

UNIVERSITI PUTRA MALAYSIA

MECHANICAL PROPERTIES OF UNTREATED AND ALKALINE TREATED KENAF AND RAMIE FABRIC REINFORCED EPOXY COMPOSITES

KHAIRUL AZMI BIN MD. REZALI

FK 2008 87

MECHANICAL PROPERTIES OF UNTREATED AND ALKALINE TREATED KENAF AND RAMIE FABRIC REINFORCED EPOXY COMPOSITES

By

KHAIRUL AZMI BIN MD. REZALI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

November 2008

DEDICATION

First of all and before every thing, I submit in humility and gratitude to my beloved creator "Allah Subhana Wa Taala" for having blessing me this opportunity and protecting me from major obstacles in fulfilling this thesis.

I would not be truly thankful also if I did not express gratitude towards my mum,

Rokiah and my dad, Md. Rezali, who always motivate and support during my works

in finishing my thesis.

Finally, this thesis is dedicated to all those who believe in the richness of learning.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master Science

MECHANICAL PROPERTIES OF UNTREATED AND ALKALINE TREATED KENAF AND RAMIE FABRIC REINFORCED EPOXY COMPOSITES

By

KHAIRUL AZMI BIN MD REZALI

June 2008

Chairman: Profesor Dr. Mohd. Sapuan Salit, PEng., Ph.D

Faculty: Engineering

This research work is concerned with the determination of tensile, flexural and impact properties of kenaf and ramie fabric reinforced epoxy composites at three and eleven layers of fibre and different treatment (i.e. alkaline or non-alkaline) methods. The specimens were prepared using hand lay-up technique. The tensile and flexural tests were performed using an INSTRON 5507 universal testing machine and the high velocity impact test were performed using Ballistic Automated Network Gun systems (BANG) at projectile speed of 73 m/s, 160 m/s, 230 m/s and 278 m/s. In this study, the fibre has been treated by 6% alkaline treatment. Two main purposes of this thesis are to determine and compare the result of tensile, flexural and impact properties for kenaf and ramie composite, and also for composite (kenaf and ramie) with and without 6% of alkaline treatment. The result shows that 6% of alkaline treated of composites possess decreased value of tensile and flexural strength for kenaf and ramie composite because of high percentage of alkaline treatment.

However, the increased value of impact properties found after adding 6% of alkaline

treated. The outcome of the result clearly shows that ramie composite is better than kenaf composite in tensile and flexural properties. But in impact properties, the outcome result shows that kenaf composite is better than ramie composite.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master

SIFAT MEKANIKAL KOMPOSIT KENAF DAN RAMIE FABRIK BERTETULANG EPOKSI MATRIKS TANPA DAN DENGAN RAWATAN KIMIA ALKALI

Oleh

KHAIRUL AZMI BIN MD REZALI

Jun 2008

Pengerusi: Profesor Dr. Mohd. Sapuan Salit, PEng., Ph.D

Fakulti: Kejuruteraan

Penyelidikan ini adalah berkaitan untuk menentukan sifat tegangan, lenturan dan

hentaman untuk komposit epoksi gentian fabrik kenaf dan ramie pada 3 dan 11

lapisan fabrik dengan dan tanpa rawatan kimia alkali. Pembuatan spesimen komposit

ini dijalankan dengan menggunakan teknik bengkalai tangan dan pemampatan acuan.

Ujian tegangan dan lenturan dibuat dengan menggunakan mesin INSTRON 5507 dan

ujian hentaman pula dibuat menggunakan sistem rangkaian senjata ballistik

automatik (BANG) pada halaju peluru 73 m/s, 160 m/s, 230 m/s and 278 m/s. Fabrik

dalam penyelidikan ini telah dirawat dengan 6% rawatan alkali. Tujuan kajian ini

adalah bertumpu kepada dua tujuan utama iaitu mendapatkan hasil sifat tegangan,

lenturan dan hentaman halaju tinggi pada komposit kenaf dan ramie, dan untuk

komposit (kenaf dan ramie) yang ditambah dan tidak ditambah dengan 6 peratus

rawatan kimia alkali. Keputusan menunjukkan 6% rawatan alkali memberikan nilai

yang berkurangan pada sifat tegangan dan lenturan untuk komposit kenaf dan ramie

disebabkan jumlah peratusan pada alkali yang terlalu tinggi. Walau bagaimanapun,

peningkatan nilai dapat ditunjukkan pada sifat hentaman selepas 6% rawatan alkali. Keputusan tesis ini juga menunjukkan komposit ramie adalah lebih baik berbanding komposit kenaf pada sifat tegangan dan lenturan. Tetapi pada sifat hentaman, keputusan menunjukkan komposit kenaf adalah lebih baik daripada komposit ramie.

ACKNOWLEDGEMENTS

I would like to express my appreciation to those who has helped me to complete this project. Without their help, encouragement and support it is hardly for me to complete the work.

First of all, I would like to express my highest appreciation to my supervisor, Professor Ir Dr. Mohd Sapuan Salit, my previous supervisor, Professor Dr. Abdel Magid Hamouda and co-supervisor, Dr Khalina Abdan for their help and valuable guidance throughout the project. I would also like to thank Mr. Risby Suhaimi from Universiti Pertahanan National Malaysia, Mr. Tajul Ariffin and Mr. Saiful from Automation Laboratory, Mr. Ishak, Mr. Azmi and Mr. Saifuddin from Metallurgy Laboraty, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia who have helped me in conducting the research and gave full cooperation to me until I finished my work.

Special thanks to my dearest parents Haji Md. Rezali Bin Ahmad and Hajah Rokiah Bt Abdul Ghani, my brothers and my sisters for their support, encouragement and understand.

Also million of appreciation to my best friend, Mahanum Diana Bt Jafri who helped me a lot in supporting and motivating me until I finished my work.

I wish to thank to the Institute of Advanced Technology, Faculty of Engineering, Universiti Putra Malaysia and Malaysian Ministry of Science, Technology and Innovation for financial supporting to carry out this research work. Financial support for this research was provided by Malaysian Ministry of Science, Technology and Innovation (MOSTI) through Intensification of Research in Priority Areas (IRPA) fund for research grant 54261.

And lastly, my great appreciation to anyone who has directly and indirectly contributes to success in this project. All of your kindness will never be forgotten

I certify that a Thesis Examination Committee has met on 17 November 2008 to conduct the final examination of Khairul Azmi bin Md. Rezali on his thesis entitled "Mechanical Properties of Untreated and Alkaline Treated Kenaf and Ramie Fabric Reinforced Epoxy Composites" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Rosnah Mohd Yusof, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Shamsuddin Sulaiman, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Aidy Ali, PhD

Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Mohd Nasir Tamin, PhD

Professor Faculty of Engineering Universiti Teknologi Malaysia (External Examiner)

Bujang Kim Huat, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10 April 2009

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Sapuan Sallit, PhD

Professor
Department of Mechanical and Manufacturing Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Khalina Abdan, PhD

Lecturer
Department of Biological and Agricultural Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10 April 2009

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

KHAIRUL AZMI MD. REZALI

Date: 25 May 2009

TABLE OF CONTENTS

	 .			Page
DEDICATIO				1
ABSTRACT				ii
ABSTRAK	EDGI	A CENTRO		iv
ACKNOWL		MENTS		vi
APPROVAL				viii
DECLARAT		C		X
LIST OF FIC		3		xiv
LIST OF TA LIST OF AB		TATIONS		xix xxi
LIST OF AB				XXIV
LIST OF ST.	MIDO	_		AAIV
CHAPTER				
1	INT	RODUCTIO	ON	1
	1.1	_	d of the Study	1
		Problem St		2
		U	of the Study	4
		Scope of St		4
	1.5	Layout of t	he Thesis	5
2		ERATURE		6
	2.1	Introduction		6 8
	2.2.		ore Composites ason for choose Natural Fibre for	0
			mposite Material	9
			nsile and Flexural Properties of	,
			tural Fibre Composites	11
			nsile and Flexural Properties of	
			nthetic Fibre Composite	15
			ason of choose Alkali Treatment of Fibre	18
		2.2.5 Tei	nsile Strength before and after Alkali Treatment	22
	2.3		e Composite	24
		2.3.1 Pro	ocessing Kenaf Fabric	28
		2.3.2 Rai	mie Fibre Composite	29
		2.3.3 Rea	ason for choose Kenaf and Ramie as Fabric	
		Fib	ore for Composite	32
			nsile Strength of Kenaf and Ramie Composite	37
			nsile Strength of Treated Kenaf Composite	40
	2.4	_	city and Ballistic Impact Event	44
	2.5	Ballistic Ve		45
			Illistic Vest Performance Standard	46
			Illistic Limit	47
			gh Velocity and Ballistic Impact	40
	26		echanism of Failure	49 52
	2.6	-	nage Mode of Natural Fibre Composite	52 54
	2.7		apact Properties of Natural Fibre Composite of Literature Review	54 58
	∠./	Summary C	DI LICIALUIC NEVIEW	20

3	\mathbf{ME}	THODO	DLOGY	60
	3.1	Introdu	action	60
	3.2	Progre	ss Flow	60
	3.3	Materi	als	61
	3.4	Metho	d for Density Measurement	64
		3.4.1	Method for Fibre Volume Fraction Measurement	64
		3.4.2	Method for Weight Fraction Measurement	65
	3.5	Alkalir	ne Fibre Treatment	65
	3.6	Compo	osite Manufacturing Method	66
	3.7	Specin	nen Preparation	69
		3.7.1		69
		3.7.2		71
	3.8	Mecha	nical Properties Testing Method	72
		3.8.1	Tensile Test	72
		3.8.2	Method for Maximum Tensile Strength	
			Measurement	72
		3.8.3	Method for Maximum Flexural Strength	
			Measurement	73
		3.8.4	Flexural Test	74
		3.8.5	High Velocity Impact Test	74
4	RES	etii TC	AND ANALYSIS	79
т		Introdu		79
	4.2		y Measurement	79
	4.2	4.2.1	Fibre Volume Fraction Measurement	81
		4.2.2		83
	4.3		num Tensile Strength Measurement	84
	4.3	4.3.1	<u>e</u>	86
		4.3.1	ϵ	80
		4.3.2	<u> </u>	87
	4.4	Tongila	for Epoxy e and Flexural Test Results	
	4.4			88
		4.4.1	Damage Characteristic for Tensile and	104
	15	III ala X	Flexural tests	104
	4.5	_	Velocity Impact Test Results	106
		4.5.1	Damage Characteristic for High Velocity	100
		4.50	Impact Test	122
		4.52	No Penetration Damage Characteristic	122
		4.53	Partial Penetration Damage Characteristic	122
		4.54	Complete Penetration Damage Characteristic	123
	4.6	Summa		125
		4.6.1	Highest Tensile, Flexural and Impact	
			Properties of Material	126
		4.6.2	Correlation of Tensile Strength to	
			Flexural Strength	127
		4.6.3	Correlation of Tensile and Flexural	
			Strength to Impact Properties	129
		4.6.4	Percentage change of Tensile, Flexural Strength	
			Impact Depth of Penetration by Material Type	
			after Alkaline Treatment	130

	4.7	Compa	re Result of Tensile Strength and Flexural	
		Strengt	h with Kenaf and Ramie Fibre Composite	
		from Li	iterature Review	131
		4.7.1	Compare Result of Tensile Strength and Flexural	
			Strength with Synthetic Fibre Composite from	
			Literature Review	134
		4.7.2	Comparison of Results of High Velocity Impact	
			to Glass Fibre Composite	138
		4.7.3	Comparison of Results of High Velocity Impact	
			to Different Composite Material	141
	4.8	Discuss	sion Overall Result	142
5	CO	NCLUSI	ONS AND RECOMMENDATIONS	143
	5.1	Conclu	sions	143
	5.2	Recom	mendations for Future Research	145
REFI	EREN	CES		146
APPI	ENDI	CES		159
Apper	ndix A	Matrix 1	Properties	159
Apper	ndix E	Projecti	le	165
Appendix C Blunt Trauma Box			171	
Apper	ndix D	Sample	Data	175
BIOD	ATA	OF THI	E STUDENT	179

LIST OF FIGURES

Figur	·e	Page	
2.1	Composite Materials	7	
2.2	Growth Outlook for Bio-based Composites by Application in United State, 2000-2005	10	
2.3	Use of Natural Fibre for Automotive Composite in Germany Austria 1996-2002	11	
2.4	Kenaf Field	27	
2.5	Structures of Kenaf Plant	28	
2.6	Ramie Fibres and Leave	31	
2.7	Different Type of Plant Fibre	33	
2.8	Tensile Strength of Natural Fibre and Glass Fibre Reinforced PP (Fibre Content of 30 wt %)	34	
2.9	A Crop of Ramie	37	
2.10	Definition of Perforation and Partial Penetration from Protection Ballistic Limit Range	47	
2.11	Impact below Ballistic Limit	48	
2.12	Impact above Ballistic Limit	48	
2.13	Schematic Demonstrating the Three Principal Damage Mechanism for Low Velocity Impact	49	
2.14	Representation of Global deformation in Low Velocity Impact and Local Deformation in High Velocity Impact	50	
2.15	Schematic Representation of the Shear Plug Damage Mechanism	51	
2.16	Schematic of Delamination Process in Cross-Ply Composite During High and Ballistic Velocity Impact	52	
2.17	Damage Modes in Composite Laminate from Impact Event	53	
3.1	Flowchart of the Project	61	
3.2	Ramie and Kenaf Fabric in Rolls before Cutting	62	

3.3	Kenaf and Ramie Fabric ready for Experiment	62
3.4	Epoxy and Hardener	63
3.5	Flowchart of Alkaline Fibres Process	66
3.6	Compression Mould to Fabricate Specimen	67
3.7	Laminate Plastic Cover	67
3.8	Taking out Completed Composite	68
3.9	Flow chart of Composite Fabrication	68
3.10	Standard Dimensions of ASTM D 638-99 for tensile testing	70
3.11	Standard Dimensions for ASTM D790-99 for flexural testing	70
3.12	Ramie and Kenaf Fibre Composites with Specimen Dimension of 100 mm x 100 mm	71
3.13	UPM Compressed Gas Gun of BANG-SYSTEMS	75
3.14	Three type of Projectiles	76
3.15	Hemispherical Projectile	76
3.16	Blunt Trauma Box for Measurement in BANG System	77
3.17	Top and Side View of Effects Blunt Trauma	78
4.1	Graphs Tensile Load vs. Displacement for Three Layers of Non-Treated Kenaf Fabric Reinforced Composite (K3N)	85
4.2	Graphs Flexural Load vs. Displacement for Three Layers of Non-Treated Ramie Fabric Reinforced Composite (R3N)	86
4.3	Graphs Tensile Load vs. Displcement for Epoxy Resin	88
4.4	Tensile Strength of Kenaf Composite	89
4.5	Tensile Strength of Ramie Composite	91
4.6	Flexural Strength of Kenaf Composite	93
4.7	Flexural Strength of Ramie Composite	95
4.8	Comparison of Tensile Strength Kenaf and Ramie Composite (Non-Treatment)	97

4.9	Composite (Alkaline Treatment)	99
4.10	Comparison of Flexural Strength Kenaf and Ramie Composite (Non-Treatment)	101
4.11	Comparison of Flexural Strength Kenaf and Ramie Composite (Alkaline Treatment)	102
4.12	Tensile test Failure Mechanism of Kenaf and Ramie Composite Specimen	104
4.13	Flexural Test Failure Mechanism of Kenaf and Ramie Composite Specimen	105
4.14	Impact Depth of Penetration for Kenaf Composite at 73 m/s	106
4.15	Depth of Penetration for Kenaf Composite at 73 m/s	107
4.16	Impact Depth of Penetration for Kenaf Composite at 160 m/s	108
4.17	Depth of Penetration for Kenaf Composite at 160 m/s	109
4.18	Impact Depth of Penetration for Ramie Composite at 73 m/s	110
4.19	Depth of Penetration for Ramie Composite at 73 m/s	111
4.20	Impact Depth of Penetration for Ramie Composite at 160 m/s	112
4.21	Depth of Penetration for Ramie Composite at 160 m/s	113
4.22	Impact Depth of Penetration for Non-Treated Kenaf and Ramie Composite at 73 m/s	114
4.23	Comparison Depth of Penetration for Non-Treated Kenaf and Ramie Composite at 73 m/s	115
4.24	Impact Depth of Penetration for Non-Treated Kenaf and Ramie Composite at 160 m/s	116
4.25	Comparison Depth of Penetration for Non-Treated Kenaf and Ramie Composite at 160 m/s	117
4.26	Impact Depth of Penetration for Alkaline Treated Kenaf and Ramie Composite at 73 m/s	118
4.27	Comparison Depth of Penetration for Alkaline Treated Kenaf and Ramie Composite at 73 m/s	119

4.28	Kenaf and Ramie Composite at 160 m/s	120
4.29	Comparison Depth of Penetration for Alkaline Treated Kenaf and Ramie Composite at 160 m/s	121
4.30	Front and Back Face of Kenaf Composite Specimen for No Penetration Mechanism of Failure	122
4.31	Front and Back Face of Kenaf Composite Specimen for Partial Penetration Mechanism of Failure.	123
4.32	Front and Back Face of Ramie Composite Specimen For Partial Penetration Mechanism of Failure.	123
4.33	Front and Back Face of Kenaf Composite for Complete Penetration Mechanism of Failure	124
4.34	Front and Back Face of Ramie Composite for Complete Penetration Mechanism of Failure	124
4.35	Correlation Result of Tensile and Flexural Strength of Non-Treated Kenaf and Ramie Composite	127
4.36	Correlation Result of Tensile and Flexural Strength of Alkaline Treated Kenaf and Ramie Composite	128
4.37	Correlation Result of Tensile and Flexural Strength to Fibre Volume Fraction of Non-Treated Kenaf and Ramie Composite	128
4.38	Correlation Result of Tensile and Flexural Strength to Impact Properties of Non-Treated Kenaf and Ramie Composite	129
4.39	Comparison of Tensile Strength to Kenaf Composite From Other Researcher	132
4.40	Comparison of Flexural Strength to Kenaf Composite From Other Researcher	133
4.41	Comparison of Tensile Strength to Ramie Composite From Other Researcher	134
4.42	Comparison of Tensile Strength to Synthetic Fibre Composite from Other Researcher	136
4.43	Comparison of Flexural Strength to Synthetic Fibre Composite from Other Researcher	137

4.44	Kenaf Composite to Non-Treated Glass Composite at 160 m/s	138
4.45	Comparison Impact Depth of Penetration for Alkaline Treated Kenaf Composite to Non-Treated Glass Composite at 230 m/s	139
4.46	Comparison Impact Depth of Penetration for Alkaline Treated Kenaf Composite to Non-Treated Glass Composite at 280 m/s	140
4.47	Comparison for Complete Penetration of High Velocity Impact in Different Composite Material	141

LIST OF TABLES

Table		Page
2.1	Advantages and Disadvantages of Commercial Composite	9
2.2	Summary Result of Tensile Strength for Natural Fibre Composite	15
2.3	Summary Results of Tensile and Flexural Strength for Glass and Aramid Fibre Composite	17
2.4	Effect of Treatment to Tensile and Flexural Strength of Natural Fibre Composite	23
2.5	Effect of Treatment Hours and Percentage of Treatment to Tensile and Flexural Strength of Composite	24
2.6	Summary Tensile and Flexural strength of Kenaf and Ramie Composite	40
2.7	Summary Tensile and Flexural Strength of Alkaline Treated Kenaf Composite	43
2.8	Categorize Impact Event and Velocity Ranges	44
2.9	Ballistic Vest Performance Standard	46
2.10	Ballistic Limit of Non-Treated and Alkaline Treated Kenaf Composite	55
2.11	Impact Result for Glass Fibre Epoxy Reinforced Composite	56
2.12	High Velocity Impact Test Result for Cocunut Shell Epoxy Composite (COEX) and Twaron Panel (TW)	58
2.13	Summary of selected materials and method with its reason of selection	59
3.1	Composite Layer with Thickness	69
3.2	Weight of Impact Composite Specimen	71
4.1	Summary Density Measurement	81
4.2	Summary Result of Volume Fraction	82
4.3	Summary Result of Weight Fraction	84

4.4	Summary Result of Tensile Strength, Flexural Strength, Penetration Type, Impact Depth of Penetration for Kenaf and Ramie Non-Treated and Alkaline Treated Composites	125
4.5	Percentage of Decline and Improvement of Tensile Strength, Flexural Strength, Impact Depth of Penetration for Kenaf and Ramie Composites after Alkaline Treatment of Fibre.	131
4.6	Comparison of Tensile Strength to Kenaf Composites from Other Researcher	132
4.7	Comparison of Flexural Strength to Kenaf Composites from Other Researcher	133
4.8	Comparison of Tensile Strength to Ramie Composites from Other Researcher	134
4.9	Comparison of Tensile Strength to Synthetic Fibre Composites from Other Researcher	135
4.10	Comparison of Flexural Strength to Synthetic Fibre Composites from Other Researcher	137
4.11	Comparison for Complete Penetration of High Velocity Impact in Different Composite Material	141

NOMENCLATURE

LIST OF ABBREVIATIONS

AP Armor Piercing

 A_{t0} original cross sectional area of tensile specimen

ASTM American Standard Testing Method

BANG Ballistic Automated Network Gun Systems

 b_f width of flexural specimen

 b_t width of tensile specimen

CNC Computer Numerical Control

CNSL Cashew nut shell liqud

COEX Coconut shell powder-epoxy composite

E-Glass A type of borosilicate glass used to produce glass fibers for reinforced

plastics designed for applications requiring high electrical resistivity.

Also known as electric glass

FMJ Full Metal Jacketed

FMJ RN Full Metal Jacketed Round Nose

GA³ gibberellic acid

GF Glass Fibre

G11N Glass fabric fibre reinforced epoxy composite

HDPE High Density Polyethylene

HIVAC high velocity data acquisition system

 h_f thickness of flexural specimen

 h_t thickness of tensile specimen

H1 Treatment of Choline Chloride, Gibberellin (GA³), Benzyladenine (6-

BA) and NaHSO³ at 20:9:5:800 mg kgÿ1

H3 Treatment of Choline Chloride, Gibberellin (GA³), Benzyladenine (6-

BA) and NaHSO³ at 20:42:43:2350 mg kgÿ1

H₂CO Formaldehyde is a chemical compound with the formula H₂CO

INTROP Institute of Tropical Forestry and Forest Products

ITMA Institute of Advanced Technology

JIS K Japanese Industrial Standards for Chemical Engineering

JIS L Japanese Industrial Standards for Textile Engineering

K3A Kenaf of three layer alkaline treated fabric reinforced epoxy

composite

K₃N Kenaf of three layer non-treated fabric reinforced epoxy composite

K11A Kenaf of eleven layer alkaline treated fabric reinforced epoxy

composite

K11N Kenaf of eleven layer non-treated fabric reinforced epoxy composite

span between centre of support of flexural specimen L_f

LR LRN Long Rifle Lead Round Nose

MARDI Malaysian Agricultural Research and Development Institute

mass of fabric fibre in air m_f

mass of fabric fibre suspended in acetone m_{fa}

NaHSO₃ Sodium hydrogen sulfite

NaOH Sodium hydroxide

Ammonium Nitrate NH₄ NO₃

NIJ National Institute of Justice

PAT/607 PAT-607/PCM is specially developed water based micro emulsion, no -/PCM

silicone or natural wax is used and the PAT-607/PCM film forms on

polished and chromed steel perfectly

Polyamide 6, 6 (Nylon patented by Dupont) **PA66**

PP Polypropylene

REMOTE Remote Online Monitoring and Testing system

R₃A Ramie of three layer alkaline treated fabric reinforced epoxy

composite

R3N Ramie of three layer non-treated fabric reinforced epoxy composite

R11A Ramie of eleven layer alkaline treated fabric reinforced epoxy

composite

R11N Ramie of eleven layer non-treated fabric reinforced epoxy composite

SEM Scanning electron microscopy

SJHP Semi jacketed Hollow Point (SJHP)

SPI Soy protein isolate

Technora A para-aramid fiber independently developed by Teijin, which has

been commercially available since 1987

Twaron Brandname of Teijin Aramid for a para-aramid.

Twintex® A thermoplastic textile composite consisting of direct glass filaments

and co-produced, commingled thermoplastic fibres

UPM Universiti Putra Malaysia

US United States

 W_f weight layer of fabric fibre

 W_m weight of matrix

6-BA 6-benzylaminopurine

 ρ_f density of fabric fibre

 $\rho_{\rm a}$ density of acetone

 ρ_m matrix density

 $\rho_{\rm f}$, fibre density

 σ_{fm} maximum flexural strength of flexural specimen

 P_{fm} maximum applied load to flexural specimen

