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Tubular structures have extensive usage from domestic to aviation. Therefore 

estimate of life and safety are essential for design and use. Fatigue is one the most 

frequent cause for failure in components. Beside fatigue, external surfaces of 

structures are always in contact with environment and due to imperfection during 

product fabrication, surface crack may exist. Therefore surface crack is the most 

common form of crack in engineering structures. To overcome the fatigue problem 

the design approaches should be considered. The fatigue design approaches are 

divided in two categories which are safe life approach and damage tolerant design. 

Due to the importance of tubular structure and possible effect of fatigue in structural 

damage, the present work has focused on fatigue and fatigue crack propagation 

behavior in cylindrical structures. 

The fatigue design approaches utilized stress based safe life and damage tolerant 

design approach. The finite element software, ABAQUS used to analyze fatigue and 

determine fracture parameters. At the beginning fatigue test in finite life was carried 

out based on Japanese standard. The fatigue tests were done at room temperature and 
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about 350°C under stress ratio equal to -1 and 0.1.   Following experimental part, a 

3-D fatigue analysis was carried out by ABAQUS. In fatigue analysis by ABAQUS, 

the linear material is considered and the results of finite element analysis are plotted 

in maximum stress versus number of cycles to failure graph.  Fatigue analysis was 

carried out in same condition as experimental part at room temperature and 350°C 

under stress ratio equal to -1 and 0.1. Subsequent to fatigue analysis, the fatigue 

crack propagation tests were also carried out. The fatigue crack propagation test was 

carried out under increasing stress intensity factor or constant amplitude stress. In 

fatigue crack propagation test, a cracked tubular specimen was used. The crack is 

located in specimen by wire cut. The crack was an external and circumferential with 

straight front with depth of 0.37mm.  The results of fatigue crack propagation were 

plotted in two types of graphs; first is crack length ,a, versus the number of cycles, N 

at each crack length and second is the crack growth rate which plotted as function of 

rate of crack length upon the number of cycles, da/dN versus the stress intensity 

factor as fracture parameter. Moreover ABAQUS was used to derive the fracture 

parameters. Two types 3-D tubes with crack were modeled. In first model assumed 

as sharp and thin crack, but in the second type the blunt crack considered. Material of 

tube in ABAQUS assumed to be a linear elastic and elastic prefect plastic. The 

results of crack modeling include fracture parameters as stress intensity factor, and J-

integral which were plotted as a function of crack front. 

 The experimental results of fatigue showed a good agreement with finite element 

fatigue results. Based on fatigue results the fully reversed fatigue is more severe than 

fatigue with stress ratio equal to 0.1. Temperature does affect fatigue life which is 

shown by a decrease in yield strength and ultimate strength of material which 
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resulted in reduction in the fatigue life of specimens with increasing temperature. 

The fatigue crack propagation results indicated crack growth rate in loading with 

stress ratio equal to 0.1 is more than stress ratio equal to -1. Crack first grew through 

the thickness followed by the surface of specimen. This was verified by the results 

from finite element that show maximum fracture parameters in the deepest point of 

the crack.   
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Kegunaan sturktur berbentuk tiub begitu luas, dari kegunaan rumah hingga bidang 

penerbangan. Oleh hal yang demikian, anggaran/kiraan jangka hayat dan 

keselamatan adalah penting dalam merekabentuk dan kegunaannya. Factor kelesuan 

adalah salah satu penymbang kepada kegagalan sesuatu komponen. Di samping itu 

permukaan luar yang sentiasa terdedah kepada persekitaran dan kesan dari fakbrikasi 

yang kurang memuaskan, keretakaan permukan boleh wujud. Dalam struktur 

kejuruteraan, retakan permukaan merupakan bentuk keretakan yang biasa wujud. 

Untuk mengatasi masalah kelesuan ini, pendekatan kelesuan rekabentuk perlu 

diambil kira. Pendekatan kelesuan rekabentuk terbahagi kepada dua kategori, iaitu 

pendekatan jangkahayat selamat dan ketahanan rekabentuk retak. Oleh yang 

demikian, kerja penyelidikan ini tertumpu kepada ujian kelesuan dan kelakuan lesu 

dengan penambahan retakan dalam struktur silinder. 

Pendekatan kelesuan rekabentuk menggunakan tegasan jangkahayat selamat dan 

pendekatan ketahanan rekebentuk di lakukan. ABAQUS merupakan satu perisian 

unsur terhingga untuk menganalisis kelesuan struktur dan penghasilan parameter 
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retakan. Pada permulaan kagian, kaedah terhingga ini berdasarkan Japanese 

Standard. Ujian kelesuan telah dijalankan dalam suhu bilik dan pada 350°C di bawah 

nisbah tegasan bersamaan dengan -1 dan 1.0. 

Untuk ujian yang seterusnya, analisis lesu 3-D dilaksanakan dengan ABAQUS. 

Analisis kelesuan dengan perisian unsur terhingga ini, bahan linar diambil kira dan 

keputusan tersebut diplotkan dalam graf tegasan maksimum hingga gagal terhadap 

bilangan kitaran. Ujian kelesuan dijalankan dengan keadaan yang sama dalam suhu 

bilik dan 350°C di bawah nisbah tegasan bersamaan dengan -1 dan 1.0. Setelah ujian 

kelesuan dijalankan, ujian kelakuan lesu dengan penambahan retakan dijalankan. 

Ujian ini dijalankan di bawah faktor tumpuan tegasan atau amplitud tegasan 

berterusan. Dalam ujian kelakuan lesu dengan penambahan retakan, spesimen tiub 

bertakuk di buat dengan  mesin Wire Cut. Tiub tersebut dilekuk sedalam 0.37mm di 

permukaan luar tiub. Ujian kelakuan lesu dengan penambahan retakan ini diplotkan 

kepada 2 jenis graf; panjang retakan terhadap jumlah kitaran di setiap panjang 

retakan dan berikutnya adalah kadar penambahan keretakan diplotkan sebagai fungsi 

kadar panjang retakan keatas bilangan kitaran melawan faktor tegasan sebagai 

parameter keretakan. Disamping itu ABAQUS digunakan untuk memperolehi 

parameter retakan. Dua jenis tiub 3-D dengan retakan dimodelkan. Model pertama 

menganggapkan retakan tajam dan nipis. Model kedua menganggapkan retakan 

tumpul. Bahan tiub dalam ABAQUS memperkenalkan kengal linar dan kengal linar 

platci unggul. Keputusan model retakan mengandungi parameter retakan sebagai 

faktor kekuatan tegasan dan J-intergral yang diplotkan sebagai suatu fungsi 

kepelbaaian retakan hadapan. 
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Keputusan ujian kelesuan dan kelesuan unsur terhingga menunjukkan hwdungan 

yang baik. Berdasarkan ujian kelesuan, ujian berbalikan penuh lebih 

menyumbangkan tegasan berbanding nisbah tegasan  bersamaan dengan 0.1. Kesan 

peningkatan suhu jangkahayat menunjiukkan peningkatan suhu mengurangkan 

kekuatan dan takat alah bahan tersebut. Keputusan penambahan retakan lesu 

menunjukkan penambahan kadar retakan dalam bebanan beserta nisbah  tegasan 

bersamaan dengan 0.1 adalah lebih berbanding nisbah tegasan bersamaan dengan -1. 

Pembesaran retakan bermula dari ketebalan seterusnya ke atas permukaan spesimen. 

Ini dibuktikan melalui keputusan unsur terhingga yang menunjunkkan parameter 

retakan maksimum berlaku dalam kedalaman yang paling dalam daripada retakan 

tersebut. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Many critical mechanical components experience cyclic loadings during their service 

life. Fundamental understanding of fatigue problem is important for the reliability 

assessment under realistic service condition and is valuable for the design and 

maintenance versus fatigue failure. Fatigue life prediction is one of the oldest 

problems which concern scientists and engineers. Due to the complicated nature of 

fatigue mechanisms and the large number of factors that influence fatigue life, there 

is so far no unified approach that can treat all fatigue problems (Weixing, 1993). It 

has been estimated that as large as ninety percent of all engineering structural and 

component failures may be attributed to fatigue failure (Dieter, 1986). 

The well known approaches which concern fatigue and fatigue crack propagation 

analysis can be categorized in two groups. These include damage tolerant design and 

safe life approaches. Based on damage tolerant design, structures are designed to 

allow limited crack propagation so that growing cracks can be located and remedied.  

The safe life approaches are such as stress base or strain based approach. Damage 

tolerance is based on the likelihood of finding cracks and their estimated propagation 

rates (Lawson, Chen, and Meshii, 1999).  
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The accuracy of estimated life and safety of engineering components which in oil, 

gas, aviation and nuclear industries requires good understanding of fatigue property 

such as fatigue crack propagation rate (da/dN) and fatigue strength curve (S-N) is 

essential. In the case of existing crack in structure, damage tolerant design can be 

used to obtain accurate crack growth data. It mainly estimates the residual fatigue life 

of cracked structures on the basis of known crack propagation rates. To carry out this 

assessment, it is necessary to have reliable fracture parameters such as stress 

intensity factor and J-integral. There are two ways for calculating fracture 

parameters, namely analytical and finite element methods. By using finite element 

methods, it provides time and commercial benefit. Hence fracture parameters can be 

derived by carrying out crack simulation on two dimensional or three dimensional 

numerical modeling. Following which the finite element model was developed for 

calculating fracture parameters for cracks. Based on crack growth rate (da/dN) data 

obtained from fatigue tests and the results of finite element analysis, fatigue crack 

growth behavior can be predicted.   

1.2 Problem Statement 

Cylindrical components such as pressure vessels, pipes, borers, and driving shafts are 

commonly used parts of engineering structure. Due to a wide range of usage of this 

type of structures such as transmission or storage of fluid as in pipes and high 

pressure vessels, it is necessary that these structures be assessed with different 

conditions such as materials, temperature and loading.  Fatigue caused a structure to 

fail and it is known to be one of the major reasons of failure in engineering 

structures. Some of the failures by fatigue happened suddenly and unexpectedly at 

stresses lower than their design strength, resulting in extensive property damage and 
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loss of life. A lot of efforts have been done to understand why and how materials fail 

by fatigue and what are the main parameters and factors in fatigue. In the present 

days these economic and life cost of failure and fracture become greater due to 

structures become more complexes. Therefore it required special consideration on 

safety and life prediction.  Based on the importance of fatigue and tubular structures, 

the present work focused on analysis and investigating fatigue and fatigue crack 

propagation this structures.  

1.3 Research Objectives 

The objectives of this study are: 

1. To determine the fatigue behavior of Aluminum 6063 tube at room and 

350°C by using of experimental and finite element methods. 

2. To determine the parameters of fracture in aluminum tubes by using of finite 

element methods. 

3. To determine the mechanisms of fracture associated with fatigue and develop 

a model to predict crack propagation length versus number of cycles. 

1.4 Thesis Layout 

This thesis is divided into six chapters. Following this introductory chapter, chapter 

two gives a critical review of relevant literature, from overview of fatigue, creep and 

fracture mechanics. Chapter three outlines the underlying theory as well as 


