

UNIVERSITI PUTRA MALAYSIA

PRODUCTION AND CHARACTERIZATION OF POLYPROPYLENE-CARBON NANOTUBE NANOCOMPOSITES

JEEFFERIE BIN ABD RAZAK

FK 2009 42

PRODUCTION AND CHARACTERIZATION OF POLYPROPYLENE-CARBON NANOTUBE NANOCOMPOSITES

JEEFFERIE BIN ABD RAZAK

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2009

PRODUCTION AND CHARACTERIZATION OF POLYPROPYLENE-CARBON NANOTUBE NANOCOMPOSITES

By

JEEFFERIE BIN ABD RAZAK

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfillment of the Requirement for the degree of Master of Science

DECEMBER 2008

DEDICATED TO

Emak, Ayah & All My Family Members Uan, Omar, Fendi, Nana, Bee, Angah, Fauz, KKA Postgraduates, FKP Staff & UTeM 2006-2008

ii

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

PRODUCTION AND CHARACTERIZATION OF POLYPROPYLENE-CARBON NANOTUBE NANOCOMPOSITES

By

JEEFFERIE BIN ABD RAZAK

2009

Chairman : Mohamad Amran Mohd Salleh, PhD

Faculty : Engineering

At the first stage in this research, the multi-walled carbon nanotubes (MWCNTs) were grown by using the floating catalysts chemical vapor deposition (FC-CVD) method. The produced MWCNTs were characterized by using the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and the high resolution transmission electron microscopy (HRTEM). The MWCNTs was incorporated into polypropylene (PP) to produce the PP/MWCNTs nanocomposites through the direct melt compounding process using an internal mixer. The mixer parameters were varied to determine the best parameter to produce the nanocomposites. It was determined through the tensile test which performed on every nanocomposite which fabricated from the various combinations of parameters. The best parameters to produce the nanocomposites were at the temperature of 175°C, rotor speed of 60 rpm and the compounding time of 8 minutes. In the next stage, the effect of filler loading was studied. The filler loading was varied from 0, 0.25, 0.50, 0.75 and 1.00wt.%. The

best tensile properties was observed in the nanocomposites with 0.75wt.% of MWCNTs, with the improvement of 42.82% and 126.90% of the tensile strength and tensile modulus, compared to the virgin PP matrix. The validation of the tensile test data was carried out by using the historical data design from the Response Surface Methodology (RSM) with the aid of the Design Expert Software 6.10. The PP/MWCNTs nanocomposites which compounded from the best processing parameter were further characterized for other properties. Physical test on the nanocomposites density was revealed that the density is decreased with the increasing percentage of MWCNTs addition. This condition gives benefit on the weight saving of the materials. Fourier Transform Infra Red (FTIR) and X-Ray diffraction analysis disclosed that the melt blending between the PP matrix and MWCNTs filler is entirely physical-mechanical blending, without involving any chemical interaction. This further explained the reinforcement behavior of the MWCNTs within the PP matrix. Furthermore, TEM images of the nanocomposites surface confirmed an excellent dispersion and distribution of the MWCNTs in the PP matrix. This condition was supported by the significant improvement of the flexural strength, flexural modulus, impact strength, and storage modulus and loss modulus properties of the fabricated nanocomposites. In overall, the proper selection of the melt blending processing parameter and the use of low filler loading was significantly helped to disperse and distribute the MWCNTs homogenously within the PP matrix, resulting major improvements to the many of the properties studied.

iv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Master Sains

PENGHASILAN DAN PENCIRIAN NANOKOMPOSIT POLIPROPILENA-KARBON NANOTIUB

Oleh

JEEFFERIE BIN ABD RAZAK

2009

Pengerusi : Mohamad Amran Mohd Salleh, PhD

Fakulti : Kejuruteraan

Pada peringkat pertama penyelidikan, karbon nanotiub berbilang dinding (MWCNTs) telah ditumbuh melalui kaedah pemangkinan terapung secara pemendapan wap kimia (FC-CVD). MWCNTs yang dihasil telah diciri menggunakan mikroskop imbasan elektron (SEM), mikroskop pemindahan elektron (TEM) dan mikroskop pemindahan elektron resolusi tinggi (HRTEM). MWCNTs telah digabung dengan polipropilena (PP) bagi menghasil nanokomposit PP/MWCNTs melalui proses penyebatian lebur secara terus, menggunakan pencampur dalaman. Parameter pencampur dipelbagai bagi menentukan parameter terbaik bagi menghasilkan nanokomposit. Ia ditentukan melalui ujian tegangan yang dilakukan keatas setiap nanokomposit yang difabrikasi dari gabungan pelbagai parameter. Parameter terbaik bagi menghasil nanokomposit adalah pada suhu 175°C, kelajuan rotor 60 rpm dan tempoh penyebatian selama 8 minit. Pada peringkat seterusnya, kesan pembebanan pengisi telah dikaji. Pembebanan pengisi dipelbagai

dari 0, 0.25, 0.50, 0.75 dan 1.00 peratus berat. Sifat tegangan terbaik diperhati pada nanokomposit terisikan 0.75 peratus berat MWCNTs, dengan penambahbaikan sebanyak 42.82% dan 126.90% bagi kekuatan tegangan dan modulus tegangan berbanding matriks PP dara. Pengesahan keatas data ujian tegangan dilaksana dengan menggunakan kaedah permukaan sambutan (RSM) dengan bantuan perisian Design Expert 6.10. Nanokomposit PP/MWCNTs yang disebati menggunakan parameter pemprosesan yang terbaik seterusnya diciri bagi sifat-sifat yang lain. Ujian fizikal bagi ketumpatan nanokomposit menunjukkan ketumpatan adalah mengurang dengan peningkatan peratusan penambahan MWCNTs. Keadaan ini memberi kebaikan kepada pengurangan berat bahan. Analisis perubahan *fourier* infra merah (FTIR) dan pembelauan sinar-X (XRD) mendedahkan bahawa penyebatian lebur antara matriks PP dan pengisi MWCNTs secara keseluruhannya adalah penyebatian fizikalmekanikal, tanpa melibatkan sebarang interaksi kimia. Ini selanjutnya menerangkan kelakuan penguatan MWCNTs dalam matriks PP. Sebagai tambahan, imej-imej TEM bagi permukaan nanokomposit mengesahkan taburan dan serakan MWCNTs yang sangat baik didalam matriks PP. Keadaan ini disokong oleh penambahbaikan signifikan bagi sifat-sifat kekuatan pelenturan, modulus pelenturan, kekuatan hentaman, modulus simpanan dan modulus lesapan bagi nanokomposit yang difabrikasi. Secara keseluruhan, pemilihan parameter pemprosesan pencampur lebur yang betul dan penggunaan pembebanan pengisi yang rendah akan secara signifikannya dapat membantu serakan dan taburan MWCNTs secara seragam, menyebabkan penambahbaikan yang major bagi kebanyakan sifat yang dikaji.

ACKNOWLEDGEMENT

This work could have not been finished without the support and sacrifice of many people I had met over the last couple of years. They are the group of intelligent and nice people I would like to be with in my lifetime. To begin with, I would like to thank deeply to my supervisor Dr. Mohamad Amran Mohd Salleh for his help and insight resolving many of the problems encountered throughout this work. He has given me the full freedom to decide and work on problems and approaches of most interest to me. I wish to thanks to Dr. Nor Azowa Ibrahim for her sincere endless support and full guidance during the course of this work. She has been a great source of ideas, invaluable feedback and encouragement through all stages of my M.Sc. program. Also, I wish to appreciate Dr. Suraya Abd Rashid and Prof. Dr. Fakru'l-Razi Ahmadun as a member of supervisory committee of this thesis. Thanks for the very positive and good aura which always make me strong and confident with myself. Without them all, I have no inner strength to face all the challenges and difficulty during the period of candidature.

I would like to express greatest appreciation to my entire family member for their longstanding support, encouragement and patience towards the completion of this work. Thanks *emak* and *ayah* for your everyday prayers to the successfulness of life and education for your son. Thanks also to all, whom contributed directly or indirectly (to name a few), to the successfulness of this research work. May God Bless Them All!!! To all my friends, many thanks for the true friendships bloomed and hope all of us can be more succeed in the future. To Universiti Teknikal Malaysia Melaka (UTeM), thanks for the scholarship provided and study leave granted, which makes this work possible.

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Mohamad Amran Mohd Salleh, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

Fakhru'l-Razi Ahmadun, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Suraya Abdul Rashid, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Nor Azowa Ibrahim, PhD

Lecturer Faculty of Science Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 9 April 2009

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

JEEFFERIE BIN ABD RAZAK

Date: 9 February 2009

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEGDEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	xxiii

CHAPTER

1 INT	RODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	4
1.3	Scope of Study	5
1.4	Objectives of Study	6
1.5	Thesis Overview	7
2 LIT	ERATURE REVIEW	8
2.0	Composites	8
2.1	Polymer Matrix Composites (PMC)	8
2.2	Major Component in PMC	11
2.3	PP as Matrix Materials	13
2.4	CNTs as Filler Reinforcement	15
	2.4.1 The Distinguishing Properties of CNTs	18
	2.4.2 Synthesis of CNTs	20
	2.4.3 Dispersion of CNTs	21
2.5	CNTs Filled PNC	23
	2.5.1 Advantages of CNTs as Filler Materials in Composites	
	Application	24
	2.5.2 Mechanical Properties of CNTs Filled PNC	25
	2.5.3 Thermal Properties of CNTs Filled PNC	31
	2.5.4 Thermo-Mechanical Properties of CNTs Filled PNC	33
	2.5.5 Challenges in CNTs Filled PNC	35
	2.5.6 Market Trend of CNTs and its Polymer Composites	36
2.6	Processing and Fabrication of CNTs Filled PNC	40
	2.6.1 Melt Compounding of PP/MWCNTs Composites via	
	Internal Mixer	40
	2.6.2 Stabilization of Processing Torque in the Internal Mixer	41
2.7	Response Surface Methodology (RSM) – Statistical Approach to	
	the Interaction Study between the Melt Blending Processing	
	Parameter and its Tensile Properties Responses	42

3.1 Experimental Procedure 47 3.2 Raw Materials 48 3.3 Synthesis, Characterization and Preparation of CNTs Filler 49 3.3.1 Synthesis of CNTs by FC-CVD Process 49 3.3.2 Preparation of CNTs Filler for Composites Fabrication 50 3.3.3 CNTs Morphological and Structural Characterization 50 3.4 Compounding and Preparation of PP/MWCNTs Composites 52 3.4.1 Melt Compounding of PP/MWCNTs Composites by the Internal Mixer 52 3.4.2 Hot and Cold Compression Molding of PP/MWCNTs Composites 53 3.5 Critical Property Analysis - Tensile Test of PP/MWCNTs Composites 54 3.6 Internation of True Density using The Gas Absorption Technique 57 3.7.1 Determination of the PP/MWCNTs Composites Fractured Surfaces 57 3.7.2 SEM Observation of the PP/MWCNTs Composites Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 58 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravime	3 MA	TERIALS AND METHODS	47
3.2 Raw Materials 48 3.3 Synthesis, Characterization and Preparation of CNTs Filler 49 3.3.1 Synthesis, Characterization and Preparation of CNTs Filler for Composites Fabrication 50 3.3.2 Preparation of CNTs Filler for Composites Fabrication 50 3.3.3 CNTs Morphological and Structural Characterization 50 3.4 Compounding and Preparation of PP/MWCNTs Composites by the Internal Mixer 52 3.4.1 Melt Compounding of PP/MWCNTs Composites by the Internal Mixer 52 3.4.2 Hot and Cold Compression Molding of PP/MWCNTs Composites 53 3.5 Critical Property Analysis - Tensile Test of PP/MWCNTs Composites 54 3.6 Interaction Study between the Processing Parameter to the Tensile Properties 57 3.7.1 Determination of True Density using The Gas Absorption Technique 57 3.7.2 SEM Observation of the PP/MWCNTs Composites Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric	3.1	Experimental Procedure	47
3.3 Synthesis, Characterization and Preparation of CNTs Filler 49 3.3.1 Synthesis of CNTs by FC-CVD Process 49 3.3.2 Preparation of CNTs Filler for Composites Fabrication 50 3.3.3 CNTs Morphological and Structural Characterization 50 3.4 Compounding and Preparation of PP/MWCNTs Composites 52 3.4.1 Melt Compounding of PP/MWCNTs Composites by the Internal Mixer 52 3.4.2 Hot and Cold Compression Molding of PP/MWCNTs Composites 53 3.5 Critical Property Analysis - Tensile Test of PP/MWCNTs Composites 54 3.6 Interaction Study between the Processing Parameter to the Tensile Properties 57 3.7 Further Characterization on the Various PP/MWCNTs Composites Fractured Surfaces of the PP/MWCNTs Composites Surfaces 57 3.7.3 TEM Observation of the PP/MWCNTs Composites Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites Surfaces 59 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites Surfaces 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites Surfaces 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites Surfaces 59 <td>3.2</td> <td>Raw Materials</td> <td>48</td>	3.2	Raw Materials	48
3.3.1 Synthesis of CNTs by FC-CVD Process 49 3.3.2 Preparation of CNTs Filler for Composites Fabrication 50 3.3.3 CNTS Morphological and Structural Characterization 50 3.4 Compounding and Preparation of PP/MWCNTs Composites 52 3.4.1 Melt Compounding of PP/MWCNTs Composites by the Internal Mixer 52 3.4.2 Hot and Cold Compression Molding of PP/MWCNTs Composites 53 3.5 Critical Property Analysis - Tensile Test of PP/MWCNTs Composites 54 3.6 Interraction Study between the Processing Parameter to the Tensile Properties 57 3.7 Further Characterization on the Various PP/MWCNTs Composites Properties 57 3.7.1 Determination of True Density using The Gas Absorption Technique 57 3.7.2 SEM Observation of the PP/MWCNTs Composites Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites 59 3.7.10 Thickness Swelling Test of PP	3.3	Synthesis, Characterization and Preparation of CNTs Filler	49
3.3.2 Preparation of CNTs Filler for Composites Fabrication 50 3.3.3 CNTs Morphological and Structural Characterization 50 3.4 Compounding and Preparation of PP/MWCNTs Composites 52 3.4.1 Melt Compounding of PP/MWCNTs Composites by the Internal Mixer 52 3.4.2 Hot and Cold Compression Molding of PP/MWCNTs Composites 53 3.5 Critical Property Analysis - Tensile Test of PP/MWCNTs Composites 54 3.6 Interaction Study between the Processing Parameter to the Tensile Properties 57 3.7.1 Determination of True Density using The Gas Absorption Technique 57 3.7.2 SEM Observation of the PP/MWCNTs Composites Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites 59 3.7.9 Water Absorption Test of PP/MWCNTs Composites 59 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 51 3.7.9 Water Absorption Test of PP/MWCNTs Composites 51 3.7.10 Furier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 61 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 63 3.7.1		3.3.1 Synthesis of CNTs by FC-CVD Process	49
3.3.3 CNTs Morphological and Structural Characterization 50 3.4 Compounding and Preparation of PP/MWCNTs Composites 52 3.4.1 Melt Compounding of PP/MWCNTs Composites by the 52 3.4.2 Hot and Cold Compression Molding of PP/MWCNTs 52 3.4.2 Hot and Cold Compression Molding of PP/MWCNTs 53 3.5 Critical Property Analysis - Tensile Test of PP/MWCNTs 54 3.6 Interaction Study between the Processing Parameter to the Tensile 57 3.7 Further Characterization on the Various PP/MWCNTs Composites 57 3.7.1 Determination of True Density using The Gas Absorption 57 3.7.2 SEM Observation of the PP/MWCNTs Composites 57 3.7.3 TEM Observation of the PP/MWCNTs Composites 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs 59 3.7.5 Lod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs 60 3.7.9 Water Absorption Test of PP/MWCNTs Composites 59 3.7.10 Thiermogravimetric (TGA) Analysis of PP/MWCNTs 60 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 61 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analys		3.3.2 Preparation of CNTs Filler for Composites Fabrication	50
3.4 Compounding and Preparation of PP/MWCNTs Composites 52 3.4.1 Melt Compounding of PP/MWCNTs Composites by the Internal Mixer 52 3.4.2 Hot and Cold Compression Molding of PP/MWCNTs Composites 53 3.5 Critical Property Analysis - Tensile Test of PP/MWCNTs Composites 53 3.6 Interaction Study between the Processing Parameter to the Tensile Properties 54 3.7 Further Characterization on the Various PP/MWCNTs Composites Properties 57 3.7.1 Determination of True Density using The Gas Absorption Technique 57 3.7.2 SEM Observation of the PP/MWCNTs Composites Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 59 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites 61 59 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 57 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 63 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 63 63		3.3.3 CNTs Morphological and Structural Characterization	50
Samples 52 3.4.1 Melt Compounding of PP/MWCNTs Composites by the Internal Mixer 52 3.4.2 Hot and Cold Compression Molding of PP/MWCNTs Composites 53 3.5 Critical Property Analysis - Tensile Test of PP/MWCNTs Composites 53 3.6 Interaction Study between the Processing Parameter to the Tensile Properties 54 3.7 Further Characterization on the Various PP/MWCNTs Composites Properties 57 3.7.1 Determination of True Density using The Gas Absorption Technique 57 3.7.2 SEM Observation of the PP/MWCNTs Composites Surfaces 57 3.7.3 TEM Observation of the PP/MWCNTs Composites Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 59 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs 60 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 63 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites	3.4	Compounding and Preparation of PP/MWCNTs Composites	
3.4.1 Melt Compounding of PP/MWCNTs Composites by the Internal Mixer 52 3.4.2 Hot and Cold Compression Molding of PP/MWCNTs Composites 53 3.5 Critical Property Analysis - Tensile Test of PP/MWCNTs Composites 54 3.6 Interaction Study between the Processing Parameter to the Tensile Properties 55 3.7 Further Characterization on the Various PP/MWCNTs Composites Properties 57 3.7.1 Determination of True Density using The Gas Absorption Technique 57 3.7.2 SEM Observation of the PP/MWCNTs Composites Fractured Surfaces 57 3.7.3 TEM Observation of the PP/MWCNTs Composites Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 59 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites 61 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 63 3.7.10 Thickness Swel		Samples	52
Internal Mixer 52 3.4.2 Hot and Cold Compression Molding of PP/MWCNTs Composites 53 3.5 Critical Property Analysis - Tensile Test of PP/MWCNTs Composites 54 3.6 Interaction Study between the Processing Parameter to the Tensile Properties 55 3.7 Further Characterization on the Various PP/MWCNTs Composites Properties 57 3.7.1 Determination of True Density using The Gas Absorption Technique 57 3.7.2 SEM Observation of the PP/MWCNTs Composites Fractured Surfaces 57 3.7.3 TEM Observation of the PP/MWCNTs Composites Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 59 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites 60 3.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 63 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffracti		3.4.1 Melt Compounding of PP/MWCNTs Composites by the	
3.4.2 Hot and Cold Compression Molding of PP/MWCNTs Composites 53 3.5 Critical Property Analysis - Tensile Test of PP/MWCNTs Composites 54 3.6 Interaction Study between the Processing Parameter to the Tensile Properties 54 3.7 Further Characterization on the Various PP/MWCNTs Composites Properties 57 3.7.1 Determination of True Density using The Gas Absorption Technique 57 3.7.2 SEM Observation of the PP/MWCNTs Composites Fractured Surfaces 57 3.7.3 TEM Observation of the PP/MWCNTs Composites Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites 59 3.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites 61 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs 64 4.1 Introduction 64 4.2.1 Weight Distribution of Synthesis Work		Internal Mixer	52
Composites533.5Critical Property Analysis - Tensile Test of PP/MWCNTs Composites543.6Interaction Study between the Processing Parameter to the Tensile Properties553.7Further Characterization on the Various PP/MWCNTs Composites Properties573.7.1Determination of True Density using The Gas Absorption Technique573.7.2SEM Observation of the PP/MWCNTs Composites Fractured Surfaces573.7.3TEM Observation of the PP/MWCNTs Composites Surfaces583.7.4Flexural Test / Three Point Bending Test of PP/MWCNTs Composites583.7.5Izod Pendulum Impact Test of PP/MWCNTs Composites Composites593.7.6Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites593.7.7Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites603.7.8Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites613.7.10Thickness Swelling Test of PP/MWCNTs Composites633.7.11Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites633.7.12X-Ray Diffraction Study for PP/MWCNTs Composites634RESULTS AND DISCUSSION644.2.1Weight Distribution of Synthesis Works644.2.2Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66		3.4.2 Hot and Cold Compression Molding of PP/MWCNTs	
3.5 Critical Property Analysis - Tensile Test of PP/MWCNTs Composites 54 3.6 Interaction Study between the Processing Parameter to the Tensile Properties 55 3.7 Further Characterization on the Various PP/MWCNTs Composites Properties 57 3.7.1 Determination of True Density using The Gas Absorption Technique 57 3.7.2 SEM Observation of the PP/MWCNTs Composites Fractured Surfaces 57 3.7.3 TEM Observation of the PP/MWCNTs Composites Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 59 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites 59 3.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites 61 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 63 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 63		Composites	53
Composites543.6Interaction Study between the Processing Parameter to the Tensile Properties553.7Further Characterization on the Various PP/MWCNTs Composites Properties573.7.1Determination of True Density using The Gas Absorption Technique573.7.2SEM Observation of the PP/MWCNTs Composites Fractured Surfaces573.7.3TEM Observation of the PP/MWCNTs Composites Surfaces573.7.4Flexural Test / Three Point Bending Test of PP/MWCNTs Composites583.7.5Izod Pendulum Impact Test of PP/MWCNTs Composites593.7.6Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites593.7.7Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites603.7.8Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites613.7.10Thickness Swelling Test of PP/MWCNTs Composites623.7.11Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites633.7.12X-Ray Diffraction Study for PP/MWCNTs Composites634 RESULTS AND DISCUSSION Analysis of MWCNTs644.2.1Weight Distribution of Synthesis Works644.2.2Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66	3.5	Critical Property Analysis - Tensile Test of PP/MWCNTs	
3.6 Interaction Study between the Processing Parameter to the Tensile Properties 55 3.7 Further Characterization on the Various PP/MWCNTs Composites Properties 57 3.7.1 Determination of True Density using The Gas Absorption Technique 57 3.7.2 SEM Observation of the PP/MWCNTs Composites Fractured Surfaces 57 3.7.3 TEM Observation of the PP/MWCNTs Composites Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites 60 3.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 62 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites		Composites	54
Properties553.7 Further Characterization on the Various PP/MWCNTs Composites Properties573.7.1 Determination of True Density using The Gas Absorption Technique573.7.2 SEM Observation of the PP/MWCNTs Composites Fractured Surfaces573.7.3 TEM Observation of the PP/MWCNTs Composites Surfaces573.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites583.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites Composites593.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites593.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites603.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites613.7.9 Water Absorption Test of PP/MWCNTs Composites 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites634 RESULTS AND DISCUSSION 4.1 Introduction644.2.1 Weight Distribution of Synthesis Works Analysis of MWCNTs644.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66	3.6	Interaction Study between the Processing Parameter to the Tensile	
3.7 Further Characterization on the Various PP/MWCNTs Composites 57 3.7.1 Determination of True Density using The Gas Absorption 57 3.7.2 SEM Observation of the PP/MWCNTs Composites 57 3.7.3 TEM Observation of the PP/MWCNTs Composites 57 3.7.3 TEM Observation of the PP/MWCNTs Composites 57 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 58 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs 60 3.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites 61 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 61 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs 64 4.1 Introduction 64 4.2.1 Weight Distribution of Synthesis Works 64 4.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs 64		Properties	55
3.7 Future Characterization on the Various PF/MWCNTs Composites 57 3.7.1 Determination of True Density using The Gas Absorption 57 3.7.2 SEM Observation of the PP/MWCNTs Composites 57 3.7.3 TEM Observation of the PP/MWCNTs Composites 57 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs 59 3.7.8 Differential Scanning Calorimetry (DSC) Analysis of 60 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 61 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra 63 Analysis for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 63 4.1 Introduction 64 4.2 Characterization of the as-Produced MWCNTs 64 4.2.1 Weight Distribution of Synthesis Works 64 4.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs 66	27	Eurther Characterization on the Various DD/MWCNTs Composites	
3.7.1 Determination of True Density using The Gas Absorption Technique 57 3.7.2 SEM Observation of the PP/MWCNTs Composites Fractured Surfaces 57 3.7.3 TEM Observation of the PP/MWCNTs Composites Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites 60 3.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites 61 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 62 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 63 4.1 Introduction 64 4.2 Characterization of the as-Produced MWCNTs 64 4.2.1 Weight Distribution of Synthesis Works 64 4.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs 66	5.7	Properties	57
3.7.1 Determination of the Density using The Gas Absorption Technique 57 3.7.2 SEM Observation of the PP/MWCNTs Composites Fractured Surfaces 57 3.7.3 TEM Observation of the PP/MWCNTs Composites Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites Somposites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites 60 3.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 3.7.12 X-Ray Diffraction Study for PP/MWCNTs 4.1 Introduction 64 4.2.1 Weight Distribution of Synthesis Works 64 4.2.1 Weight Distribution of Synthesis Works <t< td=""><td></td><td>3.7.1 Determination of True Density using The Gas Absorption</td><td>57</td></t<>		3.7.1 Determination of True Density using The Gas Absorption	57
3.7.2 SEM Observation of the PP/MWCNTs Composites Fractured Surfaces 57 3.7.3 TEM Observation of the PP/MWCNTs Composites Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites S.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites 60 3.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 4.1 Introduction 64 4.2 Characterization of the as-Produced MWCNTs 64 4.2.1 Weight Distribution of Synthesis Works 64 4.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs 66		Technique	57
57.11 Solar Tubor of the PP/MWCNTs Composites 57 3.7.3 TEM Observation of the PP/MWCNTs Composites 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs 59 3.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites 60 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 61 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 63 4 RESULTS AND DISCUSSION 64 4.1 Introduction 64 4.2 Characterization of the as-Produced MWCNTs 64 4.2.1 Weight Distribution of Synthesis Works 64 4.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs 66		3.7.2 SEM Observation of the PP/MWCNTs Composites	51
3.7.3 TEM Observation of the PP/MWCNTs Composites Surfaces 57 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites 60 3.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites 61 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 62 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 63 4.1 Introduction 64 4.2 Characterization of the as-Produced MWCNTs 64 4.2.1 Weight Distribution of Synthesis Works 64 4.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs 66		Fractured Surfaces	57
Surfaces 58 3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites 60 3.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites 61 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 62 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 63 4 RESULTS AND DISCUSSION 64 4.2 Characterization of the as-Produced MWCNTs 64 4.2.1 Weight Distribution of Synthesis Works 64 4.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs 66		3.7.3 TEM Observation of the PP/MWCNTs Composites	51
3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs Composites 58 3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs 59 3.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites 60 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 61 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 63 4.1 Introduction 64 4.2 Characterization of the as-Produced MWCNTs 64 4.2.1 Weight Distribution of Synthesis Works 64 4.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs 66		Surfaces	58
Composites583.7.5Izod Pendulum Impact Test of PP/MWCNTs Composites593.7.6Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites593.7.7Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites603.7.8Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites613.7.9Water Absorption Test of PP/MWCNTs Composites613.7.10Thickness Swelling Test of PP/MWCNTs Composites623.7.11Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites633.7.12X-Ray Diffraction Study for PP/MWCNTs Composites634RESULTS AND DISCUSSION644.1Introduction644.2Characterization of the as-Produced MWCNTs644.2.1Weight Distribution of Synthesis Works Analysis of MWCNTs644.2.2Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66		3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs	
3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites 59 3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites 60 3.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites 61 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 62 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 63 4 RESULTS AND DISCUSSION 64 4.1 Introduction 64 4.2.1 Weight Distribution of Synthesis Works 64 4.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs 66		Composites	58
3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs Composites 59 3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites 60 3.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites 61 3.7.9 Water Absorption Test of PP/MWCNTs Composites 61 3.7.10 Thickness Swelling Test of PP/MWCNTs Composites 62 3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites 63 3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites 63 4.1 Introduction 64 4.2 Characterization of the as-Produced MWCNTs 64 4.2.1 Weight Distribution of Synthesis Works 64 4.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs 66		3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites	59
Composites593.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites603.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites613.7.9 Water Absorption Test of PP/MWCNTs Composites613.7.10 Thickness Swelling Test of PP/MWCNTs Composites623.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites633.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites634 RESULTS AND DISCUSSION644.1 Introduction644.2 Characterization of the as-Produced MWCNTs644.2.1 Weight Distribution of Synthesis Works644.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66		3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs	
3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs Composites603.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites613.7.9 Water Absorption Test of PP/MWCNTs Composites613.7.10 Thickness Swelling Test of PP/MWCNTs Composites623.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites633.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites634 RESULTS AND DISCUSSION644.1 Introduction644.2 Characterization of the as-Produced MWCNTs644.2.1 Weight Distribution of Synthesis Works644.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66		Composites	59
Composites603.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites613.7.9 Water Absorption Test of PP/MWCNTs Composites613.7.10 Thickness Swelling Test of PP/MWCNTs Composites623.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites633.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites634 RESULTS AND DISCUSSION644.1 Introduction644.2 Characterization of the as-Produced MWCNTs644.2.1 Weight Distribution of Synthesis Works644.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66		3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs	
3.7.8 Differential Scanning Calorimetry (DSC) Analysis of PP/MWCNTs Composites613.7.9 Water Absorption Test of PP/MWCNTs Composites613.7.10 Thickness Swelling Test of PP/MWCNTs Composites623.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites633.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites634 RESULTS AND DISCUSSION644.1 Introduction644.2 Characterization of the as-Produced MWCNTs644.2.1 Weight Distribution of Synthesis Works644.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66		Composites	60
PP/MWCNTs Composites613.7.9 Water Absorption Test of PP/MWCNTs Composites613.7.10 Thickness Swelling Test of PP/MWCNTs Composites623.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites633.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites634 RESULTS AND DISCUSSION644.1 Introduction644.2 Characterization of the as-Produced MWCNTs644.2.1 Weight Distribution of Synthesis Works644.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66		3.7.8 Differential Scanning Calorimetry (DSC) Analysis of	
3.7.9Water Absorption Test of PP/MWCNTs Composites613.7.10Thickness Swelling Test of PP/MWCNTs Composites623.7.11Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites633.7.12X-Ray Diffraction Study for PP/MWCNTs Composites634 RESULTS AND DISCUSSION 644.1Introduction644.2Characterization of the as-Produced MWCNTs644.2.1Weight Distribution of Synthesis Works644.2.2Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66		PP/MWCNTs Composites	61
3.7.10Thickness Swelling Test of PP/MWCNTs Composites623.7.11Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites633.7.12X-Ray Diffraction Study for PP/MWCNTs Composites634RESULTS AND DISCUSSION644.1Introduction644.2Characterization of the as-Produced MWCNTs644.2.1Weight Distribution of Synthesis Works644.2.2Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66		3.7.9 Water Absorption Test of PP/MWCNTs Composites	61
3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra Analysis for PP/MWCNTs Composites633.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites634 RESULTS AND DISCUSSION644.1 Introduction644.2 Characterization of the as-Produced MWCNTs644.2.1 Weight Distribution of Synthesis Works644.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66		3.7.10 Thickness Swelling Test of PP/MWCNTs Composites	62
Analysis for PP/MWCNTs Composites633.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites63 4 RESULTS AND DISCUSSION 644.1 Introduction644.2 Characterization of the as-Produced MWCNTs644.2.1 Weight Distribution of Synthesis Works644.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66		3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra	
3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites634 RESULTS AND DISCUSSION644.1 Introduction644.2 Characterization of the as-Produced MWCNTs644.2.1 Weight Distribution of Synthesis Works644.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66		Analysis for PP/MWCNTs Composites	63
4 RESULTS AND DISCUSSION 64 4.1 Introduction 64 4.2 Characterization of the as-Produced MWCNTs 64 4.2.1 Weight Distribution of Synthesis Works 64 4.2.2 Scanning Electron Microscopy (SEM) Micrograph 64 Analysis of MWCNTs 66		3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites	63
4.1Introduction644.2Characterization of the as-Produced MWCNTs644.2.1Weight Distribution of Synthesis Works644.2.2Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66	4 P F	SULTS AND DISCUSSION	64
4.2Characterization of the as-Produced MWCNTs644.2.1Weight Distribution of Synthesis Works644.2.2Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66	41	Introduction	64
4.2.1 Weight Distribution of Synthesis Works644.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs66	4.2	Characterization of the as-Produced MWCNTs	64
4.2.2 Scanning Electron Microscopy (SEM) Micrograph Analysis of MWCNTs 66		4.2.1 Weight Distribution of Synthesis Works	64
Analysis of MWCNTs 66		4.2.2 Scanning Electron Microscopy (SEM) Micrograph	01
		Analysis of MWCNTs	66
4.2.3 Transmission Electron Microscopy (TEM) Micrograph		4.2.3 Transmission Electron Microscopy (TEM) Micrograph	20
Analysis of MWCNTs 69		Analysis of MWCNTs	69
4.2.5 High Resolution Transmission Electron Microscopy		4.2.5 High Resolution Transmission Electron Microscopy	

	(HRTEM) Observation of MWCNTs	72
4.3	The Study on the Processability of PP/MWCNTs Composites	
	Fabricated using Internal Mixer	78
	4.3.1 Torque Analysis of Composites Processing	78
	4.3.2 Critical Property Analysis: Tensile Properties of	
	PP/MWCNTs Composites - Determination of the Best	
	Processing Condition of Melt Blending Process	83
	4.3.3 Parameter Interaction Study using Response Surface	
	Methodology (RSM) – Design Expert®	98
4.4	Morphological Analysis of PP/MWCNTs Composites	120
	4.4.1 SEM Analysis of Tensile Test Fractured Surfaces of	
	PP/MWCNTs Composites	120
	4.4.2 SEM Analysis of Impact Test Fractured Surfaces of	
	PP/MWCNTs Composites	124
	4.4.3 TEM Analysis of PP/MWCNTs Composites Surfaces	126
4.5	Characterization of Mechanical Properties of PP/MWCNTs	100
	Composites	130
	4.5.1 Flexural lest / Inree Point Bending Analysis for	120
	PP/MWCN1s Composites	130
	4.5.2 Notched-Izod Impact Strength Analysis for PP/MWCN1s	122
	4.5.2 Dynamic Machanical Analysis (DMA) of DD/MWCNTa	155
	4.5.5 Dynamic Mechanical Analysis (DMA) of PP/MWCN1s Composites	135
16	Thermal Properties of PP/MWCNTs Composites	1/3
4.0	A 6.1 Thermogravimetry (TGA) Data Analysis for PP/MWCNTs	143
	Composites	144
	462 Differential Scanning Calorimetry (DSC) Analysis of	177
	PP/MWCNTs Composites	149
4.7	Chemical and Physical Properties of PP/MWCNTs Composites	153
	4.7.1 Analysis of True Density of PP/MWCNTs Composites	153
	4.7.2 Water Absorption of PP/MWCNTs Composites	155
	4.7.3 Thickness Swelling of PP/MWCNTs Composites	159
	4.7.4 Fourier Transform Infrared (FTIR) Analysis for	
	PP/MWCNTs Composites	161
	4.8.4 Analysis of X-Ray Diffractometry Data for PP/MWCNTs	
	Composites	163
5 C	CONCLUSION AND RECOMMENDATIONS	167
5	1 Conclusion	167
5	2 Recommendations	171
REFE	RENCES	172
APPE	NDICES	181
BIODA	ATA OF STUDENT	192
LIST (DF PUBLICATIONS	192

xiii

LIST OF TABLES

Table		Page
2.1	Mechanical properties of CNTs compared with other important engineering materials (Colbert, 2003)	20
2.2	Comparison between different types of commercially available CNTs (Esawi & Farag, 2006)	38
3.1	The level of variables chosen for trial	56
4.1	Designations used for processing parameters of each composite group	83
4.2	Regression coefficients and P-value calculated from the model (R1)	101
4.3	Regression analysis (ANOVA) for the tensile strength properties of fabricated PP/MWCNTs composites, quadratic response surface fitting	101
4.4	Regression coefficients and P-value calculated from the model (R2)	108
4.5	Regression analysis (ANOVA) for the modulus of Young's properties of fabricated PP/MWCNTs composites, quadratic response surface fitting	108
4.6	Regression coefficients and P-value calculated from the model (R3)	116
4.7	Regression analysis (ANOVA) for the percentage of elongation at break properties of fabricated PP/MWCNTs composites, quadratic response surface fitting	116
4.8	Onset degradation temperature for each composite tested	147
4.9	Thickness swelling for PP/MWCNTs composites in acidic medium with pH 3 for 10 days of soaking period	159

4.10	Thickness swelling for PP/MWCNTs composites in neutral medium with pH 7 for 10 days of soaking period	160
4.11	Thickness swelling for PP/MWCNTs composites in alkaline medium with pH 12 for 10 days of soaking period	160
4.12	Thickness swelling for PP/MWCNTs composites in organic solvent (acetone) medium with pH 4.8 for 10 days of soaking period	160

LIST OF FIGURES

Figure		Page
2.1	A classification scheme for the various composites types (Callister, 2000)	10
2.2	Schematic representation of (a) continuous and aligned, (b) discontinuous and aligned, and (c) discontinuously and randomly oriented fiber reinforced composites (Callister, 2000)	12
2.3	The reaction to prepare PP (Harper, 1999)	13
2.4	SEM images of nanotubes on a substrate (Si); cast from dispersion in acetone (Hussain <i>et al.</i> , 2006)	16
2.5	The carbon lattice and the ways it can be rolled-up to form a zigzag, an armchair or a chiral tube (Mamalis <i>et al.</i> , 2004)	16
2.6	Schematic of nanotubes morphologies; (a) armchair, zig-zag, and (c) chiral (Hussain <i>et al.</i> , 2006)	17
2.7	Schematic of a: (a) single-walled and (b) multiwalled nanotubes (Hussain <i>et al.</i> , 2006)	18
2.8	Illustration of (a) poor distribution and poor dispersion, (b) poor distribution but good dispersion, (c) good distribution but poor dispersion and (d) good distribution and good dispersion (Hu <i>et al.</i> , 2006)	23
2.9	Schematic description of possible fracture mechanism of CNTs. (a) Initial state of the CNT; (b) pull-out caused by CNT/matrix debonding in case of weak interfacial adhesion; (c) rupture of CNT – strong interfacial adhesion in combination with extensive and fast local deformation; (d) telescopic pull-out-fracture of the outer layer due to strong interfacial bonding and pull-out of the inner tube; (e) bridging and partial debonding of the interface – local bonding to the matrix enables crack bridging and interfacial failure in the non-bonded regions (Gojny <i>et al.</i> , 2005)	32

xvi

2.10	Representation of an entanglement leading to a contact between two fibers; and of a simple fiber/fiber contact (Adapted from Dalmas <i>et al.</i> , 2007)	34
2.11	Specific modulus-to-weight ratio versus price of CNTs. Bubbles for CF, SWCNTs and MWCNTs were superimposed in the chart (Esawi & Farag, 2006)	39
2.12	Global market forecast for CNTs in promising commercial sectors, 2006-2011 (\$ million)	39
3.1	Process flow chart	47
3.2	FC-CVD system for the synthesis of CNTs	49
3.3	Collected as-produced CNTs	50
3.4	Ultrasonication-mechanical stirrer apparatus set-up for MWCNTs pre-dispersion procedure	51
3.5	Haake internal mixer	53
3.6	Set up of the mold and platen plate used and HSINCHU compression press molding machine for hot and cold molding operation	54
3.7	Instron Universal Testing Machine (UTM-4302)	55
3.8	Standard test configuration for flexural properties determination	60
3.9	Standard test configuration for impact resistance determination	60
4.1	Distribution plot of collected weight per batch (g/batch) of MWCNTs synthesized via FC-CVD method	66
4.2	SEM observation of the CNTs 'forest' by using 5000X of magnification power	67
4.3	SEM observation of other carbonaceous product obtained by FC-CVD process (20 000X of magnification)	68
4.4	Coiled and entanglement behavior of CNTs produced; observed at 20 000X of magnification power	68

4.5	Open-ended structure of the as-produced CNTs observed at 40 000X of magnification power	69
4.6	Micrographs of TEM observation of CNTs under the magnification of 100 000X	70
4.7	Micrographs of TEM observation of CNTs under the magnification of 215 000X	71
4.8	Micrographs of TEM observation of CNTs under the magnification of 345 000X	72
4.9	HRTEM image observation of CNTs under 50 nm of magnifications	73
4.10	OD & ID determination from HRTEM observations	74
4.11	Dimensional analysis of individual MWCNT and wall profiling determination	75
4.12	Micrographs of trapped catalyst particles and its dimensional analysis	76
4.13	Average plot of torque values (Nm) versus compounding duration (minutes) for the PP/MWCNTs composites with different wt. % of filler loading	80
4.14	Effect of MWCNTs filler loading on stable torque value at seven minutes for the processing of PP/MWCNTs composites via melt blending process	81
4.15	Effect of CNTs loading to the processing torque (N.m); (a) Interrelationship of processing torque with the compounding period within the stabilization period for various filler content based on experimental data; (b) Interrelationship of processing torque with the matrix treatment using compatibilizer MA-SEBS, at the stabilization stage for various filler content based on the past study conducted by Xie <i>et al.</i> , (2002)	82
4.16	Effect of various compounding temperature (°C) and rotation speed of roller rotor blade (rpm) to the tensile strength (MPa) of	
	PP/MWCNTs composites with varied percentages of filler loading	87

4.17	Effect of various compounding temperature (°C) and rotation speed of roller rotor blade (rpm) to the tensile modulus (MPa) of PP/MWCNTs composites with varied percentages of filler	02
	loading	92
4.18	Effect of various compounding temperature (°C) and rotation speed of roller rotor blade (rpm) to the percentages of elongation at break (%) of PP/MWCNTs composites with varied percentages of filler loading	96
4.19	Predicted versus actual plot for the values of tensile strength (MPa)	99
4.20	Three dimensional plot of response surface and its contour plot for the processing parameter A and B and its effect to the tensile strength (MPa) values	103
4.21	Three dimensional plot of response surface and its contour plot for the processing parameter A and C and its effect to the tensile strength (MPa) values	104
4.22	Three dimensional plot of response surface and its contour plot for the processing parameter B and C and its effect to the tensile strength (MPa) values	104
4.23	Perturbation plot for the first response studied; Tensile Strength (TS)	105
4.24	Predicted versus actual plot for the values of modulus of Young's (MPa)	107
4.25	Three dimensional plot of response surface and its contour plot for the processing parameter A and B and its effect to the Modulus of Young's (MPa) values	110
4.26	Three dimensional plot of response surface and its contour plot for the processing parameter A and C and its effect to the Modulus of Young's (MPa) values	111
4.27	Three dimensional plot of response surface and its contour plot for the processing parameter B and C and its effect to the Modulus of Young's (MPa) values	112

4.28	Perturbation plot for the second response studied; Modulus of Young's	112
4.29	Predicted versus actual plot for the values of percentage of elongation at break (%)	115
4.30	Three dimensional plot of response surface and its contour plot for the processing parameter A and B and its effect to the percentages of elongation at break (%) values	117
4.31	Three dimensional plot of response surface and its contour plot for the processing parameter A and C and its effect to the percentages of elongation at break (%) values	118
4.32	Three dimensional plot of response surface and its contour plot for the processing parameter B and C and its effect to the percentages of elongation at break (%) values	119
4.33	Perturbation plot for the third response studied; Percentages of Elongation at Break (%)	119
4.34	SEM micrograph of the tensile fractured surface of PP sample with 15 000X of magnification	121
4.35	SEM micrograph of the tensile fractured surface of (a) PP/0.25wt.%; (b) PP/0.50wt.%; (c) PP/0.75wt.% and (d) PP/1.00wt.% MWCNTs composites with 5 000X of magnification	122
4.36	SEM micrograph of the impact fractured surface of PP sample with 3 000X magnification	125
4.37	SEM micrograph of the impact fractured surface of (a) PP/0.25wt.%; (b) PP/0.50wt.%; (c) PP/0.75wt.% and (d) PP/1.00wt.% MWCNTs composites with 3 000X of magnification	126
4.38	TEM observation of cyro thin sectioning of (a) PP/0.25wt.%; (b) PP/0.50wt.%; (c) PP/0.75wt.% and (d) PP/1.00wt.% MWCNTs composites surfaces with 35 500X of magnification power	128
4.39	Flexural Strength (MPa) data plot versus the composite types fabricated with various weight percentages of MWCNTs loading	131

4.40	Flexural Modulus (MPa) data plot versus the composite types fabricated with various weight percentages of MWCNTs loading	132
4.41	Plot of Izod Impact Strength (J/m) for PP/MWCNTs composites with various weight percentages of filer loading	134
4.42	Variation of storage modulus (E') of PP/MWCNTs composites as a function of temperature	136
4.43	Variation of loss modulus (E") of PP/MWCNTs composites as a function of temperature	140
4.44	Variation of damping factor (tan δ) of PP/MWCNTs composites as a function of temperature	142
4.45	TGA curve for as-produced MWCNTs	145
4.46	Overlay of TGA curves for virgin PP and PP/MWCNTs composites with different percentages amount of filler loading	146
4.47	Differential thermal gravimetric thermograms (DTG) for virgin PP and PP/MWCNTs composites with different percentages amount of filler loading	148
4.48	Overlay of DSC curves for virgin PP and PP/MWCNTs composites with different percentages amount of filler loading	150
4.49	Overlay of DSC for the first and second melting drop curves for virgin PP and PP/MWCNTs composites with different percentages amount of filler loading	152
4.50	Plot of density value for PP/MWCNTs composites with various percentages of filler loading	155
4.51	Graph of measured weights for PP/MWCNTs composites soaked in acidic medium with pH 3 for 10 days of soaking period	157
4.52	Graph of measured weights for PP/MWCNTs composites soaked in neutral medium with pH7 for 10 days of soaking period	157
4.53	Graph of measured weights for PP/MWCNTs composites soaked in alkaline medium with pH12 for 10 days of soaking period	158

4.54	Graph of measured weights for PP/MWCNTs composites soaked in organic solvent, acetone with pH 4.8 for 10 days of soaking period	158
4.55	FTIR spectra for MWCNTs sample, control sample for virgin PP and its composites with different amount of filler loading	162
4.56	Diffraction pattern of multi-walled carbon nanotubes (MWCNTs)	165
4.57	Diffraction pattern of PP/MWCNTs composites with various percentages of filler loading	166

LIST OF ABBREVIATIONS

°C	Degree Celsius
ABS	Acrylonitrile Butadiene Styrene
ANOVA	Analysis of Variance
ASTM	American Society for Testing and Materials
CASOS	Centre for Computational Analysis of Social and Organizational
	Systems
CNTs	Carbon Nanotubes
CVD	Chemical Vapor Deposition
DMA	Dynamic Mechanical Analysis
DSC	Differential Scanning Calorimetry
DWCNTs	Double Walled Carbon Nanotubes
E/ρ	Specific Modulus
ESEM	Environmental Scanning Electron Microscope
FC-CVD	Floating Catalyst Chemical Vapor Deposition
FTIR	Fourier Transform Infra-Red
HRTEM	High Resolution Transmission Electron Microscopy
ID	Internal Diameter
MA-SEBS	Maleic anhydride grafted styrene-(ethylene-co-butylene)-styrene
MWCNTs	Multi-Walled Carbon Nanotubes
OD	Outer Diameter
OFAT	One Factor at Time
PE	Polyethylene

PEN/MWCNTs	Poly(ethylene 2, 6-naphthalate/Mutiwalled carbon nanotubes
РМС	Polymer Matrix Composites
PMMA	Polymethyl Metacrylate
PNC	Polymer Nanocomposites
РР	Polypropylene
PP/MWCNTs	Polypropylene-Multiwalled Carbon Nanotubes Composites
PVC-U	Unplastisized Polyvinyl Chloride
PVCv/NBR	Virgin Polyvinyl Chloride / Natural Butadiene Rubber
PVCw/NBR	Waste Polyvinyl Chloride / Natural Butadiene Rubber
RHA	Rice Husk Ash
rpm	rotation per minute
RSM	Response Surface Methodology
SEM	Scanning Electron Microscopy
Si	Silicon
SWCNTs	Single Walled Carbon Nanotubes
TEM	Transmission Electron Microscopy
Tg	Glass Transition Temperature
TGA	Thermogravimetry Analysis
TPa	Tera Pascal
UHMWPE	Ultra High Molecular Weight Polyethylene
wt.%	weight percentage
XRD	X-Ray Diffraction

