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At the first stage in this research, the multi-walled carbon nanotubes (MWCNTs) 

were grown by using the floating catalysts chemical vapor deposition (FC-CVD) 

method. The produced MWCNTs were characterized by using the scanning electron 

microscopy (SEM), transmission electron microscopy (TEM) and the high resolution 

transmission electron microscopy (HRTEM). The MWCNTs was incorporated into 

polypropylene (PP) to produce the PP/MWCNTs nanocomposites through the direct 

melt compounding process using an internal mixer. The mixer parameters were 

varied to determine the best parameter to produce the nanocomposites. It was 

determined through the tensile test which performed on every nanocomposite which 

fabricated from the various combinations of parameters. The best parameters to 

produce the nanocomposites were at the temperature of 175°C, rotor speed of 60 rpm 

and the compounding time of 8 minutes. In the next stage, the effect of filler loading 

was studied. The filler loading was varied from 0, 0.25, 0.50, 0.75 and 1.00wt.%. The 
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best tensile properties was observed in the nanocomposites with 0.75wt.% of 

MWCNTs, with the improvement of 42.82% and 126.90% of the tensile strength and 

tensile modulus, compared to the virgin PP matrix. The validation of the tensile test 

data was carried out by using the historical data design from the Response Surface 

Methodology (RSM) with the aid of the Design Expert Software 6.10. The 

PP/MWCNTs nanocomposites which compounded from the best processing 

parameter were further characterized for other properties. Physical test on the 

nanocomposites density was revealed that the density is decreased with the 

increasing percentage of MWCNTs addition. This condition gives benefit on the 

weight saving of the materials. Fourier Transform Infra Red (FTIR) and X-Ray 

diffraction analysis disclosed that the melt blending between the PP matrix and 

MWCNTs filler is entirely physical-mechanical blending, without involving any 

chemical interaction. This further explained the reinforcement behavior of the 

MWCNTs within the PP matrix. Furthermore, TEM images of the nanocomposites 

surface confirmed an excellent dispersion and distribution of the MWCNTs in the PP 

matrix. This condition was supported by the significant improvement of the flexural 

strength, flexural modulus, impact strength, and storage modulus and loss modulus 

properties of the fabricated nanocomposites. In overall, the proper selection of the 

melt blending processing parameter and the use of low filler loading was 

significantly helped to disperse and distribute the MWCNTs homogenously within 

the PP matrix, resulting major improvements to the many of the properties studied.  
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Pada peringkat pertama penyelidikan, karbon nanotiub berbilang dinding 

(MWCNTs) telah ditumbuh melalui kaedah pemangkinan terapung secara 

pemendapan wap kimia (FC-CVD). MWCNTs yang dihasil telah diciri 

menggunakan mikroskop imbasan elektron (SEM), mikroskop pemindahan elektron 

(TEM) dan mikroskop pemindahan elektron resolusi tinggi (HRTEM). MWCNTs 

telah digabung dengan polipropilena (PP) bagi menghasil nanokomposit 

PP/MWCNTs melalui proses penyebatian lebur secara terus, menggunakan 

pencampur dalaman. Parameter pencampur dipelbagai bagi menentukan parameter 

terbaik bagi menghasilkan nanokomposit. Ia ditentukan melalui ujian tegangan yang 

dilakukan keatas setiap nanokomposit yang difabrikasi dari gabungan pelbagai 

parameter. Parameter terbaik bagi menghasil nanokomposit adalah pada suhu 175°C, 

kelajuan rotor 60 rpm dan tempoh penyebatian selama 8 minit. Pada peringkat 

seterusnya, kesan pembebanan pengisi telah dikaji. Pembebanan pengisi dipelbagai 
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dari 0, 0.25, 0.50, 0.75 dan 1.00 peratus berat. Sifat tegangan terbaik diperhati pada 

nanokomposit terisikan 0.75 peratus berat MWCNTs, dengan penambahbaikan 

sebanyak 42.82% dan 126.90% bagi kekuatan tegangan dan modulus tegangan 

berbanding matriks PP dara. Pengesahan keatas data ujian tegangan dilaksana dengan 

menggunakan kaedah permukaan sambutan (RSM) dengan bantuan perisian Design 

Expert 6.10. Nanokomposit PP/MWCNTs yang disebati menggunakan parameter 

pemprosesan yang terbaik seterusnya diciri bagi sifat-sifat yang lain. Ujian fizikal 

bagi ketumpatan nanokomposit menunjukkan ketumpatan adalah mengurang dengan 

peningkatan peratusan penambahan MWCNTs. Keadaan ini memberi kebaikan 

kepada pengurangan berat bahan. Analisis perubahan fourier infra merah (FTIR) dan 

pembelauan sinar-X (XRD) mendedahkan bahawa penyebatian lebur antara matriks 

PP dan pengisi MWCNTs secara keseluruhannya adalah penyebatian fizikal-

mekanikal, tanpa melibatkan sebarang interaksi kimia. Ini selanjutnya menerangkan 

kelakuan penguatan MWCNTs dalam matriks PP. Sebagai tambahan, imej-imej TEM 

bagi permukaan nanokomposit mengesahkan taburan dan serakan MWCNTs yang 

sangat baik didalam matriks PP. Keadaan ini disokong oleh penambahbaikan 

signifikan bagi sifat-sifat kekuatan pelenturan, modulus pelenturan, kekuatan 

hentaman, modulus simpanan dan modulus lesapan bagi nanokomposit yang 

difabrikasi. Secara keseluruhan, pemilihan parameter pemprosesan pencampur lebur 

yang betul dan penggunaan pembebanan pengisi yang rendah akan secara 

signifikannya dapat membantu serakan dan taburan MWCNTs secara seragam, 

menyebabkan penambahbaikan yang major bagi kebanyakan sifat yang dikaji. 
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