

UNIVERSITI PUTRA MALAYSIA

FATIGUE CRACK PROPAGATION IN ALUMINIUM 6063 TUBES

AZIM ATAOLLAHI OSHKOUR

FK 2009 9

FATIGUE CRACK PROPAGATION IN ALUMINIUM 6063 TUBES

By

AZIM ATAOLLAHI OSHKOUR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

January 2009

То

My Beloved Parents, Sisters and Brother

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

FATIGUE CRACK PROPAGATION IN ALUMINIUM 6063 TUBES

By

AZIM ATAOLLAHI OSHKOUR

January 2009

Chairman: Prof. Ir. Barkawi b. Sahari, PhD

Faculty: Engineering

Tubular structures have extensive usage from domestic to aviation. Therefore estimate of life and safety are essential for design and use. Fatigue is one the most frequent cause for failure in components. Beside fatigue, external surfaces of structures are always in contact with environment and due to imperfection during product fabrication, surface crack may exist. Therefore surface crack is the most common form of crack in engineering structures. To overcome the fatigue problem the design approaches should be considered. The fatigue design approaches are divided in two categories which are safe life approach and damage tolerant design. Due to the importance of tubular structure and possible effect of fatigue in structural damage, the present work has focused on fatigue and fatigue crack propagation behavior in cylindrical structures.

The fatigue design approaches utilized stress based safe life and damage tolerant design approach. The finite element software, ABAQUS used to analyze fatigue and determine fracture parameters. At the beginning fatigue test in finite life was carried out based on Japanese standard. The fatigue tests were done at room temperature and

about 350°C under stress ratio equal to -1 and 0.1. Following experimental part, a 3-D fatigue analysis was carried out by ABAQUS. In fatigue analysis by ABAQUS, the linear material is considered and the results of finite element analysis are plotted in maximum stress versus number of cycles to failure graph. Fatigue analysis was carried out in same condition as experimental part at room temperature and 350°C under stress ratio equal to -1 and 0.1. Subsequent to fatigue analysis, the fatigue crack propagation tests were also carried out. The fatigue crack propagation test was carried out under increasing stress intensity factor or constant amplitude stress. In fatigue crack propagation test, a cracked tubular specimen was used. The crack is located in specimen by wire cut. The crack was an external and circumferential with straight front with depth of 0.37mm. The results of fatigue crack propagation were plotted in two types of graphs; first is crack length ,a, versus the number of cycles, N at each crack length and second is the crack growth rate which plotted as function of rate of crack length upon the number of cycles, *da/dN* versus the stress intensity factor as fracture parameter. Moreover ABAQUS was used to derive the fracture parameters. Two types 3-D tubes with crack were modeled. In first model assumed as sharp and thin crack, but in the second type the blunt crack considered. Material of tube in ABAQUS assumed to be a linear elastic and elastic prefect plastic. The results of crack modeling include fracture parameters as stress intensity factor, and Jintegral which were plotted as a function of crack front.

The experimental results of fatigue showed a good agreement with finite element fatigue results. Based on fatigue results the fully reversed fatigue is more severe than fatigue with stress ratio equal to 0.1. Temperature does affect fatigue life which is shown by a decrease in yield strength and ultimate strength of material which

resulted in reduction in the fatigue life of specimens with increasing temperature. The fatigue crack propagation results indicated crack growth rate in loading with stress ratio equal to 0.1 is more than stress ratio equal to -1. Crack first grew through the thickness followed by the surface of specimen. This was verified by the results from finite element that show maximum fracture parameters in the deepest point of the crack.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PERTAMBAHAN KERETAKAN LSUE DALAM TIUB ALUMINIUM

Oleh

AZIM ATAOLLAHI OSHKOUR

Januari 2009

Pengerusi: Prof. Ir. Barkawi b. Sahari, PhD

Fakulti: Kejuruteraan

Kegunaan sturktur berbentuk tiub begitu luas, dari kegunaan rumah hingga bidang penerbangan. Oleh hal yang demikian, anggaran/kiraan jangka hayat dan keselamatan adalah penting dalam merekabentuk dan kegunaannya. Factor kelesuan adalah salah satu penymbang kepada kegagalan sesuatu komponen. Di samping itu permukaan luar yang sentiasa terdedah kepada persekitaran dan kesan dari fakbrikasi yang kurang memuaskan, keretakaan permukan boleh wujud. Dalam struktur kejuruteraan, retakan permukaan merupakan bentuk keretakan yang biasa wujud. Untuk mengatasi masalah kelesuan ini, pendekatan kelesuan rekabentuk perlu diambil kira. Pendekatan kelesuan rekabentuk terbahagi kepada dua kategori, iaitu pendekatan jangkahayat selamat dan ketahanan rekabentuk retak. Oleh yang demikian, kerja penyelidikan ini tertumpu kepada ujian kelesuan dan kelakuan lesu dengan penambahan retakan dalam struktur silinder.

Pendekatan kelesuan rekabentuk menggunakan tegasan jangkahayat selamat dan pendekatan ketahanan rekebentuk di lakukan. ABAQUS merupakan satu perisian unsur terhingga untuk menganalisis kelesuan struktur dan penghasilan parameter

retakan. Pada permulaan kagian, kaedah terhingga ini berdasarkan Japanese Standard. Ujian kelesuan telah dijalankan dalam suhu bilik dan pada 350°C di bawah nisbah tegasan bersamaan dengan -1 dan 1.0.

Untuk ujian yang seterusnya, analisis lesu 3-D dilaksanakan dengan ABAQUS. Analisis kelesuan dengan perisian unsur terhingga ini, bahan linar diambil kira dan keputusan tersebut diplotkan dalam graf tegasan maksimum hingga gagal terhadap bilangan kitaran. Ujian kelesuan dijalankan dengan keadaan yang sama dalam suhu bilik dan 350°C di bawah nisbah tegasan bersamaan dengan -1 dan 1.0. Setelah ujian kelesuan dijalankan, ujian kelakuan lesu dengan penambahan retakan dijalankan. Ujian ini dijalankan di bawah faktor tumpuan tegasan atau amplitud tegasan berterusan. Dalam ujian kelakuan lesu dengan penambahan retakan, spesimen tiub bertakuk di buat dengan mesin Wire Cut. Tiub tersebut dilekuk sedalam 0.37mm di permukaan luar tiub. Ujian kelakuan lesu dengan penambahan retakan ini diplotkan kepada 2 jenis graf; panjang retakan terhadap jumlah kitaran di setiap panjang retakan dan berikutnya adalah kadar penambahan keretakan diplotkan sebagai fungsi kadar panjang retakan keatas bilangan kitaran melawan faktor tegasan sebagai parameter keretakan. Disamping itu ABAQUS digunakan untuk memperolehi parameter retakan. Dua jenis tiub 3-D dengan retakan dimodelkan. Model pertama menganggapkan retakan tajam dan nipis. Model kedua menganggapkan retakan tumpul. Bahan tiub dalam ABAQUS memperkenalkan kengal linar dan kengal linar platci unggul. Keputusan model retakan mengandungi parameter retakan sebagai faktor kekuatan tegasan dan J-intergral yang diplotkan sebagai suatu fungsi kepelbaaian retakan hadapan.

Keputusan ujian kelesuan dan kelesuan unsur terhingga menunjukkan hwdungan yang baik. Berdasarkan ujian kelesuan, ujian berbalikan penuh lebih menyumbangkan tegasan berbanding nisbah tegasan bersamaan dengan 0.1. Kesan peningkatan suhu jangkahayat menunjiukkan peningkatan suhu mengurangkan kekuatan dan takat alah bahan tersebut. Keputusan penambahan retakan lesu menunjukkan penambahan kadar retakan dalam bebanan beserta nisbah tegasan bersamaan dengan 0.1 adalah lebih berbanding nisbah tegasan bersamaan dengan -1. Pembesaran retakan bermula dari ketebalan seterusnya ke atas permukaan spesimen. Ini dibuktikan melalui keputusan unsur terhingga yang menunjunkkan parameter retakan maksimum berlaku dalam kedalaman yang paling dalam daripada retakan tersebut.

ACKNOWLEDGEMENTS

First and foremost I would like to express my deep gratefulness to my supervisor Professor Dr. Ir. Barkawi b. Sahari providing me the wonderful opportunity to continue my master's program. I am also very thankful for his tireless, kind assistance, support, critical advice, encouragement and suggestions during the study and preparation of this thesis.

I would also like to express my gratitude towards my members of my supervisory committee Dr. Aidy Ali and Associate Professor Dr. Wong Shaw Voon, whom I am grateful for their practical experience and knowledge that made an invaluable contribution to this thesis. I truly appreciate the time they devoted in advising me and showing me the proper directions to continue this research and for their openness, honesty and sincerity.

I owe thank to Mr. Wildan Ilyas Mohd Ghazali, technician in Strength of Material Laboratory, Department of Mechanical and Manufacturing Universiti Putra Malaysia who has always been willing to provide assistance, give advice, and be a friend.

Last but not least the deepest appreciation goes to my very close friends, Hossin, Mehdi, Ali and Hamid and for their contentious support and encouragement.

I certify that an Examination Committee has met on **date of viva** to conduct the final examination of **Azim Ataollahi Oshkour** on his Master of Science entitled "Fatigue and Crack Propagation in Aluminium 6063 Tubes" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Chairman, PhD

Associate Prof. Ir. Dr. Nor Mariah Adam Faculty of Engineering Universiti Putra Malaysia (Chairman)

Examiner 1, PhD

Prof. Ir. Dr. Mohd Sapuan Salit Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Examiner 2, PhD

Dr. Abdul Aziz Jafar Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

External Examiner, PhD

Associate Prof. Ir. Dr. Shahrum bin Abdullah Faculty of Engineering Universiti Kebangsaan Malaysia (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Barkawi b. Sahari, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Aidy Ali, PhD Lecturer

Faculty of Engineering Universiti Putra Malaysia (Member)

Wong Shaw Voon, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 May 2009

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution

Azim Ataollahi Oshkour

Date: 1 April 2009

TABLE OF CONTENTS

ABST	RACT			iii
ABST	RAK			vi
ACKN	OWLE	DGMEN	ſ	ix
APPR	OVAL			х
DECL	DECLARATION LIST IF TABLES LIST OF FIGURES			xii
LIST I				xiii
LIST (xiv
LIST (OF ABI	BREVIAT	IONS	xix
СНАР	TER			1
1	INTE	RODUCTI	ON	1
2	LITERATURE REVIEW			
	2.1	Introduc	tion	5
	2.2	Material	Behaviour	5
		2.2.1	Hooke's Law	6
		2.2.2	Failure Criteria	7
	2.3	Fatigue		9
		2.3.1	Mechanism of Fatigue Damage	10
		2.3.2	Stress Based Approach	13
		2.3.3	Strain Based Approach	15
		2.3.4	Mean Stress Models on Fatigue Life	18
		2.3.5	Fracture Mechanics Base Approach	22
			2.3.5.1 Fracture Mechanics Approach and	22
			Fatigue Crack Propagation Analysis	07
	2.4	NT '	2.3.5.2 Fracture Mechanics	27
	2.4	Numeric	cal Evaluation J-integral	35
		2.4.1	J-Integral in 2D	35
	2.5	2.4.2 Tubes of	J-Integral in 3D	39
	2.3	Tubes al	nu Cracks	42
	2.0	Discussi	оп	48
3	MET	HODOLC	OGY	
	3.1	Introduc	tion	49
	3.2	Finite E	lement Analysis	50
		3.2.1	Finite Element Modelling of Evaluation Fracture	50
			Parameter	
		3.2.2	Construction of 3-D Singular Elements at the	51
		2.2.2	Crack Tip	
		3.2.3	Validation of Finite Element Model	53
		5.2.4 2.2.5	Niodel Geometries	22
		5.2.5	Other Model Attributes	56
		3.2.0 2.2.7	Naterial Model	30 57
		5.2.1	Boundary Conditions	50
		3.2.8	rangue rinne Element Analysis	57

		3.2.9	Model Geometries	58
		3.2.10	Mesh Generation	59
		3.2.11	Other Model Attributes	59
	3.3	Experin	nental Procedure	60
		3.3.1	Test Material - Composition and Properties	60
		3.3.2	Test Specimens Preparation	62
		3.3.3	Static Test Specimens	62
		3.3.4	Fatigue Test Specimens	63
		3.3.5	Fatigue and Fatigue Crack Growth Experiments	64
		3.3.6	Crack Length Measurement	66
		3.3.7	High Temperature Environment and Controlling	67
	3.4	Discuss	ion	68
4	Resul	ts and dis	scussion	
	4.1	Introdu	ction	69
	4.2	Static T	ension Properties	69
	4.3	Fatigue	Test at Room Temperature with R=-1	72
	4.4	Fatigue	Test at Room Temperature with R=0.1	75
	4.5	Fatigue	Test at 350°C with R=-1	78
	4.6	Fatigue	Test at 350°C with R=0.1	79
	4.7	Tube M	lodelling	83
	4.8	Fatigue	Crack Propagation Test with R=-1 and Maximum	95
		Load 10)kN	
	4.9	Fatigue	Crack Propagation Test with R=0.1 and Maximum	98
	4 10	Eodu IC Fatique	Crack Propagation test with R-1 and Maximum	101
	1.10	Load 15	5kN	101
	4.11	Fatigue	Crack Propagation test with R=0.1 and Maximum	103
		Load 15	5kN	
	4.12	Summa	ry	105
5	Concl	usion and	d Recommendations	
	5.1	Conclus	sion	108
	5.2	Recom	nendations	112
RE	FEREN	ICES		114
BI	BIODATA OF THE STUDENT			119

LIST OF TABLES

Table		Pages
1	Basic material mechanical property	6
2	Classification of various types of fatigue analysis (Schijve, 2004)	9
3	Characteristics of the three regimes of fatigue crack propagation	23
4	Some type of defect in tube	43
5	Typical chemical composition of 6063	60
6	Fatigue and Fatigue crack growth test plan	66
7	Average static mechanical properties of specimens at room temperature and 350°C	72
8	Exponential equation parameters used in fit curve with crack propagation under maximum load equal to 10kN with R=-1	97
9	Exponential equation parameters used in fit curve with crack propagation under maximum load equal to 10kN with R=0.1	99
10	Exponential equation parameters used in fit curve with crack propagation under maximum load equal to 15kN with R=-1	101
11	Exponential equation parameters used in fit curve with crack propagation under maximum load equal to 15kNwith R=0.1	103

LIST OF FIGURES

Figure		Pages
1	A typical stress-strain curve (Martin, 2005)	6
2	Comparing failure criteria (Dieter, 1986)	8
3	Schematic of the slip band formation in a single grain. The external loading is acting vertically, in tension-compression cycling (Yung, Jwo, Richard, and Mark, 2005)	13
4	The stage I and stage II crack growth processes in a polycrystalline material (Yung <i>et al.</i> , 2005)	13
5	Typical $\sigma_a - N_f$ curve plotted on log-log axes (Yung <i>et al.</i> , 2005)	14
6	Typical $\varepsilon_{p_a} - N_f$ curve plotted on log-log axes (Yung <i>et al.</i> , 2005)	16
7	Comparison of $\varepsilon_{e_a} - N_f$, $\varepsilon_{p_a} - N_f$ and $\varepsilon_a - N_f$ (Yung <i>et al.</i> , 2005)	17
8	Nomenclature for fatigue stress designators (Jung, 2002)	18
9	Typical stress amplitude-life plots for different mean stress values (Choi, 2002)	20
10	A plot representing the Goodman, Soderberg, and Gerber relations for the effect of mean stress on the stress amplitude for fatigue failure (Choi, 2002)	20
11	A schematic representation of the Haigh diagram showing constant life curves for different mean stress levels in terms of the maximum and minimum stresses of the fatigue cycle (Suresh, 1991)	21
12	Principle propagation behavior of a long crack and Paris' idealization (Anderson, 1994)	25
13	Strain energy release rate: (a) crack growth da due to applied load P ; (b) Strain energy released dU with crack growth da (Anderson, 1994)	29
14	Typical mode of fracture (mode of loading) (Anderson, 1994)	30
15	Crack tip opening displacement (CTOD) Model (Dowling, 1999)	33

16	Application of J-integral approach to crack growth (Saxena, 1992).	34
17	Contour for evaluation of the J-integral	36
18	Closed contour $C+C_++\Gamma+C$ encloses a domain A that includes the crack-tip region as $\Gamma \rightarrow 0$	37
19	Definition of local orthogonal Cartesian coordinates at the point s on the crack front; the crack is in the $x_1 - x_3$ plane	39
20	Surface $A = A_t + A_o + A_{ends} + A_{cracks}$ encloses a domain volume V that includes the crack-front region as $\Gamma \rightarrow 0$	41
21	Geometry of an external circumferential crack in a hollow cylinder (Varfolomeyev, 1998)	44
22	Circumferential external surface flaw in a round pipe(A. Carpinteri and Brighenti, 1998)	45
23	External surface 2aw in a circumferentially notched pipe: geometrical parameters (Andrea Carpinteri <i>et al.</i> , 2003)	47
24	Internal and external semi-elliptical surface cracks in a pressurized cylinder (Guozhong <i>et al.</i> , 2004)	47
25	General description of the methodology adopted in the study	50
26	20 nodes brick element collapse into wage elastic singular element	52
27	Flow of making the general finite element model	53
28	Three dimensional geometric of model	54
29	Meshing around crack front in 3D model	55
30	Boundary condition applied on model	57
31	Flow of making the general fatigue finite element model	58
32	Geometry of model in fatigue analysis	59
33	Meshing of model	59
34	Tensile test Specimen	63
35	Tensile test Specimen	63

36	Fatigue specimen	64
37	Fatigue specimen	64
38	Front view of crack	65
39	Side view of crack	65
40	Microscopy video based on rigid platform	66
41	Graded Specimen with crack	67
42	Crack propagation monitoring	67
43	View of furnace	68
44	Stress-strain behaviour of Aluminium 6063 in tension at room temperature	70
45	Stress-strain behaviour of Aluminium 6063 in tension at 350°C	71
46	Comparison of static behaviour Aluminium 6063 at room temperature and 350°C	71
47	Stress ratio	73
48	Stress amplitude	73
49	Fully reversed fatigue S-N Curve at room temperature	73
50	Fully reversed fatigue S-N Curve at room temperature in log-log scale	74
51	Fatigue S-N curve at room temperature for R=0.1	75
52	Fatigue S-N curve at room temperature for R=0.1 in log-log scale	76
53	Comparing log-log scale fatigue in room temperature with $R = -1$ and 0.1	77
54	A fully reversed fatigue S-N Curve at 350°C	78
55	A fully reversed fatigue S-N Curve at 350°C in log-log scale	79
56	A fatigue S-N curve at 350°C for R=0.1	80
57	A fatigue S-N curve at 350°C for R=0.1 in log-log scale	80

58	Comparing log-log scale fatigue at 350°C with R equal to -1 and 0.1 $$	81
59	Comparing log-log scale fatigue at room temperature and 350° C with R= -1 and 0.1	82
60	3D-Crack surface circumferential crack with straight front modelling in ABAQUS for tube	84
61	3D-Crack surface circumferential crack with straight front modelling in ABAQUS for tube	85
62	σ_x at crack front	85
63	σ_{y} at crack front	86
64	σ_z at crack front	86
65	$ au_{xy}$ at crack front	87
66	$ au_{xz}$ direction at crack front	88
67	$ au_{_{yz}}$ at crack front	89
68	Variation of Min J-integral along the crack front under 107.48MPa	89
69	Variation of maximum J-integral along the crack front under 107.48MPa	90
70	Comparing Minimum J-integral	91
71	Comparing Maximum J-integral	91
72	Variation of stress intensity factor along the crack front under 107.48MPa	92
73	Variation of stress intensity factor along the crack front under 205.95MPa	93
74	Comparing minimum stress intensity factor under different load	94
75	Comparing maximum stress intensity factor under different load.	94

76	Fully reversed fatigue crack propagation with amplitude stress equal to 10kN	96
77	The variation of da/dN versus maximum stress intensity factor (Kmax) for fully reversed fatigue crack propagation with amplitude stress equal to 10kN	97
78	Fatigue crack propagation with amplitude stress equal to 10kN and stress ratio equal to 0.1	98
79	The variation of da/dN versus maximum stress intensity factor (Kmax) for fatigue crack propagation with amplitude stress equal to 10kN with R=0.1	99
80	Comparing fatigue crack growth with R=0.1 and R=-1 under 10kN maximum stress	100
81	Comparing da/dN versus maximum stress intensity factor (K_{max}) under 10kN and load ratio equal to 0.1 & -1	100
82	Fully reversed fatigue crack propagation with amplitude stress equal to 15kN	102
83	The variation of da/dN versus maximum stress intensity factor (K_{max}) for fully reversed fatigue crack propagation with amplitude stress equal to 15kN	102
84	Fatigue crack propagation with amplitude stress equal to 161.96MPa and stress ratio equal to 0.1	103
85	The variation of da/dN versus maximum stress intensity factor (K_{max}) for fatigue crack propagation with maximum load equal to 15kN with R=0.1	104
86	Comparing fatigue crack growth with R=0.1 and R=-1 under 15kN maximum load	105
87	Comparing da/dN versus maximum stress intensity factor (Kmax) under 15kN and load ratio equal to 0.1 & -1	105

LIST OF ABBREVIATIONS

- 2D Two dimensional
- 3D Three dimensional

CHAPTER 1

INTRODUCTION

1.1 Introduction

Many critical mechanical components experience cyclic loadings during their service life. Fundamental understanding of fatigue problem is important for the reliability assessment under realistic service condition and is valuable for the design and maintenance versus fatigue failure. Fatigue life prediction is one of the oldest problems which concern scientists and engineers. Due to the complicated nature of fatigue mechanisms and the large number of factors that influence fatigue life, there is so far no unified approach that can treat all fatigue problems (Weixing, 1993). It has been estimated that as large as ninety percent of all engineering structural and component failures may be attributed to fatigue failure (Dieter, 1986).

The well known approaches which concern fatigue and fatigue crack propagation analysis can be categorized in two groups. These include damage tolerant design and safe life approaches. Based on damage tolerant design, structures are designed to allow limited crack propagation so that growing cracks can be located and remedied. The safe life approaches are such as stress base or strain based approach. Damage tolerance is based on the likelihood of finding cracks and their estimated propagation rates (Lawson, Chen, and Meshii, 1999).

The accuracy of estimated life and safety of engineering components which in oil, gas, aviation and nuclear industries requires good understanding of fatigue property such as fatigue crack propagation rate (da/dN) and fatigue strength curve (S-N) is essential. In the case of existing crack in structure, damage tolerant design can be used to obtain accurate crack growth data. It mainly estimates the residual fatigue life of cracked structures on the basis of known crack propagation rates. To carry out this assessment, it is necessary to have reliable fracture parameters such as stress intensity factor and J-integral. There are two ways for calculating fracture parameters, namely analytical and finite element methods. By using finite element methods, it provides time and commercial benefit. Hence fracture parameters can be derived by carrying out crack simulation on two dimensional or three dimensional numerical modeling. Following which the finite element model was developed for calculating fracture parameters for cracks. Based on crack growth rate (*da/dN*) data obtained from fatigue tests and the results of finite element analysis, fatigue crack growth behavior can be predicted.

1.2 Problem Statement

Cylindrical components such as pressure vessels, pipes, borers, and driving shafts are commonly used parts of engineering structure. Due to a wide range of usage of this type of structures such as transmission or storage of fluid as in pipes and high pressure vessels, it is necessary that these structures be assessed with different conditions such as materials, temperature and loading. Fatigue caused a structure to fail and it is known to be one of the major reasons of failure in engineering structures. Some of the failures by fatigue happened suddenly and unexpectedly at stresses lower than their design strength, resulting in extensive property damage and

loss of life. A lot of efforts have been done to understand why and how materials fail by fatigue and what are the main parameters and factors in fatigue. In the present days these economic and life cost of failure and fracture become greater due to structures become more complexes. Therefore it required special consideration on safety and life prediction. Based on the importance of fatigue and tubular structures, the present work focused on analysis and investigating fatigue and fatigue crack propagation this structures.

1.3 Research Objectives

The objectives of this study are:

- To determine the fatigue behavior of Aluminum 6063 tube at room and 350°C by using of experimental and finite element methods.
- 2. To determine the parameters of fracture in aluminum tubes by using of finite element methods.
- 3. To determine the mechanisms of fracture associated with fatigue and develop a model to predict crack propagation length versus number of cycles.

1.4 Thesis Layout

This thesis is divided into six chapters. Following this introductory chapter, chapter two gives a critical review of relevant literature, from overview of fatigue, creep and fracture mechanics. Chapter three outlines the underlying theory as well as

