CRUSHING BEHAVIOR OF WOVEN ROVING GLASS-EPOXY ELLIPTICAL COMPOSITE CONES

By

MOHAMED M. AL-KATEB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

February 2004

A special Dedication To

Mohamed

Malaysia, 2004

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master Science

CRUSHING BEHAVIOR OF WOVEN ROVING GLASS-EPOXY ELLIPTICAL COMPOSITE CONES

By

MOHAMED M. Al-Kateb

February 2004

Chairman: Associate Professor Abdel Magid Salem Hamouda, Ph.D.

Faculty : Engineering

Structure made from composite materials offers important characteristics such as weight reduction, design flexibility, and safety improvement. These composite materials provide higher or equivalent crash resistance as compared to their metallic counterparts and therefore find use in crashworthiness applications. The design of various transport vehicles such as automobiles and aircraft for crashworthiness requires collapse resistance of structural component and energy absorption characteristics during collision.

This work examines the effects of composite elliptical cone vertex angles on crushing behaviour, energy absorption subjected to quasi-static compressive load, and the capability of natural fibre composite as filler material. The composite elliptical cone walls were fabricated from woven roving glass fibre with orientation of [0/90] and epoxy. Since natural fibre composite materials are increasingly being utilised in automotive parts for their relatively high strength and stiffness to weight and cost ratios, chopped oil palm frond fibres mixed with resin in the form of foam were used

in this study as fillers. The composite elliptical cones with vertex angles varying from 0° to 24° in 6 increments fabricated for axial compression tests with the cone bottom end dimension of $a_b = 74$ mm (inner major radius) and $b_b = 53$ mm (inner minor radius); 165mm high and 5mm thick were fixed for all the specimens. Different cone vertex angles (β) of the elliptical cone resulted in different dimension of cone top end i.e. a_t (inner major radius) and b_t (inner minor radius). The composite elliptical cones fabricated and tested were of six layers.

Thirty specimens were fabricated, fifteen of which were filled with chopped oil palm frond fibres. The load-deformation and the energy-deformation relations as well as the deformation history and failure modes for the composite elliptical cones with various vertex angles tested under quasi-static axial crushing load are presented and discussed. The load-deformation curves presented were obtained from averaging the load-deformation points for three replicated tests with identical elliptical cone and testing conditions. In addition, the effects of cone vertex angles, filling on the load carrying capacity and the energy absorption capability are discussed.

The results showed that the quasi-static axial crushing behaviour of elliptical woven roving laminated composite cones is strongly affected by their structural geometry, the specific energy absorbed by the composite elliptical cones with the vertex angles of 6°, 12°, 18°, and 24°, both the empty and the filled with natural fiber, which is more than that in an elliptical cone with the vertex angle of 0° (the elliptical tube) at any given deformation.

On the other hand, empty core elliptical composite cones were better in specific energy absorption than those filled with natural fibre. The specific energy absorption for elliptical composite cone showed positive correlation i.e., the more the angle increases the more energy is absorbed. In this regard, the empty elliptical composite cone with 24° angle exhibited the best energy absorption capability.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KELAKUAN PELANGGARAN BAGI KON KOMPOSIT ELIPS PELEKAT KACA ANYAMAN BERGERAK

Oleh

MOHAMED M. AI-KATEB

Februari 2004

Pengerusi : Profesor Madya Abdel Magid Salem Hamouda, Ph.D

Fakulti : Kejuruteraan

Struktur yang diperbuat dari bahan komposit memberikan beberapa ciri penting seperti pengurangan berat, keanjalan reka bentuk dan peningkatan keselamatan. Bahan komposit ini menunjukkan daya tahan pelanggaran yang sama atau lebih tinggi jika dibandingkan dengan bahan logam, yang mengarahkan penggunaannya pada keadaan yang memerlukan ciri-ciri ini. Reka bentuk beberapa kenderaan pengangkutan seperti kereta dan kapal terbang untuk daya tahan pelanggaran perlu mempamerkan ciri-ciri seperti ketahanan komponen struktur pada kemusnahan serta mampu menyerap tenaga semasa sesuatu pelanggaran.

Kajian ini dilakukan untuk melihat kesan sudut-sudut verteks kon komposit elips terhadap pelanggaran, penyerapan tenaga yang diperlakukan dengan berat tekanan separa statik dan kemampuan komposit gentian asli sebagai bahan pengisian. Dinding-dinding kon komposit elips dibina dari pada gentian kaca anyaman bergerak dengan berorentasi [0/90] dan pelekat. Oleh kerana pengunaan bahan-bahan komposit gentian asli meningkat dalam bahagian-bahagian kenderaan untuk kekuatan dan kekerasan yang tinggi terhadap nisbah-nisbah berat dan kos, maka gentian pelepah kelapa sawit yang dhancurkan dan dicampur dengan damar menjadikan bentuk busa digunakan dalam kajian ini sebagai bahan pengisian. Kon-kon komposit elips dengan beberapa sudut-sudut verteks dari 0° hingga 24° dalam 6 tambahan dibina untuk ujian mampatan paksian pada bahagian hujung bawah kon berdimensi $a_b = 74$ mm (jejari major dalaman) dan $b_b = 53$ mm (jejari minor dalaman) serta ketinggian 165mm dan ketebalan 5mm dilakukan pada semua spesimen. Perbezaan sudut-sudut verteks eliptik kon dihasilkan dari perbezaan dimensi bahagaian hujung atas kon iaitu at (jejari major dalaman) dan b_t (jejari minor dalaman). Kon-kon eliptik komposit yang dibina dan diuji mengandungi enam lapisan.

Tiga puluh spesimen dibina yang mana lima belas adalah dipenuhi dengan gentian pelepah kelapa sawit yang di hancurkan terpenggal. Hubungan antara beban-uboh bentuk dan tenaga- uboh bentuk serta sejarah uboh bentuk dan ragam kegagalan untuk kon-kon komposit elips dengan beberapa sudut verteks yang diuji pada berat penghancuronpaksian mirip statik dibentangkan dan dibincang. Lengkuk daga-ubahbentuk dibentangkan ini adalah dari purata nilai-nilai daga-ubah bentuk untuk tiga ujian replikasi dengan kon eliptik dan keadaan ujian yang seiras. Sebagai tambahan Kesan sudut verteks kon, pengisian dalam keupayaan tekanan berat dan keupayaan penyerapan tenaga juga dibincangkan.

Keputusan-keputusan menunjukkan bahawa kelakuan perghancuran paksian mirip statik bagi kon- kon komposit elips yang dibina dari gentian kaca anyaman bergerak didapati tinggi oleh geometri struktur, tenaga spesifik yang diserap oleh kon- kon komposit elips dengan sudut-sudut verteks 6°, 12°, 18°, dan 24°, serta kon-kon kosong dan dipenuhi dengan gentian asli yang lebih dari kon eliptik dengan sudut verteks 0° (tiub elips) pada sebarang perubahan bentuk.

Sebaliknya, kon-kon komposit elips kosong adalah lebih baik pada penyerapan tenaga spesifik daripada yang dipenuhi dengan gentian asli. Penyerapan tenaga spesifik untuk kon eliptik komposit menunjukkan sekoitan positif iaitu jika sudut bertambah tenaga yang diserap juga bertambah. Dalam hal yang sama, kon komposit elips dengan sudut 24° mempamerkan keupayaan penyerapan tenaga yang terbaik.

ACKNOWLEDGMENTS

First of all, I would like to express my sincere gratitude and deep thanks to my supervisor Associate Professor Dr. Abdel Magid Salem Hamouda for his kind assistance, support, advice, encouragement, and suggestions this work and during the preparation of this thesis.

Furthermore, I would like to take this opportunity my deepest appreciation and gratitude to Dr. Elsadig Mahdi Ahmed for his advice, valuable suggestion, and comments.

Finally, I would like to thanks to Associate Professor Dr. Megat Mohammad Hamdan Megat Ahmad for his suggestions and constructive criticisms given at different stages of this study.

Mohamed M. Al-kateb

Approval Sheet No.1

I certify that an Examination committee met on to conduct the final examination of Mohamed M. Al-Kateb on his Master thesis entitled "An Experimental Study of Woven Roving Glass/Epoxy Elliptical Composite Cones" in accordance with University Pertanian Malaysia (High Degree) Act 1980 and University Pertanian Malaysia (High Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Wong Shaw Voon, Ph.D. Faculty Engineering Universiti Putra Malaysia (Chairman)

P. R. Arora, Ph.D. Faculty Engineering Universiti Putra Malaysia (Member)

Mohd Sapuan Salit, Ph.D. Faculty Engineering Universiti Putra Malaysia (Member)

Azman Bin Hassan, Ph.D.

Faculty of Chemical and Natural Resources Engineering Universiti Technologi Malaysia

> **Gulam Rusul Rahmat Ali, Ph.D.** Professor /Deputy Dean

School of Graduate Studies University Putra Malaysia

Date:....

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of requirement for the degree of Master of Science. Members of the Supervisory Committee are as follows:

Abdel Magid Salem Hamouda, Ph.D.

Faculty of Engineering Universiti Putra Malaysia (Chairman)

Elsadig Mahdi Ahmed, Ph.D.

Faculty of Engineering Universiti Putra Malaysia (Member)

Megat Mohammad Hamdan Megat Ahmad, Ph.D.

Faculty of Engineering Universiti Putra Malaysia (Member)

AINI IDERIS, Ph.D.

Professor / Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MOHAMED M. AL-KATEB

Date:

LIST OF TABLES

Table		Page
2.1	Mechanical properties of different resin	10
2.2	Examples of measured specific energy absorptions for axially compressed FRP and metallic tubes	15
4.1	Specification of elliptical cones test specimens	53
5.1	Measured crashworthiness parameters of empty composite elliptical cones.	66
5.2	Measured crashworthiness parameters of filled composite elliptical cones.	82

LIST OF FIGURES

Figure		Page
2.1	Typical Load-displacement curve for a progressively crushed composite tube.	17
2.2	Crushing characteristic of local buckling crushing mode	20
2.3	General failure mechanism and load-displacement characteristic of "Progressive Folding" FRP tube	21
2.4	Crushing characteristic of brittle fracture crushing mode	22
2.5	A typical load-displacement characteristic for an FRP tube Failing bystable brittle fracture	22
2.6	crushing characteristic of lamina bending crushing mode	24
2.7	crushing characteristic of transverse shearing crushing mode	25
2.8	Effect of ply orientation on the energy absorption capability of FRP tubes	31
2.9	The effect of inside diameter to wall thickness ratio on the specific energy absorption of $[\pm 45]_N$ carbon-epoxy tubes.	33
2.10	The effect of a collapse trigger mechanism (in this case a bevelled and slotted end) on the load-deflection characteristic of an FRP tube	34
3.1	General Describtion of the Methodology Adopted in the study	48
3.2	Description of Design, Fabrication of Mandrels and Test Specimens	49
3.3	flow chart shows the experimental work	50
4.1	Flow chart describes the fabrication process of the specimens	54
4.2	Schematic fabriction process for elliptical cone	55
4.3	Typical elliptical cone under investigation	56
4.4	Empty Compsit elliptical cones with various vertex angles	56
4.5	Filled Compsit elliptical cones with various vertex angles	56
5.1	Load-displacement curves of composite elliptical cones	63

5.2	Typical load-deformation history of axially loaded composite elliptical cone with $\beta 0^{\circ}$.	67
5.3	Typical load-deformation history of axially loaded composite elliptical cone with $\beta 6^{\circ}$.	67
5.4	Typical load-deformation history of axially loaded composite elliptical cone with $\beta 12^{\circ}$.	68
5.5	Typical load-deformation history of axially loaded composite elliptical cone with $\beta 18^{\circ}$.	68
5.6	Typical load-deformation history of axially loaded composite elliptical cone with β 24°.	69
5.7	Normalised specific energy absorbed-displacement curves of composite elliptical cones	70
5.8	Variation of normalised specific energy absorbed with cone vertex angles	71
5.9	Load-deformation curves for composite circular tube(NFCCT)	74
5.10	Typical load-deformation history of axially loaded composite natural fiber solid circular tube.	75
5.11	Energy-Displacement Relation for axially loaded natural fiber solid circular tube	76
5.12	Load-displacement curves of filled composite elliptical cones	78
5.13	Typical load-deformation history of axially loaded composite elliptical cone with $\beta 0^{\circ}$.	79
5.14	Typical load-deformation history of axially loaded composite elliptical cone with $\beta 6^{\circ}$.	79
5.15	Typical load-deformation history of axially loaded composite elliptical cone with $\beta 12^{\circ}$.	80
5.16	Typical load-deformation history of axially loaded composite elliptical cone with $\beta 18^{\circ}$.	80
5.17	Typical load-deformation history of axially loaded composite elliptical cone with $\beta 24^{\circ}$.	81
5.18	Normalised specific energy absorbed-displacement curves of composite elliptical cones	85

5.19	Variation of normalised specific energy absorbed with cone vertex angles.	85
5.20	Load-displacement curves of composite elliptical cones with $\beta 0^{\circ}$.	86
5.21	Load-displacement curves of composite elliptical cones with $\beta 6^{\circ}$.	87
5.22	Load-displacement curves of composite elliptical cones with $\beta 12^{\circ}$.	87
5.23	Load-displacement curves of composite elliptical cones with $\beta 18^{\circ}$.	88
5.24	Load-displacement curves of composite elliptical cones with $\beta 24^{\circ}$.	88
5.25	Normalised energy absorbed - displacement curves of composite elliptical cones with $\beta 0^{\circ}$.	90
5.26	Normalised energy absorbed - displacement curves of composite elliptical cones with $\beta 6^{\circ}$.	90
5.27	Normalised energy absorbed - displacement curves of composite elliptical cones with $\beta 12^{\circ}$.	91
5.28	Normalised energy absorbed - displacement curves of composite elliptical cones with $\beta 18^{\circ}$.	91
5.29	Normalised energy absorbed - displacement curves of composite elliptical cones with $\beta 24^{\circ}$.	92

LIST OF ABBREVIATIONS

- A Test area
- h Height of the cone
- t Thickness of the cone wall
- at, bt Inner major and inner minor radius of top end, respectively
- a_b, b_b Inner major and inner minor radius of bottom end, respectively
- β Cone vertex angle
- P_m Average crush failure load
- P_i Initial crush failure load
- P_{cr} Critical load
- P_{HP} Highest Crush failure load
- P_{IP} First peak crush failure load
- $\sigma_m \qquad Crush \ stress$
- ε Crush strain
- υ Axial Poisson's Ratio
- E₁₁ Effective axial modulus
- E₂₂ Effective transverse modulus
- E₃₃ Transverse young's modulus
- K Bulk modulus
- ρ Mass density of the structure
- W_T Total work done
- S Instantaneous deformation
- CFE Crush force efficiency
- SE Stroke efficiency
- IFI Initial failure indicator

- E Total energy absorbed
- E_S Specific energy absorbed
- E_{NS} Normalised Specific energy absorbed
- E_V Volumetric energy absorbed
- WRLW Woven roving laminated wrapped
- FRP Fiber-reinforcement plastic
- ECEC Empty composite elliptical cone
- FCEC Filled composite elliptical cone
- (CSCNFT) Composite Solid Circular Natural Fiber Tube

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	Х
DECLARATION	xii
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvii

CHAPTER

Ι	INTRODUCTION Research Objectives Significance of the Study Thesis Layout	1 4 4 5
II	LITREATURE REVIEW	6
	Composite Materials	6
	Glass Fibre	7
	Woven Roving E-Glass Fibre	7
	Oil Palm Frond Fibre (OPFF)	8
	Production	
	Matrix	10
	Epoxy Resin	10
	Fabrication Process	11
	Process Hand Lay-up	11
	Winding	11
	Р	
	r	
	0	
	с	
	e	
	S	

S

Types of Crush Test 12

Quasi-static Test			
Dynamic Test			
Crashworthiness Parameters			
Energy absorption Capability			
Total Energy Absorbed	14 15		
(E)	10		
Specific Energy	16		
Absorption (E_S)	10		
Crush Force Efficiency (CFE)	17		
Stroke Efficiency (SE)	1 / 18		
Initial Failure Indictor (IFI)			
Compressive Failure Mechanisms of			
Composite Material	19		
Euler buckling	19		
Progressive Folding	20		
Brittle Fracture	21		
Splaying (lamina bending) Crushing	23		
Mode	24		
Fragmentation (transverse shearing) Crushing Mode			
Variables Affecting the Energy			
Absorption Capability	26		
The Influence of Fibre and Matrix			
Material			
Fibre Material	27 28		
Matrix Material Fibre and Matrix Combination			
			The Influence of Fibre Orientation and Lay-up
and Lay-up The Influence of Specimen			
Geometry	32		
Inside Diameter to Wall	32		
Thickness Ratio			
Collapse Trigger Mechanism	33		
Cross-Sectional Geometry	34		
Circular Tubes	34		
Conventional Tubes	34		
Composite circular Tubes	38		
Elliptical Tubes	41		
Conventional elliptical			
tubes. Composite elliptical			
Circular Cones			

	Compound Shells 4	
	Conventional Compound	43
T	ubes	40
SI	Composite Compound hells	43
5	Square Tubes.	44
	Metallic Square Tubes	44
	Composite Square Tubes	44
	Summary	46
III M	IETHODOLOGY	47
		• /
IV E	XPERIMENTAL WORK	51
	reparation of Mandrels	51
1	Materials	
		51
	Geometry Exprise of Specimens	53 52
	Fabrication of Specimens Test Procedure	53 59
	Conclusion Remarks	58 59
	Conclusion Remarks	58
V	RESULTS AND DISSCUSSION	59
Α	ssessing factors of energy absorption	
	apability and the load carrying capacity of e composite elliptical shells	60
	Initial Failure Indicator	60
	Crush Force Efficiency-Stroke	61
	Efficiency Relation	(1
	Specific Energy Absorption Capability	61
	Volumetric Energy Absorption	62
I	Capability Empty Composite Elliptical Cones Under	
1	Quasi-Static Axial Crushing Load.	63
	Load-displacement Curves	63
	Failure Modes	65
		65
	Mode II	66
		66
		67
	Load Carrying Capacity	67
	Energy Absorption Capability	60
	Effect of Natural Fibre Filled in Cores of	
	Empty Composite Elliptical Cones	72
T	he Energy Absorption of Foams	72

Solid Circular Tubes Made from Natural Fibre			74	
Load-Displacement			74	
		Crushing H	Relationship istory and Failure Modes	75
			rgy-Displacement Relation	76
	Cones	Under	e Elliptical Quasi-Static	77
Axial Crushing Load. Load-Displacement				78
	Curves	uau-Dispia	cement	70
		ailure Mod	es	79
		Regular	Progressive	79
	Failure	Mode	-	
Multi Failure Mode Effect of Cone Vertex			82	
			83	
	Angles			
		Load	Carrying	83
	Capacity	у		
		Energy	Absorption-	84
	Capacit	у		
		ffects of	•	87
		arrying Cap	-	
	Effects of Filling on			90
	Energy	Absorption	- Capability	
VI	CONCI	USION	AND	
V I		ESTIONS	FOR	94
		ER WORK		
REFERENCES			•	97
BIODATA OF 7		THOR		104
			107	

CHAPTER 1

INTRODUCTION

Crashworthiness is today one of the important factor in the area of designing the transportation means such as automobiles, rail cars and aero planes. This is because it concerns to vehicle structural integrity and its ability to absorb crash as well as providing a protective shell around the occupants. In the last century extensive and credible studies have proven the high compete ability of composite materials in the filed of collapsible energy absorber devices. It is also evident that composite materials meet design requirements by the vehicles manufacturers as well as customers demand for safe vehicle with low fuel consumption and high pay load. It is interesting to note that the low cost glass/epoxy composite can absorb up to twice the specific energy of steel [1], while the relatively high cost carbon/PEEK composite can absorb up to 7 times as claimed by Hamada, et al [2]. As a consequence more metals parts will be replaced by composite one for weight saving and increased reliability. However, the challenge is to find a suitable polymeric composite material with specific features for a suitable structural application.

The high efficiency of an impact energy absorber device may be defined as its ability to decelerate smoothly the occupant compartment to the rest within the allowable limit of 20g [3]. However, optimum energy absorbed management from practical collapsible energy absorber device is characterised by having a very small elastic energy and the area under its load-displacement curve is representing by rectangular form with long sides (i.e. a constant force). It is evident for all practical collapsible energy absorber devices that initially their resistance response records very high load till reach its full capacity after which definitely different degrees of unstable response takes place [4]. Due to the black and white design of energy absorber device, one can define the desirable energy absorber device as the one with suppressed energy absorption during the elastic or pre-initial crush failure stage not to exceed the safe allowable limits. Moreover, its post crush stage should have a very stable response during the post crush stage. In such design and for gross deformation, the overall stability of the energy absorber device is important as well as its energy absorbing capability and load carrying capacity.

It is well known that any type of failure mode leads to Euler-buckling resulted in global instability which is an inefficient energy absorbing mechanism should be avoided in designing the collapsible energy absorbing system. This is because Euler-buckling failure mode is unstable and associated with load-deformation behaviour rising and falling erratically [5]. This instability is one of the more critical problems in using fibre composites for crash energy device and can be caused by many factors. Mahdi, et al [6] stated that the initial crush failure load was found to have a significant effect on the behaviour of specific energy absorption-deformation relationship during the entire post-crush crush process of composite shell with empty core and squared ends (i.e. un triggered). They found that the energy absorption capability is reverse proportional to the high magnitude of initial crush failure load.