences
- JKR Jabatan Kerja Raya
- LCPC Laboratoire Central des Ponts et Chaussees
- LVDT Linear Variable Differential Transducer
- LWT Loaded Wheel Tracking
- MATTA Material Testing Apparatus
- NAPA National Asphalt Pavement Association
- NCAT National Center for Asphalt Technology

- NCHRP National Cooperative Highway Research ProgramOGFC Open Graded Friction Course
- PLUS Projek Lebuhraya Utara-Selatan
- PTI Pavement Technology Incorporation
- RPM Revolutions Per Minute
- SGC Superpave Gyratory Compactor
- SHRP Strategic Highway Research Program
- SMA Stone Matrix Asphalt
- SSD Saturated Surface Dry
- Superpave Superior Performing Asphalt Pavement
- SWPE Scott Wilson Pavement Engineering
- TMD Theoretical Maximum Density
- UPM Universiti Putra Malaysia
- VCA Voids in Coarse Aggregate
- VFA Voids filled with Asphalt
- VMA Voids in Mineral Aggregates
- VTM Voids in Total Mix

CHAPTER 1

INTRODUCTION

1.1 General Background

The Malaysian road network has been expanding steadily, from 54,000 km in 1990 to about 80,000 km in 2007, including 78,300 km of State or Federal roads and 1,700 km of toll highways. The total number of registered vehicles has been exceeded 13 million and the average annual growth of vehicle ownership is over 7.0% per year whereas the increase in road length is less than 4.0% per annum as displayed in Figure 1.1 (Vellu, 2007).

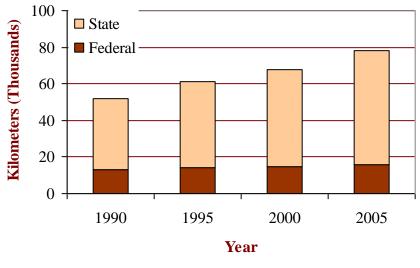


Figure 1.1. Road Network Growth Trend (Source: Vellu, 2007)

Road transport continues to be the most popular way of transportation for both passenger and freight. Figure 1.2 shows 94.8% of passengers and 96.4% of freight movement are transported by road. This importance on road transport makes it difficult to the efficiency of the whole transport system. (Vellu, 2007)

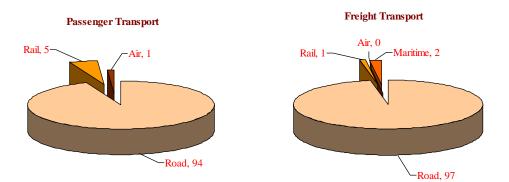


Figure 1.2. Comparison of Road Use for Passenger and Freight Transport (Source: Vellu, 2007)

Due to this high percentage of using the roads and the steady increase of vehicles there is a growing concern for comfort driving, safety, maintenance and environmental considerations, which has led to more durable, reliable, stronger and greener pavements, focusing particularly on asphalt mixtures.

Another considerable issue is the recent surge in global petroleum prices that has led to US\$120 per each barrel of crude oil in June 2008 (Hendrickson, 2008). World consumption of crude oil has now reached 1000 barrels per second (Tertzakian, 2006). Thus most of the past practice and research in transportation engineering which had assumed reliance on petroleum for transportation fuel with fairly stable or declining petroleum prices cannot be no longer true.

Since the unit cost for constructing and maintaining roads has increased over the years, the road sector has to compete with other economic sectors for adequate funds. Efficient techniques in designing and constructing roads are therefore in demand and based on that, roads perform better and last longer. Stone Matrix Asphalt (SMA) is one type of asphalt mixtures which is a tough, stable and rut resistance mixture and relies on stone-to-stone contact to provide strength and a rich mortar binder to

provide durability. SMA generally contains about 70% of coarse aggregate and about 6-8% asphalt cement (Kast, 1985). For SMA Mix design several factors must be met. Among them are: to provide stone-on-stone contact through the selection of the proper gradation, to design an asphalt content at least 6 percent and air void content of 4 percent, to meet moisture susceptibility and draindown requirements and to design for voids in the mineral aggregate such that at least 17 percent is obtained (NAPA, 1999).

Development of SMA began in the 1960s in Germany and introduced in US in 1991. First full scaled field trial was carried out in Malaysia in 2005 (Shahid, 2008). Figure 1.3 shows the percentage of the SMA production from the total HMA production in some European countries in 2006 and also conveys the increase of SMA application. Based on the unique advantages of SMA and fast developing of it around the world, changing over to SMA seems inevitable.

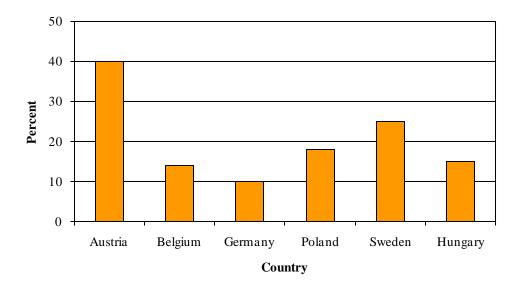


Figure 1.3. Percent of Total Annual Hot Mix Asphalt Production in 2006 (Source: European Asphalt Pavement Association, 2006)

