

# **UNIVERSITI PUTRA MALAYSIA**

# DESIGN AND DEVELOPMENT OF RAMAN-ASSISTED MULTI-BRILLOUIN STOKES LASER USING DISPERSION COMPENSATING FIBRE

MUHAMMAD ZAMZURI ABDUL KADIR @ JAAFAR

FK 2008 89

### DESIGN AND DEVELOPMENT OF RAMAN-ASSISTED MULTI-BRILLOUIN STOKES LASER USING DISPERSION COMPENSATING FIBRE

By

# MUHAMMAD ZAMZURI ABDUL KADIR @ JAAFAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

December 2008



Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

#### DESIGN AND DEVELOPMENT OF RAMAN-ASSISTED MULTI-BRILLOUIN STOKES LASER USING DISPERSION COMPENSATING FIBRE

By

#### MUHAMMAD ZAMZURI ABDUL KADIR @ JAAFAR

December 2008

Chairman: Professor Mohd. Adzir bin Mahdi, PhD

Faculty: Engineering

Application of multiwavelength sources in Radio over Fibre (RoF) technology has been interesting research works since a last few decades. In order to achieve this source, many techniques have been proposed, whether using a single technology such as Brillouin fibre laser, Raman fibre laser, and erbium doped fibre laser (EDFL) or hybrid technology such as Brillouin-erbium fibre laser (BEFL) and Brillouin-Raman fibre laser (BRFL). Even though these proposed designs have their own advantages, they have not been thoroughly studied in terms of Stokes optical signalto-noise ratio (S-OSNR), Stokes peak power (SPP), flattened SPP, Stokes linewidth (SLW), and Stokes line count (SLC).

In this research work, multiwavelength BRFL is proposed which consists of two different configurations, namely ring-cavity and linear cavity. These designs are configured so that the laser oscillation is assisted by internal reflection (e.g. Rayleigh scattering) and external reflection (e.g. Fresnel reflection, mirror or FBG). They are



pumped by the Raman pump source (RPS) having wavelength at 1455-nm or 1450nm. The mediums used for Raman and Brillouin effects are a few lengths of dispersion compensating fibre (DCF) from different manufacturers. All the designed parameters are seriously taken care so that these two configurations are comparable.

It is observed that when the RPP is increased from 400-mW to 800-mW, the ring and linear cavity show the wavelength-shift of 2.12-nm and 3.72-nm respectively. The red-shift is larger for the latter since the forward and backward-Raman Stokes spectrum is amplified twice as well as the RPP is reflected into the DCF to be a second pump source.

When the RPP is above 1000-mW, Rayleigh scattering contributes to the peak-power discrepancy between the odd and even order Stokes line, and it is worse for the ring-cavity. This issue is nearly addressed by the linear-cavity design whereby all the Stokes lines are guided to make complete oscillation with the assistance of standing wave and Rayleigh scattering. The 3-dB SLW discrepancy between odd and even order is also observed from the ring-cavity. However, regardless of the BPP values, the 3-dB SLW becomes comparable to each other when the RPP is 1000-mW and above. For the linear-cavity, they become comparable when the RPP is 230-mW.

Relation between the S-OSNR and SLC is also studied. Both cavities show that as the SLC increases, the Stokes-OSNR decreases. However, multi-Stokes lines featured with flat amplitude and almost equal OSNR have been achieved with the linear-cavity just pumped by a single RPS. These spectra contain 360 Stokes lines with 18-dB OSNR.



Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

### REKAAN DAN PEMBANGUNAN LASER BRILLOUIN PELBAGAI JARAK GELOMBANG DIBANTU KESAN RAMAN MENGGUNAKAN MODUL GENTIAN OPTIK PEMAMPAS SERAKAN

Oleh

#### MUHAMMAD ZAMZURI ABDUL KADIR @ JAAFAR

**Desember 2008** 

#### Pengerusi: Profesor Mohd. Adzir bin Mahdi, PhD

Fakulti: Kejuruteraan

Aplikasi teknologi fotonik di dalam teknologi radio-melalui-gentian memerlukan laser pelbagai frekuensi. Untuk menghasilkan laser ini pelbagai kaedah telah dicadangkan samada berdasarkan satu teknologi seperti laser berdasarkan erbium (EDFL), laser berdasarkan Brillouin (BFL) dan laser berdasarkan Raman (RFL) atau berdasarkan pelbagai teknologi seperti laser berdasarkan Brillouin dan erbium (BEFL) dan laser berdasarkan Brillouin dan Raman (BRFL). Novelti ini telah dicapai samada dari segi teknologi, konfigurasi, rekaan ataupun pengukuran. Walaupun berbagai-bagai rekaan telah dihasilkan dari teknologi tersebut, namun kajian mendalam tentang mutunya, seperti nisbah signal-optik ke kebisingan-optik (OSNR), puncak-kuasa Stokes (SPP), puncak kuasa Stokes setara (flattened SPP), jenis kebisingan (noise) seperti RIN dan kebisingan fasa (Phase-Noise) dan lebar-garisan gelombang Stokes (SLW) belum dilaksanakan lagi.



Di dalam kerja-kerja penyelidikan doktorat ini, konfigurasi yang telah dikaji adalah kaviti lurus dan kaviti gegelung. Bagi kaviti gegelung, komponen seperti pengasing arah aliran (isolator), pembahagi setara (3-dB splitter) dan lain-lain digunakan untuk menghasilkan ayunan sehala. Dan bagi kaviti lurus, dua cermin pembalik telah disambungkan di setiap hujung media-pengganda (gentian fibre) bagi memantulkan gelombang Stokes untuk melengkap ayunan. Kedua-dua kaviti ini dipam oleh punca kuasa pam Raman pada jarak-gelombang 1445-nm atau 1450-nm. Media pengganda yang digunakan di dalam rekaan ini adalah beberapa jenis gentian-optik pamampas serakan yang mempunyai sedikit perbezaan spesifikasi.

Di antara pemerhatian di dalam kajian ini ialah anjakan-merah yang berlaku bila kuasa pengepam Raman (RPP) dinaikkan dari 400-mW ke 800-mW. Anjakan merah berlaku sebanyak 3.72-nm dan 2.27-nm bagi setiap kaviti di atas. Kelebihan kaviti lurus adalah disebabkan oleh cirinya yang membenarkan aliran dua-hala RSS di dalam media pengganda. Hasilnya ialah, RPP mengalami dua-kali penggandaan.

Percanggahan di antara garisan Stokes genap dan ganjil pada kuasa pengepaman melebihi 1000-mW juga dikaji, iaitu bagi kuasa puncak (SPP) dan lebar garisan Stokes (SLW). Garisan Stokes genap dan ganjil mempunyai nilai SPP dan SLW yang berbeza dan bersilih ganti di antara satu sama lain dengan pertambahan bilangan garisan Stokes. Untuk kaviti lurus, percanggahan ini tidak terlalu ketara disebabkan oleh kesan dari serakan Rayleigh dan gelombang pegun yang dihasilkan oleh media pengganda yang sama. Percanggahan lebar-garisan setara (3-dB linewidth) di antara Stokes genap dan ganjil adalah sangat ketara bagi kaviti gegelung. Walaubagaimanapun, bila kuasa RPP mula mencecah nilai 1000-mW, percanggahan



semakin berkurangan. Bagi kaviti lurus pula, kesan percanggahan ini hampir susut bila kuasa RPP mencecah 230-mW.

Hubungan di antara S-OSNR dan SLC juga dikaji bagi kedua kaviti tersebut. Kedua parameter tersebut didapati berkadaran secara sonsang di mana pertambahan SLC, akan mengakibatkan penurunan nilai S-OSNR. Walaubagaimanapun ratusan garisan Stokes setara (sekitar 360 garisan Stokes) bernilaikan OSNR sebanyak 18-dB telah diperolehi hanya dengan satu sumber pengepam Raman.



#### ACKNOWLEDGEMENTS

#### In the Name of Allah, the Most Gracious and the Most Merciful ...

First of all, I would like to express my greatest gratitude to ALLAH the Almighty, for His help, guidance and mercy during the course of life and moment of truth.

I would also like to express my appreciation and sincerest gratitude to my supervisor, Associate Professor Dr. Mohd. Adzir Mahdi for his continual support, endless encouragement, patience, understanding and time spent towards completing this research work. Without his help, my entire endeavour would have been impossible.

My heartiest thanks are extended to other supervisory members, i.e. Prof Dr. Mohamad Khazani Abdullah and Prof Dr Kaharuddin Dimyati for their invaluable guidance and constructive critics. I also owe favours to all my colleagues and friends from Photonics Technology of TM Research and Development Sdn. Bhd. for their helps and encouragement. You all have been true friends in all aspects of my life.

My greatest appreciation is to very important persons in my life, first and foremost, is to my mother Maziah Ibrahim who without her I would have been impossible to learn the miracle of light, to my wife Suriani Ahmad Malik for her love, caring and understanding. My heartfelt thanks also go to my daughter Saidatul Najibah, my sons Ahmad Amir Akhtar and Ahmad Hakim Hannan who have been my inspiration throughout the research work. A special dedication also goes to a new family



member, Saidatul A-Immah the fourth of my descendants and the second of my beautiful daughters. All of you are greatly welcomed into my life with open arms.

Last but not least is to you who read this dissertation and pick some priceless knowledge for the benefit of humankind, with a great honour, I express my sincere thanks and appreciation. Thank you



I certify that an Examination Committee has met on **5 December 2008** to conduct the final examination of **Muhammad Zamzuri Abdul Kadir** @ **Jaafar** on his degree of **Doctor of Philosophy** thesis entitled "**Raman-Assisted Multi-Brillouin Stokes Laser in Dispersion Compensating Fibre**" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the relevant degree.

Members of the Examination Committee are as follows:

#### Borhanuddin B. Mohd. Ali, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

#### Ahmad Fauzi Abas, PhD

Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

#### Azmi Zakaria, PhD

Associate Professor Faculty of Sciences Universiti Putra Malaysia (Internal Examiner)

#### Faidz bin Abd Rahman, PhD

Professor Department of Electrical and Electronic Engineering Faculty of Engineering and Science Universiti Tunku Abdul Rahman Malaysia (External Examiner)

**BUJANG KIM HUAT, PhD** 

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 19 February 2009



This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of **Doctor of Philosophy**. The members of the Supervisory Committee are as follows:

#### Mohd. Adzir bin Mahdi, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

#### Mohamad Khazani bin Abdullah, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Member)

### Kaharuddin bin Dimyati, PhD

Professor Faculty of Engineering Universiti Malaya (Member)

#### HASANAH MOHD. GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 9 April 2009



## DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

# MUHAMMAD ZAMZURI ABDUL KADIR @ JAAFAR

Date:



# **TABLE OF CONTENTS**

# Page

| ABSTRACT                         | ii  |
|----------------------------------|-----|
| ABSTRAK                          | iv  |
| ACKNOWLEDGEMENTS                 | vii |
| APPROVAL                         | ix  |
| DECLARATION                      | xi  |
| LIST OF TABLES                   | xiv |
| LIST OF FIGURES                  | XV  |
| LIST OF ABBREVIATIONS/ NOTATIONS | xxi |

# CHAPTER

3

1

| INTI | RODUCTION                                     |                                                                                                                            |
|------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 1.1  | Introduction                                  | 1                                                                                                                          |
| 1.2  | Statement of Problems                         | 4                                                                                                                          |
| 1.3  | Objectives                                    | 5                                                                                                                          |
| 1.4  | Scope of Research Works                       | 6                                                                                                                          |
| 1.5  | Thesis Organization                           | 8                                                                                                                          |
| 1.6  | Summary                                       | 10                                                                                                                         |
|      | INT<br>1.1<br>1.2<br>1.3<br>1.4<br>1.5<br>1.6 | INTRODUCTION1.1Introduction1.2Statement of Problems1.3Objectives1.4Scope of Research Works1.5Thesis Organization1.6Summary |

## 2 LITERATURE REVIEW

| 2.1  | Introduction                                      | 11 |
|------|---------------------------------------------------|----|
| 2.2  | Review on Multiwavelength Brillouin-Erbium Fibre  |    |
|      | Laser                                             | 13 |
|      | 2.2.1 Brillouin-Erbium Fibre Ring Laser           | 13 |
|      | 2.2.2 Brillouin-Erbium Fibre Linear Laser         | 14 |
|      | 2.2.3 Sagnac-Based Brillouin-Erbium Fibre Laser   | 16 |
| 2.3  | Review on Multiwavelength Brillouin-Raman Fibre   |    |
|      | Laser                                             | 18 |
| 2.4  | Theoretical Investigation of Stimulated Brillouin |    |
|      | Scattering in the Raman-pumped Single Mode Fibre  | 20 |
|      | 2.4.1 Forward Pumping                             | 22 |
| 2.5  | Summary                                           | 30 |
|      |                                                   |    |
| RESE | EARCH METHODOLOGY                                 |    |
| 3.1  | Introduction                                      | 31 |
| 3.2  | Brillouin-Raman Fibre Laser Design Parameters     | 31 |
|      | 3.2.1 Brillouin Pump Source                       | 32 |
|      | 3.2.2 Raman Pump Source                           | 36 |

|     | 3.2.2 Raman P   | ump Sourc | ce    |             | 36 |
|-----|-----------------|-----------|-------|-------------|----|
|     | 3.2.3 Fibre Typ | es        |       |             | 41 |
|     | 3.2.4 Other Par | ameters   |       |             | 43 |
| 3.3 | Brillouin-Raman | Fibre     | Laser | Performance |    |
|     | Parameters      |           |       |             | 44 |



|     | 3.3.1  | Stokes Lines Count and Stokes Lines Peak  |    |
|-----|--------|-------------------------------------------|----|
|     |        | Power                                     | 45 |
|     | 3.3.2  | Stokes Line Optical Signal to Noise Ratio | 49 |
| 3.4 | Flow C | Chart of Research Work Activities         | 52 |
| 3.5 | Summa  | ary                                       | 55 |

#### 4 **RING-CAVITY BRILLOUIN / RAMAN FIBRE LASER** WITH SINGLE RAMAN PUMP WAVELENGTH SCHEME

| 4.1 | Introduction                                  | 56 |
|-----|-----------------------------------------------|----|
| 4.2 | Experimental Setup                            | 57 |
| 4.3 | Results and Discussions                       | 60 |
|     | 4.3.1 Gain Spectrum of Raman-pumped Ring-     | 60 |
|     | Cavity Fibre Laser                            |    |
|     | 4.3.2 Effects of the Raman Pump Power         | 65 |
|     | 4.3.3 Effect of the Brillouin Pump Wavelength | 73 |
|     | 4.3.4 Effect of the Brillouin Pump Power      | 88 |
| 4.4 | Summary                                       | 91 |

#### 5 LINEAR-CAVITY BRILLOUIN/RAMAN FIBRE LASER WITH SINGLE AND MULTIPLE RAMAN PUMP WAVELENGTH SCHEME

| 5.1 | Introduction                                     | 92  |
|-----|--------------------------------------------------|-----|
| 5.2 | Experimental Setup of Linear-Cavity Brillouin    |     |
|     | Raman Fibre Laser                                | 93  |
| 5.3 | Results and Discussions                          | 95  |
|     | 5.3.1 Gain Spectrum of Linear-Cavity Fibre Laser | 95  |
|     | 5.3.2 Effects of The Brillouin Pump Profile      | 100 |
|     | 5.3.3 Effect of The Raman Pump Profile           | 117 |
|     | 5.3.4 Contribution of Rayleigh Scattering        | 134 |
| 5.4 | Summary                                          | 145 |
|     |                                                  |     |

# 6 CONCLUSION AND FUTURE WORKS

| 6.1 | Introduction                 | 148 |
|-----|------------------------------|-----|
| 6.2 | Conclusion                   | 148 |
| 6.3 | Future Works and Suggestions | 152 |

| REFERENCES           | 154 |
|----------------------|-----|
| BIODATA OF STUDENT   | 169 |
| LIST OF PUBLICATIONS | 171 |



# LIST OF TABLES

| Table |                                                                                                                     | Page |
|-------|---------------------------------------------------------------------------------------------------------------------|------|
| 2.1   | A summary of previous achievements in BEF Ring Laser development                                                    | 14   |
| 2.2   | A summary of previous achievements in BEF Linear Laser development                                                  | 16   |
| 2.3   | A summary of previous achievements in Sagnac-based BEFL development                                                 | 18   |
| 2.4   | A summary of previous achievements in BRFL development                                                              | 20   |
| 3.1   | Specification of ANDO Tuneable Light Source (TLS) used<br>as Brillouin pump source (BPS)                            | 36   |
| 3.2   | Specification of fibre laser (KEOPSYS) and laser diode (JDSU) used in this research works as Raman pump source (RPS | 40   |
| 3.3   | Specification of Dispersion Compensating Module (DCM) used as amplifying medium                                     | 42   |
| 4.1   | Summary of the mechanism behind the Stokes lines generation                                                         | 78   |



## LIST OF FIGURES

| Figures          |                                                                                                                                                                                                                                                      | Page     |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.1              | Scope of doctoral research works                                                                                                                                                                                                                     | 6        |
| 2.1              | Common designs of BEF Ring Laser. In (a) two 3dB-<br>couplers are used to create cascaded BSL while in (b) FPF<br>is inserted outside the ring for achieving that purpose                                                                            | 13       |
| 2.2              | Common designs of BEF Linear Laser. In (a) two 3dB-<br>couplers are replaced by fibre butted mirrors located at<br>each end of cavity while in (b) the passive fibre loop<br>mirrors are purposely designed to replace the fibre-butted<br>mirrors   | 15       |
| 2.3              | Common designs of Sagnac-based BEFL. In (a) EDFA is<br>inside the ring thus called Sagnac-based BEFRL, while in<br>(b) the EDFA is outside the ring hence called Sagnac-based<br>BEFLL. Both designs have Sagnac loop constructed with<br>PMF and PC | 17       |
| 2.4              | Pioneer designs of BRFL. In (a) there are two 3-dB couplers incorporated into the laser-cavity hence termed as BRF Ring Laser, while in (b) the 3-dB couplers are substituted with a fibre-butted mirror and virtual Rayleigh mirrors.               | 19       |
| 3.1              | Illustration of the rules and condition how the Stokes lines are counted                                                                                                                                                                             | 46       |
| 3.2              | Counting the Stokes lines automatically using ANDO optical spectrum analyzer                                                                                                                                                                         | 47       |
| 3.3              | A graphic describes how the Stokes-OSNR is defined and measured using optical spectrum analyzer                                                                                                                                                      | 50       |
| 3.4              | Flowchart of the processes involved in the study of Rayleigh-assisted Brillouin Raman fibre laser                                                                                                                                                    | 54       |
| 4.1              | Configuration set-up of co-pumped Brillouin-Raman ring fibre laser                                                                                                                                                                                   | 58       |
| 42               | The output spectrum from the Raman-pumped ring cavity.<br>The BP source is disabled                                                                                                                                                                  | 60       |
| 4.3(a)<br>4.3(b) | The analysed data from Figure 4.2 showing the Raman-<br>Stokes bandwidth (3-dB downward), Raman-Stokes Peak<br>Power and Raman-Stokes peak wavelength                                                                                                | 61<br>62 |



| 4.4                | The red-shift of Raman Stokes peak-gain with the RPP                                                                                                                                              | 64 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4.5                | The evolution of Stokes spectrum with the RPP increment.<br>While the RPP is increased from 300 to 1000-mW, the<br>BPP and BPW is fixed at 0-dBm and 1555-nm respectively                         | 66 |
| 4.6(a)<br>4.6(b)   | The progress of FOS-SPP, FOS-OSNR and Stokes number<br>with the RPP increment The BPP and BPW is 0-dBm and<br>1555-nm respectively                                                                | 67 |
| 4.7                | The evolution of Stokes line's count with the RPP increment at different BPPs. The BPW is set at 1550-nm                                                                                          | 69 |
| 4.8                | The Brillouin-Stokes spectrum at RPP and BPP of 500-<br>mW and 6-dBm respectively. At those fixed values, the<br>BPW is swept from 1535-nm to 1570-nm                                             | 73 |
| 4.9(a)             | Spectrum of up to 8 <sup>th</sup> -order Stokes line when the BPW is 1540-nm configuration of gain-clamped using chirped FBG                                                                      | 74 |
| 4.9(b)             | Spectrum of up to 16 <sup>th</sup> -order Stokes line when the BPW is 1556-nm                                                                                                                     | 74 |
| 4.9(c)             | Spectrum of up to 8 <sup>th</sup> -order and 3 <sup>rd</sup> -order Stokes line when the BPW is 1568-nm and 1570-nm respectively                                                                  | 75 |
| 4.9(d)             | The zoomed-up spectra of Figure 4.9(a) showing different characteristics of even and order-Stokes lines                                                                                           | 75 |
| 4.10               | A replica of experimental setup in Figure 4.2 showing the generation process of Stokes lines in clockwise and counter-clockwise direction. The output Stokes-lines from Splitter-3 are also shown | 77 |
| 4.11(a)<br>4.11(b) | The results from J. W Lou et al. work displaying odd and<br>even order Stokes lines (b). The inset in 4.11(b) shows the<br>measured linewidth of BRFL                                             | 80 |
| 4.12(a)            | The evolution of FO-SPP against the BPW variation at two different RPPs. The shaded area is within 3-dB flattened region. The BPP is fixed at 6-dBm                                               | 80 |
| 4.12(b)            | The evolution of FOS-OSNR and total Stokes line count (SLC) against the BPW variation. The RPP and BPP are fixed at 500-mW and 6-dBm respectively.                                                | 81 |
| 4.12(c)            | Figure 4.12(c): The graph shows the evolution of first-<br>order Stokes peak power and noise floor with regard to<br>BPW variation                                                                | 83 |



| 4.13(a) | A total of six-Stokes lines that are initially generated. The 7 <sup>th</sup> -Stokes line does not lase                                                                                           | 84  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.13(b) | A total of 14-Stokes lines that are generated. Now, the 7 <sup>th</sup> -Stokes line lases and also acts as the BP source for the next Stokes line                                                 | 85  |
| 4.13(c) | The total number of Stokes-line count generated becomes less when the BPW is closer to the RPG                                                                                                     | 85  |
| 4.14    | The FO-SPP against the BPW variation at two different BPPs namely -3 dBm and 6 dBm. The RPP is fixed at 400-mW                                                                                     | 86  |
| 4.15    | The evolution of Stokes line count against the BPP variation at different BPW. The RPP is fixed at 400-mW                                                                                          | 88  |
| 4.16(a) | Separated spectra for SBS and SRS spectrum.                                                                                                                                                        | 89  |
| 4.16(b) | The combination of the SBS and SRS spectrum                                                                                                                                                        | 90  |
| 4.16(c) | The combination of the SBS and SRS spectrum. The RPP is much higher is than the spectrum in 4.16(b).                                                                                               | 90  |
| 5.1     | An experimental set-up for generating multiple wavelengths laser                                                                                                                                   | 93  |
| 5.2     | The evolution of Raman Stokes spectra (RSS) at different<br>Raman Pump Power (RPP). In this analysis, no BP source<br>is injected into the cavity                                                  | 97  |
| 5.3     | Raman spectrum from SiO <sub>2</sub> -based fibre                                                                                                                                                  | 98  |
| 5.4     | Figure 5.4 shows the development of two Raman peak gains with the RPP increment                                                                                                                    | 99  |
| 5.5     | The Brillouin Stokes lines when the RPP is 200-mW. The BPP is fixed at 6-dBm. Spectrum circled with 1 to 8 represents the BPW at 1540, 1548, 1552, 1555, 1558, 1560, 1568 and 1570-nm respectively | 101 |
| 5.6     | The Brillouin Stokes lines when the RPP and BPP is set at 300-mW and 6-dBm respectively                                                                                                            | 101 |
| 5.7     | The generated Stokes line at different BPWs and a fixed RPP (900-mW). The output power for BPW is fixed at 6-dBm                                                                                   | 103 |
| 5.8(a)  | The generated Stokes line when the BPW is fixed at 1540-                                                                                                                                           |     |



|         | nm and 1542-nm. A total Stokes line count of 2 and 4 are generated for that respective BPW. The RPP is set at 900-mW                                                                                                                            | 104 |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.8(b)  | The generated Stokes line count at the BPW of 1550-nm.<br>The RPP is set at 900-mW                                                                                                                                                              | 104 |
| 5.8(c)  | The generated Stokes line spectra when the BPW is set at 1555-nm. The RPP is set at 900-mW                                                                                                                                                      | 105 |
| 5.9     | The variation of Stokes line count with the RPP and BPW variation. Four different RP powers have been chosen here namely 200-mW, 300-mW, 900-mW and 1200-mW                                                                                     | 106 |
| 5.10(a) | The whole picture of Stokes spectra when the RPP and BPW is 1200-mW and 1550-nm respectively                                                                                                                                                    | 108 |
| 5.10(b) | The zoomed spectrum of Figure 5.10(a) focusing on Brillouin Stokes line region                                                                                                                                                                  | 108 |
| 5.11(a) | The whole picture of Stokes spectrum when pumped by 1200-mW and 1555-nm of RPP and BPW respectively                                                                                                                                             | 109 |
| 5.11(b) | An enlarged spectrum of Stokes lines region observed in Figure 5.11(a) at 1565 nm                                                                                                                                                               | 110 |
| 5.11(c) | An enlarged spectrum of spikes region observed in Figure 5.11(a)                                                                                                                                                                                | 111 |
| 5.12(a) | The evolution of FO-SPP and Stokes line count with the BPP. The RPP and BPW are 250-mW and 1550-nm respectively                                                                                                                                 | 112 |
| 5.12(b) | The Stokes line count and first-order Stokes-OSNR at different RPP and BPW. The BPP is fixed at 6 dBm                                                                                                                                           | 113 |
| 5.13(a) | The Raman-Stokes spectrum (RSS) at different Brillouin pump power. The RPP is set at 250-mW                                                                                                                                                     | 115 |
| 5.13(b) | The analysis of FOBSL at two different BPPs. The RPP<br>and BPW are 250-mW and 1555-nm respectively. The<br>OSNR is defined here as the value between the SPP and<br>noise floor. OSA resolution is maintained throughout the<br>research study | 116 |
| 5.13(c) | The evolution of 3-dB BSL linewidth with the BPP increment. The BPW and RPP is set at 1555-nm and 250-mW respectively                                                                                                                           | 117 |
| 5.14    | The evolution of Stokes spectrum with the RPP variation.                                                                                                                                                                                        |     |



|                    | The BPP and BPW is set at 6-dBm and 1555-nm respectively                                                                                                                                                       | 118 |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.15(a)            | The evolution of Stokes lines profile at different RPPs. The BPW and BPP is fixed at 1550-nm and 6-dBm respectively                                                                                            | 196 |
| 5.15(b)            | The enlarged first-order Stokes line spectrum from Figure $5.15(a)$ . The deviation of red-line from the centre is due to TLS setting                                                                          | 120 |
| 5.16               | The first-order Stokes peak power (FO-SPP) and first-order optical signal-to-noise ratio (FOS-OSNR) at different RPPs                                                                                          | 120 |
| 5.17               | Comparison study between Lewis and Chang model. Both models show S-OSNR reduction with Raman gain increment                                                                                                    | 122 |
| 5.18(a)            | The generation of Raman-assisted Stokes lines enhanced by Rayleigh scattering effect                                                                                                                           | 123 |
| 5.18(b)<br>5.18(c) | The enlarged Stokes line spectrum close to BP wavelength<br>and (c) is the enlarged Stokes lines spectrum zoomed away<br>from the BP wavelength                                                                | 124 |
| 5.18(d)            | The transmitted $(P^t)$ and reflected $(P^r)$ output-power of BP (Pp), FOBSL (Ps <sub>1</sub> ), SOBSL (Ps <sub>2</sub> ) and TOSL (Ps <sub>3</sub> )                                                          | 126 |
| 5.19               | Plotted graphs of Stokes line count against the RPP variation                                                                                                                                                  | 123 |
| 5.20(a)<br>5.20(b) | Comparison of the spectra between two different RPPs.<br>Figure 5.20(a) shows the formation of huge SRGP at 1566-<br>nm, whereas Figure 5.20(b) shows the degradation of<br>Stokes-OSNR with the RPP increment | 127 |
| 5.21(a)            | The Stokes OSNR at three different regions, first-region $(RPP = 350\text{-}mW)$ , second-region $(RPP = 650\text{-}mW)$ and third-region $(RPP = 850\text{-}mW)$                                              | 128 |
| 5.21(b)            | The trend of S-OSNR against the RPP increment. Only three-order Stokes lines are analyzed here                                                                                                                 | 129 |
| 5.22(a)            | The resultant spectrum when the RPP, BPP and BPW are set at 1000-mW, 6-dBm and 1555-nm respectively                                                                                                            | 130 |
| 5.22(b)            | The zoomed region of spectrum in Figure 5.22(a). It shows that the spacing between the Stokes lines is 0.8-GHz but having low peak power i.e. less -35-dBm (0.316- $\mu$ W)                                    | 130 |
| 5.23(a)            | The resultant spectrum when the RPP, BPP and BPW are                                                                                                                                                           |     |



|                    | set at 1500-mW, 6-dBm and 1555-nm respectively                                                                                                                                                                                                                                                                                                 | 131 |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.23(b)            | Brillouin Stokes lines within the same optical bandwidth as<br>in Figure 5.22(b) when the RPP is set at 1500-mW.<br>Besides showing much SPP and S-OSNR improvement,<br>the Stokes lines have almost the same peak power                                                                                                                       | 132 |
| 5.24(a)<br>5.24(b) | Rough assumption of spectra evolution at different RPPs<br>level. It schematically explains the evolution of Stokes line<br>generation when the RPP is increased. The Raman Stokes<br>bandwidth (RSBW) is assumed to be Gaussian-like and the<br>SPP values are sketched for the understanding purpose<br>without accounting for actual values | 133 |
| 5.25               | An experimental setup for studying the effect of Rayleigh scattering on generated Brillouin Stokes lines                                                                                                                                                                                                                                       | 135 |
| 5.26(a)            | The Stokes spectrum at different RPPs. The BPW and BPP is set at 1550-nm and is 7-dBm respectively                                                                                                                                                                                                                                             | 136 |
| 5.26(b)            | The spectrum of transmitted BPW at 1550-nm and the Rayleigh-assisted FO-BSL. The RPP is set at 300-mW                                                                                                                                                                                                                                          | 133 |
| 5.26(c)            | The enlarged Stokes line spectrum of Figure 5.26(a)                                                                                                                                                                                                                                                                                            | 137 |
| 5.27               | An enlarged Rayleigh-scattered FOBSL spectrum at different BPPs. RPP was fixed at 1000-mW                                                                                                                                                                                                                                                      | 138 |
| 5.28               | The efficiency of Rayleigh-scattered FOBSL                                                                                                                                                                                                                                                                                                     | 139 |
| 5.29               | An experimental setup for studying stimulated Rayleigh-<br>assisted Brillouin Stokes Line generation                                                                                                                                                                                                                                           | 140 |
| 5.30               | The dependence of Rayleigh-assisted Brillouin Stokes line on the RPP and BPW                                                                                                                                                                                                                                                                   | 141 |
| 5.31(a)            | The generation of BSL when the BPW location in the Raman gain spectrum profile is changed. The RPP is fixed                                                                                                                                                                                                                                    | 142 |
| 5.31(b)            | The generation of Stokes lines when the BPW is fixed in<br>the Raman gain spectrum profile while the RPP is varied                                                                                                                                                                                                                             | 142 |
| 5.32               | Definition and Measurement of the Rayleigh-Assisted<br>Stokes Comb Threshold (RASCT)                                                                                                                                                                                                                                                           | 144 |
| 5.33               | At fixed RPP, the RASCT reduces with the BPW increment                                                                                                                                                                                                                                                                                         | 145 |



# LIST OF ABBREVIATIONS

| ASRS   | Amplified Spontaneous Rayleigh scattering |
|--------|-------------------------------------------|
| ASE    | Amplified spontaneous emission            |
| AWG    | Array Waveguide Grating                   |
| BEFL   | Brillouin Erbium Fibre Laser              |
| BEFLL  | Brillouin Erbium Fibre Linear Laser       |
| BEFRL  | Brillouin Erbium Fibre Ring laser         |
| BFL    | Brillouin Fibre Laser                     |
| BPP    | Brillouin Pump Power                      |
| BPS    | Brillouin Pump Source                     |
| BPW    | Brillouin Pump Wavelength                 |
| BRFL   | Brillouin Raman Fibre Laser               |
| BRS    | Backscattered Rayleigh Signal             |
| BSL    | Brillouin Stokes Line                     |
| BSLW   | Brillouin Stokes Linewidth                |
| BSS    | Brillouin Stokes Spectrum                 |
| BSW    | Brillouin Stokes Wave                     |
| ВТ     | Backward Travelling                       |
| BTRSS  | Backward Travelling Raman Stokes Spectrum |
| c-BEFL | Conventional Brillouin Erbium Fibre Laser |
| CCW    | Counter Clock Wise                        |
| CD     | Chromatic Dispersion                      |
| CW     | Continuous Wave                           |
| DCF    | Dispersion compensating fibre             |



| DCM      | Dispersion Compensating Module            |
|----------|-------------------------------------------|
| DOP      | Degree of Polarization                    |
| DBRS     | Double back Rayleigh scattering           |
| DWDM     | Dense Wavelength Division Multiplexing    |
| EDF      | Erbium Doped Fibre                        |
| EDFL     | Erbium doped fibre Laser                  |
| EDFA     | Erbium Doped Fibre Amplifier              |
| EYFL     | Erbium-Ytterbium Fibre Laser              |
| FBG      | Fibre Bragg grating                       |
| FLM      | Fibre Loop Mirror                         |
| FOBSS    | First Order Brillouin Stokes Spectrum     |
| FOBSL    | First Order Brillouin Stokes Line         |
| FOSL     | First Order Stokes Line                   |
| FO-SPP   | First Order Stokes Peak Power             |
| FO-SNF   | First Order Stokes Noise Floor            |
| FOS-OSNR | First Order Stokes OSNR                   |
| FPF      | Fabry-Perot Filter                        |
| FROG     | Frequency Resolved Optical Gating         |
| FRPG     | First Raman Peak Gain                     |
| FT       | Forward Travelling                        |
| FTRSS    | Forward Travelling Raman Stokes Spectrum  |
| FWHM     | Full Width at Half Maximum                |
| FWM      | Four Wave Mixing                          |
| HR-OSA   | High Resolution Optical Spectrum Analyzer |
| HWHM     | Half Width at Half Maximum                |



| LC-NOLM | Linear Cavity Nonlinear Optical Loop Mirror |
|---------|---------------------------------------------|
| LD      | Laser diode                                 |
| LIM     | Linear Interpolation Method                 |
| MPS     | Modulation Phase Shift                      |
| MMW     | Millimetre-wave                             |
| NA      | Numerical Aperture                          |
| NLC     | Nonlinear Coefficient                       |
| NOLM    | Nonlinear Optical Loop Mirror               |
| OC      | Optical Circulator                          |
| OPS     | Optical Polarization Splitting              |
| OSA     | Optical spectrum analyzer                   |
| OSNR    | Optical signal-to-Noise ratio               |
| PBC     | Polarization Beam Combiner                  |
| PC      | Polarization Controller                     |
| PMF     | Polarization maintaining Fibre              |
| PS-WDM  | Pump-Signal WDM                             |
| RA-BRFL | Raman Assisted Brillouin Raman Fibre Laser  |
| RA-BSL  | Raman Assisted Brillouin Stokes Line        |
| RA-SCT  | Rayleigh-Assisted Stokes Comb Threshold     |
| RBW     | Resolution Bandwidth                        |
| RC-NOLM | Ring Cavity Nonlinear Optical Loop Mirror   |
| RFL     | Raman Fibre Laser                           |
| RI      | Refractive Index                            |
| RIN     | Relative intensity noise                    |
| ROF     | Radio over Fibre                            |



| RPG              | Raman Peak Gain                                      |
|------------------|------------------------------------------------------|
| RPP              | Raman Pump Power                                     |
| RPS              | Raman Pump Source                                    |
| RPU              | Raman Pump Unit                                      |
| RPW              | Raman Pump Wavelength                                |
| RS               | Rayleigh Scattering                                  |
| RS-BSL           | Rayleigh Scattered Brillouin Stokes Line             |
| RS-BRFL          | Rayleigh Scattered Brillouin Raman Fibre Laser       |
| RSBW             | Raman Stokes Bandwidth                               |
| RS-FOBSL         | Rayleigh Scattered First Order Brillouin Stokes Line |
| RSPP             | Raman Stokes Peak Power                              |
| RSPW             | Raman Stokes Peak Wavelength                         |
| RSS              | Raman Stokes Spectrum                                |
| RPU              | Raman pump unit                                      |
| SBS              | Stimulated Brillouin scattering                      |
| SHB              | Spectral Hole Burning                                |
| SiO <sub>2</sub> | Silicon Dioxide                                      |
| SLM              | Single Longitudinal Mode                             |
| SLBW             | Stokes Line Bandwidth                                |
| SLC              | Stokes Line Count                                    |
| SLPP             | Stokes Lines Peak Power                              |
| SMF              | Single mode Fibre                                    |
| SMOF             | Single Mode Optical Fibre                            |
| SOP              | State of polarization                                |
| SOBSL            | Second Order Brillouin Stokes Line                   |

