UNIVERSITI PUTRA MALAYSIA

ISOLATION, PURIFICATION AND CHARACTERIZATION OF CAPRINE PANCREATIC ISLETS

HOMAYOUN HANI

IB 2009 2
ISOLATION, PURIFICATION AND CHARACTERIZATION OF CAPRINE PANCREATIC ISLETS

By

HOMAYOUN HANI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2009
Dedicated with love and gratitude to:

Father
Javad Hani

Mother
Maryam Gerogan

Brothers
Reza Hani and Hadi Hani
Diabetes mellitus is a major late consequence of chronic pancreatitis. Diabetes mellitus type 1 or insulin-dependent diabetes mellitus (IDDM) is characterized by the failure of the pancreatic islets of Langerhans to synthesis or secrete insulin. The long-term complications of IDDM are major health problems, and in these diabetics exogenous insulin may not adequately regulate blood glucose homeostasis and thus fail to avert the late complications. In this case, transplantation of pancreatic islets is arguably the most logical approach to restoring metabolic homeostasis. The limited availability of human donors makes the search for alternative source of islet cells mandatory for future developments in pancreatic transplantation. The present study investigates the potential of goats as an alternative source of pancreatic islets. The objectives of the study were to optimize techniques for goat islet isolation and purification for culture establishment, and to perform functional, morphological and
viability assessment of goat islets. Goat pancreatic tissues were collected within 15 min of slaughter, placed in Hanks balance salt solution (HBSS) and maintained at 4°C. Goat islets were obtained successfully using a collagenase-based digestion and isolation technique at an optimized pH of 7.2 to 7.4 and temperature of 37°C. Digested pancreatic islets were purified by Euro-Ficoll density gradients. Islet cell purity and viability were determined by dithizone and trypan blue staining, respectively. Islet clusters of different sizes were positively identified by both staining methods and it was observed that 90% of clusters were viable in the culture system. Following the static incubation, an in vitro insulin secretion assay was carried out by ELISA to determine the islets viability. The islets remained viable for 5 days in the culture system following regular media changes.

Pancreatic tissues were fixed in Bouin’s solution stained with hematoxylin-eosin (H&E) and immunohistochemistry (IHC) stains and examined microscopically to estimate the islet mass and determine insulin secretion ability. Under the light microscope, there were minimal connective tissue cells separating the islets from the surrounding exocrine component. The nuclei of islets cells were uniform in size and surrounded by eosinophilic cytoplasm. Purified islets of Langerhans were fixed in a mixture of paraformaldehyde and glutaraldehyde solution for transmission (TEM) and scanning electron microscopic (SEM) examination. Under TEM, the caprine islet cell exhibited their characteristic secretory granules, which were of various sizes and electron opacity. The cells also showed characteristic abundance of rough endoplasmic reticulum (RER) and mitochondria. In β-cells, the rough endoplasmic reticulum was inconspicuous. The α-cells are characterized by their peripheral location in the islet,
being larger and having electron-dense secretory granules. Based on morphological criterion, intermediate cells are shown to be present in both the endocrine and exocrine tissue of the normal pancreas of goats. Under SEM the size of the islet clusters was shown to range from 50 to 250 µm. Cells with secretory sacs on the surface could possibly be the isolated islet cells. The study had provided an optimized isolation and purification techniques for goat pancreatic islets to be further developed and used for xenotransplantation in diabetic animal models. The findings can lead to further research in identification and sequencing of insulin indicator genes, pancreatic hormones biomarkers and long-term cryopreservation of goat pancreatic islets.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Sarjana Sains

PENGASINGAN, PENULENAN DAN PENCIRIAN GUGUSAN PANKREAS KAMBING

Oleh

HOMAYOUN HANI

Mei 2009

Pengerusi: Zeenathul Nazariah Bt Allaudin, PhD

Fakulti: Bioscience Institute (IBS)

Tisu pankreas ditetapkan dalam larutan Bouin, diwarna dengan pewarna hematoksilin-eosin (H&E) dan imunohistokimia (IHC) dan diperiksa secara mikroskopi untuk menyukat jisim islet dan menentukan keupayaan rembesan insulin. Di bawah mikroskop cahaya, terdapat sedikit sahaja sel tisu penyambung yang mengasingkan islet daripada unsur eksokrin disekelilingnya. Nukleus sel islet seka saiznya dan dikelilingi oleh sitoplasma eosinofilik. Islet Langerhans tertulen ditetapkan dalam larutan campuran paraformaldehid dan glutaraldehid untuk pemeriksaan mikroskopi elektron pancaran (TEM) dan imbasan (SEM). Di bawah TEM, sel islet kaprin menunjukkan granul rembesan cirian, iaitu pelbagai saiz dan kelegapan elektron. Sel ini juga menunjukkan retikulum endoplasma kasar (RER) dan mitokondrion banyak cirian. α-sel juga cirian dengan terletaknya secara periferi pada islet, dengan besarnya dan granul rembesan yang
ACKNOWLEDGMENTS

My utmost appreciation and gratitude are conveyed to my supervisor Dr. Zeenathul Nazariah Bt Allaudin for her invaluable guidance, constructive advice, comments and suggestions, patience and encouragement throughout the study. I would like to express my heartfelt thanks and appreciation to my co-supervisors, Prof. Dr. Tengku Azmi Tengku Ibrahim and Prof. Dr. Mohd Azmi Mohd Lila for their invaluable advice, suggestions and discussion, constructive criticisms, patience and support which were really helpful towards the completion of my study. Additionally, their efforts spent to improve the quality of the thesis are very much appreciated.

My sincere thanks and gratitude are extended to Dr. Abas Mazni Othman, Prof. Dr. Mohd Hair Bejo and Dr. Noorjahan Bano Alitheen, for granting permission to use the equipments and facilities in their laboratories and their precious support. I am grateful to the staff members of Virology Laboratory of Faculty of Veterinary Medicine, Animal Laboratory of Agro-biotechnology Institute (ABI) and Institute of Biosciences’ Electron Microscopy Department (IBS, EMD), especially Mr. Mohd Kamarudin Awang Isa, Ms. Amlizawaty Amzah, Mr. Asraf Jamalludin, Dr. Fazly Ann and Mr. Ho Oi Kuan for their valuable critical and also technical assistances. And here I would like to express my special thanks to Pedram Kashiani for his great assistance in statistical analysis of this investigation data and also showing the right way to reach to scientific results. Also special thanks to Prof. Rasedee for sharing expertise in editing.
My greatest gratitude and thanks are dedicated to Nik Mohd Afizan, Lo Sewn Cen, Tam Yun Joon, Caryn Lim Shen Ni, Noraini Abd Said, Siti Nur Farahiyah, Siti Nazrina Camalxaman, Tan Seok Shin, Hadi Hajarian, Morvarid Akhvan Rezaie, Kazhal Sarsaifi, Parisa Honari, Nor Hidayah Mustafa, Ruzila Ismail and other members in Virology Laboratory, Faculty of Veterinary Medicine, Laboratory of Immunotherapeutic and Vaccine (LIVES) for their friendship, assistance and encouragement throughout the course of study.

Last but not least, I am indebted to my beloved parents, brothers for their endless encouragement, moral support, patience, understanding and unconditional love all the time.
I certify that a Thesis Examination Committee has met on 6 May 2009 to conduct the final examination of Homayoun Hani on his thesis entitled “Isolation, Purification and Characterization of Caprine Pancreatic Islets” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science of Medical Biotechnology.

Members of the Thesis Examination committee were as follow:

Abdul Rani Bahaman, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Mohd Hair Bejo, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Mohamed Ali Rajion, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Musalma Mazian, PhD
Professor
Faculty of Medicine
Universiti Kebangsaan Malaysia
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 18 June 2009
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follow:

Zeenathul Nazariah Bt Allaudin, PhD
Senior Lecturer
Faculty of Veterinary Medicine/ Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Tengku Azmi Tengku Ibrahim, PhD
Professor
Faculty of Veterinary Medicine/ Institute of Bioscience
Universiti Putra Malaysia
(Member)

Mohd Azmi Mohd Lila, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 7 July 2009
DECLARATION

I declare that the thesis is my original work except for quotation and citations which have been duly acknowledged. I also declare that it has not been previously, and it not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other Institution.

HOMAYOUN HANI

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER 1
1. Introduction 1

CHAPTER 2
2. Literature Review
 2.1. Development of Pancre 6
 2.2. Functional Characteristics of Pancreas 7
 2.3. Morphological Characteristic of Pancreas 9
 2.4. The Identity of Storage Granules in Intermediate Cells 10
 2.5. Pancreatic Intermediate Cells in The Different Species 11
 2.5.1. Rats 12
 2.5.2. Guinea-pigs 13
 2.5.3. Rhesus monkeys 14
 2.5.4. Goats 14
 2.5.5. Chickens 15
 2.5.6. Frogs 15
 2.6. Isolated Islets in Diabetes Research 15
 2.6.1. Human islet cells 15
 2.6.2. Non-human primate islet cells 16
 2.6.3. Porcine islet cells 17
 2.6.4. Bovine islet cells 17
 2.6.5. Rodent islet cells 18
 2.6.6. Fish islet cells 20
 2.7. Application for future treatments of diabetes 21
 2.7.1. Islet Transplantation 23
 2.7.2. Xenotransplantation Technology 26
 2.7.3. Other Areas for Research 30
CHAPTER 3
3. Establishment of Isolation and Purification Techniques for Goat Islets
 3.1. Introduction
 3.2. Materials and Methods
 3.2.1. Sample Collection
 3.2.2. Isolation of Islets of Langerhans
 3.2.3. Islets Purification
 3.2.4. Islets Viability Assessment
 3.2.5. Islet Cell Culture System
 3.3. Results
 3.3.1. Isolation Procedure
 3.3.2. Islets Purification
 3.3.3. Viability Assessment
 3.3.4. Indirect Immunoperoxidase Test on Purified Islet cells
 3.3.5. Islet Cell Culture
 3.4. Discussion
 3.5. Conclusion

CHAPTER 4
4. Viability Assessment of Goat Islets: Functional and Morphological Studies
 4.1. Introduction
 4.2. Materials and Methods
 4.2.1. Histocytochemical Staining
 4.2.2. Electron Microscopy Study on Islet of Langerhans
 4.2.3. Insulin Secretion Assessment by Using ELISA
 4.2.4. Statistical Analysis
 4.3. Results
 4.3.1. Functional Assessment
 4.3.2. Insulin Secretion Assessment
 4.3.3. Pancreas Tissue under Transmission Electron Microscope
 4.3.4. Purified Islets of Langerhans under Transmission Electron Microscope
 4.3.5. Purified Islets of Langerhans under Scanning Electron Microscope
 4.4. Discussion
 4.5. Conclusion

CHAPTER 5
5. General Discussion

CHAPTER 6
6. Summary, General Conclusion and Recommendations for future Research
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>ABI</td>
<td>Agro-Biotechnology Institute</td>
</tr>
<tr>
<td>BBs</td>
<td>Brockmann Bodies</td>
</tr>
<tr>
<td>BCG</td>
<td>Bacillus Calmette-Guerin</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>DAB</td>
<td>3-3’-diaminobenzidine tetrahydrochloride</td>
</tr>
<tr>
<td>dl</td>
<td>Deciliter</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DTZ</td>
<td>Dithizone</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>EM</td>
<td>Electron Microscope</td>
</tr>
<tr>
<td>ENDIT</td>
<td>European Nicotinamide Diabetes Intervention Trial</td>
</tr>
<tr>
<td>EUR</td>
<td>European</td>
</tr>
<tr>
<td>g</td>
<td>Gravity</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GH</td>
<td>Growth Hormone</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>H&E</td>
<td>Hematoxylin and Eosin</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank’s Balanced Salt Solution</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish Peroxidase</td>
</tr>
<tr>
<td>hr</td>
<td>Hour</td>
</tr>
<tr>
<td>IBS</td>
<td>Institute of Biosciences</td>
</tr>
<tr>
<td>IDDM</td>
<td>Insulin Dependent Diabetes Mellitus</td>
</tr>
<tr>
<td>IEQ</td>
<td>Islet Equivalent</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>NAD</td>
<td>Nicotinamide Adenine Dinucleotide</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>PARP</td>
<td>Poly (ADP-Ribose) Polymerase</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PI</td>
<td>Principal Islets</td>
</tr>
<tr>
<td>PP</td>
<td>Pancreatic Polypeptide</td>
</tr>
<tr>
<td>PRL</td>
<td>Prolactine</td>
</tr>
<tr>
<td>PYY</td>
<td>Peptide Tyrosine-Tyrosine</td>
</tr>
<tr>
<td>RER</td>
<td>Rough Endoplasmic Reticulum</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per Minute</td>
</tr>
<tr>
<td>RT</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>SEA</td>
<td>South-East Asian</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>SST</td>
<td>Somatostatin</td>
</tr>
<tr>
<td>SST-14</td>
<td>Salmon Somatostatin-14</td>
</tr>
<tr>
<td>SST-25</td>
<td>Salmon Somatostatin-25</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris Buffered Saline</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscope</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume/volume</td>
</tr>
<tr>
<td>WP</td>
<td>Western Pacific</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Diabetes mellitus is the major late subsequences of chronic pancreatitis (Margener et al., 1997; Amman et al., 1999; Bernades et al., 1983; Malka et al., 2000). Some 246 million people worldwide have diabetes in 2007 (International Diabetes Federation, 2008). It is now one of the most common non-communicable diseases globally. Diabetes is the fourth or fifth leading cause of death in most developed countries and there is substantial evidence that it is epidemic in many developing and newly industrialized nations (International Diabetes Federation, 2005). It may cause life-threatening complications such as severe hypoglycemia or to chronic microvascular and macromacular complications (Levitt et al., 1995; Ziegler at al., 1994). A study of quality of life after pancreatic resections found that diabetes and its complication had the greatest negative influence on everyday well-being (Petrin et al., 1995). Diabetes may fasten and affect mortality rates in patients with chronic pancreatitis (Miyake et al., 1989; Traverso et al., 1997; Levy et al., 1989).

Complications from diabetes, such as coronary artery and peripheral vascular disease, stroke, diabetic neuropathy, amputations, renal failure, and blindness result in increasing disability, reduced life expectancy and enormous health costs for virtually every society. Diabetes is certainly one of the most challenging health problems of the 21st century.
Diabetes mellitus is a syndrome which is characterized by abnormally high glucose levels in the blood. The most common types of diabetes are Type 1 (immune-mediated diabetes mellitus), and Type 2 (insulin-resistant diabetes mellitus). A third type, (gestational diabetes mellitus), occurs during some pregnancies. All these types of diabetes have similar symptoms, because all forms of the disease are due to the high level of sugar, or glucose, in the blood, resulting in the incapability of the body to remove glucose from blood and deliver it to the cells. The cells use glucose as a source of energy to continue their metabolism. The reasons why the body cannot use glucose from the blood are different for Type 1 and Type 2 diabetes (American Diabetes Association, 2006).

Type 1 diabetics do not produce sufficient insulin, a small protein produced by the pancreas that helps the body utilize or store glucose from food. These diabetics can be treated with insulin. In contrast, Type 2 diabetics, viz women with gestational diabetes, produce insulin, but for some reason, either the cells in their bodies are resistant to insulin's action or they do not produce enough insulin. In all types of diabetes, glucose that do not reach the cells and tissues accumulates in the blood (American Diabetes Association, 2006).

Incidence of Type 1 diabetes in children and adolescents is increasing with an estimated overall annual increase of around 3% (Onkamo et al., 1999; Eurodiab ACE Study Group, 2000; Green et al., 2001). The increase in incidence in Type 1 diabetes has been shown in countries with both high and low prevalence with an indication of a steeper increase in some of the low prevalence countries (Tuomilehto et al., 1995; Gardner et
al., 1997; Dahlquist et al., 2000). In Malaysia, nearly 1.2 million people have diabetes, of which an estimated 24,000 people or 2% of the whole diabetic population with Type 1. This means approximately 0.1% of the whole population of Malaysia are suffering from Type 1 diabetes (Persatuan Diabetes Malaysia, 2006).

Considerable advances have been made in the technology of transplanting either pancreas or preparations of islet tissues, but major problems remain in obtaining donor tissues and in preventing immune rejections of the graft. Nevertheless, transplantation is the only available treatment that can lead to insulin independence (Shapiro et al., 2000), but human islet allograft transplantation could not be used on a large scale in clinical practice. Results following whole pancreas transplantation are very encouraging with about one-year graft survival rate of 85-90% (Landgraf, 1996). Islet transplants appeared to be much more vulnerable (Steven, 1999; Cretin et al., 1998; Sutherland et al., 1989; Sibley et al., 1985; Morris et al., 1989; Davalli et al., 1996) as many failed within few weeks or months after engraftment and most islet transplants (> 90%) failed within one year (Nakagawa et al., 1999; Steven, 1999; Cretin et al., 1998). The reasons for these functional failures are unknown, although insufficient numbers of islets, engraftment difficulties, chronic rejection and recurrence of autoimmune disease were suggested to be contributing factors (Cretin et al., 1998; Sutherland et al., 1989; Sibley et al., 1985; Morris et al., 1989). Hyperglycemia in the recipient after transplantation has been shown to deteriorate islet graft survival and function (Davalli et al., 1996).

One of the major obstacles for clinical islet transplantation is the lack of donors and optimization of the number of β-cells harvested from each donor. Another possibility is
to stimulate the growth and/or differentiation of β-cells, or to genetically manipulate insulin producing cell lines for transplantation. Several studies have shown that differentiated β-cells still have the ability to proliferate at a low pace (Hellerström et al., 1976; Hellerström, 1984; Scharffmann and Czernichow, 1996; Rane and Reddy, 2000). The proliferation rate can be affected in many ways, for example by growth stimulating hormones and prolactin (Sorenson et al., 1993; Stout et al., 1997; Carlsson et al., 1997; Tyrberg et al., 1996). The size and composition of the graft and the blood glucose level in the recipient are of crucial importance for β-cell replication (Tyrberg, 1999).

Xenotransplantation using islets derived from animals is one critical approach that might solve these problems. Over the last 40 years, chimpanzee kidneys have been transplanted into patients with renal failure (Reemtsma et al., 1964); a baboon liver has been transplanted to a patient with hepatic failure (Starzl et al., 1993); porcine islet cells of langerhans have been injected into patients with Type 1 diabetes (Rood et al., 2006); porcine skin has been grafted onto patients with burn (Chatterjee, 1978); and pig neuronal cells have been transplanted into patients with Parkinson’s disease and Huntington’s disease (Fink et al., 2000). Other strategies include immune modulation to reduce or prevent immune attack by the recipient’s immune system, immunoisolation to prevent recognition of the islet graft, induction of tolerance and gene therapy (Thomas et al., 2000).

Ethical considerations have led to the selection of the pig as the most likely source of organs for humans, but there are significant biological barriers that hamper long term organ survival and function in recipients. It is clear that some genetic manipulation of
the donor animals will be required to overcome these barriers (Xenotransplantation Program, 2005).

The limited availability of human donors makes the research for alternative islet sources mandatory for future development in pancreatic islet transplantation. Xenotransplantation of islets has become a very crucial research area with commercial potential.

The objectives of present study were:

1. To establish feasible methods of isolation, separation and in vitro culture of goat pancreatic islet cells.

2. To assess and ascertain the functionality, viability and sustainability of the goat pancreatic islet cells in cell culture.
2.1. Development of Pancreas

One of the most vital organs in the digestive and endocrine system of vertebrates is the pancreas which is an encapsulated, lobulated, compound tubuloacinellar gland organ. It is divided into an exocrine (secreting pancreatic juice containing digestive enzymes) and an endocrine (producing several important hormones, including insulin, glucagon, and somatostatin) portion (Mac, 2000). During embryonic development of the pancreas, islet, acinar, and ductal cells are differentiated from a common multipotential precursor cell. In early embryonic development, the endocrine cells are integrated within the exocrine matrix of the pancreatic bud. They subsequently accumulate in nonvascularized clusters and later become isolated from the exocrine tissue and independently vascularized (William, 1995).

In the fetus, nutrients are carried across the placenta and not through the fetal gastrointestinal (GI) tract, and nutrient flow is moderately steady. A series of experimental studies on fetuses suggest that the endocrine pancreas is required for fetal nutrition and growth. However, both the endocrine and exocrine entities of the pancreas are relatively immature in structure and function, even in the late pregnancy period, and mature function is not present until several weeks after birth. Pancreatic development seems to be particularly rapid around the time of birth, and the first intake of enteral milk stimulates these maturational changes (Sangild, 1999).