

UNIVERSITI PUTRA MALAYSIA

LEVELS OF CONJUGATED LINOLEIC ACIDS IN KEDAH-KELANTAN CATTLE AND THE CYTOTOXIC EFFECTS OF SELECTED CONJUGATED LINOLEIC ACID ISOMERS ON CANCER CELL LINES

ACHENEF MELAKU BEYENE

FPV 2009 2

LEVELS OF CONJUGATED LINOLEIC ACIDS IN KEDAH-KELANTAN CATTLE AND THE CYTOTOXIC EFFECTS OF SELECTED CONJUGATED LINOLEIC ACID ISOMERS ON CANCER CELL LINES

By

ACHENEF MELAKU BEYENE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

March 2009

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

LEVELS OF CONJUGATED LINOLEIC ACIDS IN KEDAH-KELANTAN CATTLE AND THE CYTOTOXIC EFFECTS OF SELECTED CONJUGATED LINOLEIC ACID ISOMERS ON CANCER CELL LINES

By

ACHENEF MELAKU BEYENE

March 2009

Chairman: Arifah Bt Abdul Kadir, PhD Faculty: Veterinary Medicine

Conjugated linoleic acids (CLAs) are group of positional and geometric isomers of octadecadienoic acid (18:2) with conjugated double bonds and believed to have many health promoting effects. The present study focused on determination of the levels of

CLAs in liver, superficial pectoral, longissimus dorsi, semimembranosus muscles and rumen liquor of Kedah-Kelantan (KK) cattle and assessment of the cytotoxic effects of selected conjugated linoleic acid (CLA) isomers on human breast (MCF7), liver (HepG2) and colon (HT-29) cancer cell lines. One hundred and ten samples were collected from Banting and Kuantan abattoirs, Malaysia from May to June 2007 for the measurement of CLAs levels. Fatty acids were extracted using modified Folch's method and their profile was determined by gas chromatography. The average contents of CLAs in the liver, superficial pectoral, longissimus dorsi and semimembranosus muscles were 38.71 ± 15.27 , 18.24 ± 10.12 , 11.03 ± 5.96 and 13.04 ± 5.56 mg/100g of sample, respectively. The average amount of CLAs in rumen liquor was 15.00 ± 17.04 mg/100mL of sample. The quantity of CLAs in the liver was significantly (P < 0.05) higher than other samples. There was no significant difference among muscles in mg/100g CLAs but with reference to percentage of fatty acids, superficial pectoral muscle had significantly (P < 0.05) higher proportion of CLAs compared to other muscles. There were no significant differences in the levels of CLAs either between sexes or abattoirs. Neither age nor carcass weight was significantly correlated with the levels of CLAs. The percentages of cis-9, trans-11 (c9,t11) CLA isomer were 63.39 ± 23.16 , 90.66 ± 20.47 , 82.82 ± 14.83 , 76.04 ± 21.98 and 55.20 ± 16.87 % of total CLAs in the liver, longissimus dorsi, semimembranosus, superficial pectoral muscles and rumen liquor, respectively. The proportions of *trans*-10, *cis*-12 (*t*10,*c*12) CLA isomer were 20.77 ± 14.44 , 21.00 ± 18.64 , 10.43 ± 16.43 , 7.62 ± 13.43 and 18.60 ± 15.61 % of the total CLAs in liver, superficial pectoral, semimembranosus, longissimus dorsi

muscles and rumen liquor, respectively. Positive correlations between CLAs and trans (t)11-octadecenoic (18:1) acid concentration were observed in liver (r = 0.556, $P < 10^{-10}$ 0.05), superficial pectoral (r = 0.642, P < 0.05), semimembranosus (r = 0.520, P < 0.05) 0.05), longissimus dorsi (r = 0.489, P < 0.05) muscles and rumen liquor (r = 0.538, P < 0.05) 0.05). Significant positive correlations were also observed between CLAs and octadecanoic (18:0) acid (r = 0.572, P < 0.05), CLAs and c9,c12-octadecadienoic (linoleic) (18:2) acid (r = 0.551, P < 0.05) and CLAs and octadecatrienoic (18:3) acid (r= 0.523, P < 0.05) in rumen liquor. Rumen pH was positively correlated with c9,t11 CLA isomer but negatively correlated with t10,c12 CLA isomer. For cytotoxicity studies, MCF7, HepG2 and HT-29 cancer cell lines were grown on RPMI 1640 media and treated with different concentrations of c9,t11; t10,c12 and mixed isomers CLA for 72 hours. The results were determined by microculture tetrazolium (MTT) cytotoxicity acridine orange/propidium iodide (AO/PI) staining assay, and terminal uridyltransferase nick end labelling (TUNEL) assay. From MTT assay, it was found that the viability of MCF7, HepG2 and HT-29 cancer cell lines had been reduced significantly (P < 0.05) by all CLA isomers used in a dose-dependent manner. The median inhibitory concentration (IC_{50}) value was varied not only with type of CLA isomer but also with cancer cell lines. t10,c12 CLA isomer showed the strongest cytotoxic effect on the MCF7 cancer cell lines whereas the mixed isomers on HepG2 and HT-29 cancer cell lines. c9,t11 CLA isomer was the least potent in all cell lines tested. From the AO/PI staining, cell shrinkage, and membrane ruffling and blebbing were observed in treated MCF7 and HepG2 cells. It was observed by the TUNEL assay

that all CLA isomers significantly (P < 0.05) induced higher proportion of apoptosis in MCF7 and HepG2 cell lines. It was also observed that the treated HepG2 and MCF7 cells showed a significantly (P < 0.05) higher proportion of cells in G_{0/1} but lower proportion in the G₂/M phase than the untreated cells. Hence, CLA isomers induced G_{0/1} arrest in these cell lines. In summary, CLAs are group of fatty acids present in KK cattle meat, which inhibit cancer cell proliferation and viability through cell cycle arrest and induction of apoptosis. The present results warrant future studies particularly in the use of CLAs as chemopreventive and/or chemotherapeutic agents.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

ARAS ASID LINOLEIK DALAM LEMBU KEDAH-KELANTAN DAN KESAN SITOTOKSIK ISOMER ASID LINOLEIK PILIHAN TERHADAP TITISAN SEL KANSER

Oleh

Achenef Melaku Beyene

Mac 2009

Pengerusi: Arifah Bt Abdul Kadir, PhD Fakulti: Perubatan Veterinar

Asid linoleik terkonjugat (CLA) ialah sekumpulan isomer kedudukan dan geometri kepada asid oktadekadienoik (18:2) yang mengandungi ikatan ganda dua terkonjugat dan dipercayai mempunyai kesan manafaat terhadap kesihatan. Kajian ini ditumpukan kepada penentuan aras CLA dalam hati, otot *superficial pectoral, longissimus dorsi, semimembranosus* dan likuor rumen lembu Kedah-Kelantan (KK) dan penilaian kesan sitotoksik isomer asid linoleik terkonjugat pilihan (CLA) terhadap titisan sel payudara

(MCF7), hati (HepG2) dan kolon (HT-29). Satu ratus dan sepuluh sample dikumpul daripada rumah sembelih Banting dan Kuantan, Malaysia dari May ke Jun 2007 untuk menyukat aras CLA. Asid lemak yang diestrak mengguna kaedah Folch terubah suai dan profilnya pula ditentukan melalui kromatografi gas. Purata kandungan CLA dalam hati, otot superficial pectoral, longissimus dorsi, dan semimembranosus masing-masing ialah 38.71 \pm 15.27, 18.24 \pm 10.12, 11.03 \pm 5.96 and 13.04 \pm 5.56 mg/100g sample. Purata kandungan CLA dalam likuor rumen ialah 15.00 ±17.04 mg/100mL sampel. Kuantiti CLA dalam hati adalah lebih tinggi tererti (P < 0.05) daripada sampel lain. Tiada perbezaan yang tererti terdapat pada kandungan CLA di kalangan otot mengikut mg/100g, tetapi mengikut peratusan asid lemak pula, otot superficial pectoral mempunyai kadar asid linoleik terkonjugat yang lebih tinggi secara tererti (P < 0.05) jika dibandingkan dengan otot lain. Tiada perbezaan yang tererti dalam aras CLA didapati, sama ada antara jantina atau rumah sembelih. Tiada perkaitan dalam aras CLA didapati, baik antara umur mahupun berat karkass. Peratusan isomer cis-9, trans-11 (c9,t11) CLA masing-masing adalah 63.39 ±23.16, 90.66 ±20.47, 82.82 ±14.83, 76.04 ± 21.98 dan 55.20 ± 16.87 % daripada jumlah keseluruhan CLA dalam hati, otot superficial pectoral, longissimus dorsi, semimembranosus dan likuor rumen. Kadar isomer trans-10, cis-12 (t10,c12) CLA masing-masing adalah 20.77 ±14.44, 21.00 ±18.64, 10.43 ±16.43, 7.62 ±13.43 dan 18.60 ±15.61 % daripada jumlah sepenuh CLA dalam hati, otot superficial pectoral, longissimus dorsi, semimembranosus dan likuor rumen. Perkaitan positif di antara kepekatan CLA dengan asid oktadecenoik trans (t)1-asid oktadekanoic (18:1) telah dicerap dalam sampel hati (r = 0.556, P < 0.05), otot superficial pectoral (r = 0.642, P < 0.05), semimembranosus (r = 0.520, P < 0.05), dan longissimus dorsi (r = 0.489, P < 0.05), dan likuor rumen (r = 0.538, P < 0.05). Perkaitan positif tererti wujud antara kepekatan CLA dengan asid oktadekanoik (18:0) (r = 0.572, P < 0.05), asid linoleik terkonjugat dengan asid oktadekadienoik (asid linoleic) c9,c12 (18:2) (r = 0.551, P < 0.05) dan CLA dengan asid oktadekatrienoik (18:3) (r = 0.523, P < 0.05) dalam likuor rumen. pH rumen terkait positif dengan isomer c9,t11 tetapi terkait negative dengan isomer t10,c12. Dalam kajian kesitoksikan, titisan sel kanser MCF-7, HepG2 dan HT-29 ditumbuhkan dalam media RPMI 1640 dan diperlakukan dengan CLA c9,t11; t10,c12 dan isomer campuran selama 72 jam. Hasilnya ditentukan dengan mengguna assai kesitotoksikan tetrazolium mikrokultur (MTT), pewarnaan acridine orange/propidium iodide (AO/PI) dan assai terminal uridyltransferase nick end labelling (TUNEL). Daripada assai MTT, didapati bahawa kebolehhidupan titisan sel kanser MCF7, HepG2 dan HT-29 menurun secara tererti (P < 0.05) akibat kesan isomer CLA yang diguna secara bersandarkan dos. Nilai medium kepekatan perencatan (IC₅₀) berbeza bukan sahaja mengikut jenis isomer CLA tetapi juga mengikut titisan sel kanser. Isomer t10,c12 menunjukkan kesan kesitoksikan paling tinggi terhadap titsan sel kanser MCF7 manakala isomer campuran terhadap

titisan sel kanser HepG2 dan HT-29. Isomer c9,t11 merupakan isomer yang paling kurang poten terhadap kesemua titisan sel yang diuji. Melalui pewarnaan AO/PI, pengecutan sel dan pembleban dan perofolan membran dicerapkan pada sel MCF7 dan HepG2 terperlaku. Apa yang dilihat melalui assai TUNEL ialah kesemua isomer CLA mengaruh apoptosis titisan sel kanser MCF7 dan HepG2 secara tererti (P < 0.05). Juga dilihat ialah kadar titisan sel MCF7 dan HepG2 terperlaku yang berada pada fasa $G_{0/1}$ lebih tinggi dan pada fasa G_2/M lebih rendah tererti (p < 0.05) daripada sel tidak diperlaku. Dengan demikian, isomer CLA mengaruh hentian $G_{0/1}$ dalam kedua-dua titisan sel kanser tersebut. Kesimpulannya ialah, CLA, satu kumpulan asid lemak yang wujud dalam daging lembu KK merencat pemproliferatan dan kebolehhidupan sel kanser melalui hentian kitaran sel dan pengaruhan apoptosis. Penemuan ini mewajarkan kajian seterusnya dilakukan, terutama sekali dalam penggunaan CLA sebagai agen pengkemocegahan dan/atau kemoterapi.

ACKNOWLEDGMENTS

The body of research complied for this thesis is a statement of dedication, direct and indirect contribution as well as the result of the participation of individuals. First and for most, I would like to thank my main supervisor Associate Professor Dr. Arifah Abdul Kadir for her guidance, material and moral support from the beginning up to the end of my study. I want to extend my gratitude to my co-supervisors Dr. Goh Yong Meng, Professor Dr. Fauziah Othman and Dr. Awis Qurni Sazili who played an important role in guiding and assisting for the completion of my master candidature.

I would also like to extend my sincere thanks to the laboratory assistants, technicians and officers in Pharmacology Laboratory, Mr. Johari Ripin, Physiology Laboratory, Hafandi Ahmad, Faculty of Veterinary Medicine, Mr. Saparin Demin Nutrition Laboratory, Faculty of Agriculture, Wan Nor I'zzah Wan Mohd Zain and Tommini Sallah, Laboratory of Cancer Research (UPM-MAKNA), and Norsharina Ismail, Laboratory of Molecular Biomedicine, Institute of Bioscience, for their efforts in helping and showing me how to use modern laboratory equipments.

I would like to acknowledge the staff of Department of Veterinary Services, Putrajaya State Veterinary Department, Banting and Kuantan abattoirs, for their co-operation and support especially for sample collection.

I would like to thank all fellow postgraduate students and postdoctoral fellows for sharing their laboratory work experience. Thank you to all my friends for being with me during my ups and downs.

Finally, I would like to thank my sponsors, Nuffic the Netherlands, GRM International and University of Gondar, Faculty of Veterinary Medicine for privilege and sponsorship to complete my postgraduate studies in UPM, Malaysia.

I certify that the examination committee has met on March 2, 2009 to conduct the final examination of Achenef Melaku Beyene on his Master of Science thesis entitled "Levels of Conjugated Linoleic Acids in Kedah-Kelantan Cattle and the Cytotoxic Effects of Selected Conjugated Linoleic Acid Isomers on Cancer Cell Lines" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The committee recommends that the student be awarded the degree of Master of Science.

Members of the Examination Committee were as follows:

Mohamed Ali Bin Rajion, PhD

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Chairman)

Asmah Rahmat, PhD

Professor Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Internal Examiner)

Loh Teck Chwen, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Internal Examiner)

Muhamad Rais Mustafa, PhD

Professor Faculty of Medicine Universiti Malaya (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor and Dean Universiti Putra Malaysia Date: 14 May 2009

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Arifah Abdul Kadir, PhD

Associate Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Chairman)

Goh Yong Meng, PhD

Lecturer Faculty of Veterinary Medicine Universiti Putra Malaysia (Member)

Fauziah Othman, PhD

Professor Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Member)

Awis Qurni Bin Sazili, PhD

Lecturer Faculty of Agriculture Universiti Putra Malaysia (Member)

HASANAH MOHD. GHAZALI, PhD

Professor and Dean Universiti Putra Malaysia

Date: 14 May 2009

I hereby declare that the thesis is based on my original work except for the quotations and citations which have been duly acknowledged. I also declare that it has not been previously or currently submitted for any other degree at Universiti Putra Malaysia or other institution.

ACHENEF MELAKU BEYENE

Date:

Tables of Contents

ABSTRACT	ii
ADSIKACI	
ABSTRAK	vi
ACKNOWLEDGMENTS	ix
APPROVAL	xi
DECLARATION	xiii
LIST OF TABLES	xvii
LIST OF FIGURES	xviii
LIST OF APPENDICES	XX
LIST OF ABBREVIATIONS AND SYMBOLS	xxi

CHAPTER

Ι	GEN	ERAL INT	RODUCTION	1
Π	LITE	RATURE	REVIEW	4
	2.1	Lipids a	nd Fatty Acids	4
		2.1.1	General Characteristics of Lipids	4
		2.1.2	Significance of Lipids	5
		2.1.3	Lipid Metabolism in the Rumen	6
		2.1.4	Chemical Structure and Occurrence of	
			Conjugated Linoleic Acids	9
		2.1.5	Biosynthesis of Conjugated Linoleic	
			Acids	11
		2.1.6	Factors affecting Conjugated Linoleic	
			Acids Concentration in Tissues	14
		2.1.7	Analysis of Conjugated Linoleic Acids	15
	2.2	Cancer		17
		2.2.1	Initiation of Cancer	18
		2.2.2	Treatment of Cancer and	
			Anticarcinogens	23
		2.2.3	Breast Cancer	24
		2.2.4	Colon Cancer	25
		2.2.5	Liver Cancer	27
		2.2.6	Conjugated Linoleic Acids and Cancer	28

		2.2.7	Anticarcinogenic Mechanisms of	
			Conjugated Linoleic Acid	29
		2.2.8	Conjugated Linoleic Acid and Safety	32
Ш	LEVI	ELS OF CO	ONJUGATED LINOLEIC ACIDS IN KEDAH	[_
	KELA	ANTAN CA	ATTLE	33
	3.1	Introdu	ction	33
	3.2	Materia	ls and Methods	35
		3.2.1	Animals and Sample Collection	35
		3.2.2	Total Lipid Extraction	36
		3.2.3	Methylation of Fatty Acids	37
		3.2.4	Gas Chromatography	39
		3.2.5	Statistical Analysis	40
	3.3	Results		41
		3.3.1	Fatty acid profile for Liver, Muscles	
			and Rumen Liquor	41
		3.3.2	Conjugated Linoleic Acids in Liver,	
			Muscles and Rumen Liquor	45
	3.4	Discuss	ion	49
		3.4.1	Conjugated Linoleic and Other Fatty	
			Acids in Liver and Muscles	49
		3.4.2	Conjugated linoleic Acids in Rumen	
			Liquor	54
IV			EFFECTS OF SELECTED	
			D LINOLEIC ACID ISOMERS ON	
		CER CELI		56
	4.1	Introdu		56
	4.2		ls and Methods	58
		4.2.1	Cell Culturing and Maintenance	58
		4.2.2	Microculture Tetrazolium (MTT) Assay	59
		4.2.3	Acridine Orange/Propidium Iodide	
			Staining	61
		4.2.4	Terminal Uridyltransferase Nick End	
			Labelling (TUNEL) Assay	62
		4.2.5	Statistical Analysis	65

	4.3	Results		66
		4.3.1	Effect of Conjugated Linoleic Acids on	
			the Viability of Cancer Cell Lines	66
		4.3.2	Assessment of Apoptosis Induction by	
			Conjugated Linoleic Acids	71
	4.4	Discuss	sion	82
V	CON	CLUSION	S AND RECOMMENDATIONS FOR	
	FUTU	URE RESE	EARCH	90
	5.1	Conclu	sions	90
	5.2	Recom	mendations for Future Research	92
REFERE	NCES			94
APPENDICES			104	
BIODATA OF THE STUDENT				113
PUBLICA	TIONS			115

LIST OF TABLES

Table		Page
1	Proportion of total and saturated fat with respect to CLAs in fatty and lean beef	11
2	Fatty acid profile of liver	42
3	Fatty acid profile of <i>semimembranosus</i> , <i>longissimus dorsi</i> and <i>superficial pectoral</i> muscles	43
4	Fatty acid profile of rumen liquor	44
5	Conjugated linoleic acid concentration and isomeric composition in tissues and rumen liquor	48
6	The mean IC_{50} value of CLA isomers an on MCF7, HepG2 and HT-29 cancer cell lines	66

LIST OF FIGURES

Figure		Page
1	Rumen Lipid Metabolism Showing Key Steps in the Conversion of Plant Lipids to CLA Isomers as Intermediate and Octadecanoic Acid as End-Products	8
2	Chemical Structure of Octadecadienoic Acid and Its Common Isomers	9
3	Schematic Molecular Structure Depicting Octadecadienoic Acid and Its Main Isomers	10
4	Lipid Metabolism in the Rumen and the Origins of CLA in Ruminant Products	13
5	Cell Cycle and Key Checkpoints in Eukaryotic Cells	19
6	Simplified Outline of Carcinogenesis	22
7	Schematic Diagram Showing How CLAs May Modulate the Cell Cycle and Apoptosis	31
8	Viability of MCF7 Cancer Cells Following Treatment with CLA Isomers and Tamoxifen for 72 Hours	67
9	Viability of HepG2 Cancer Cells after Treatment with CLA Isomers and 5-Fluorouracil for 72 Hours	68
10	Viability of HT-29 Cancer Cells in Culture after Treatment with CLA Isomers and 5-Fluorouracil for 72 Hours	70

11	HepG2 Cells Stained with AO/PI Following Treatment with CLA Isomers and 5-Fluorouracil at Their Respective IC_{50} for 72 Hours as Viewed under Fluorescent Microscope	73
12	MCF7 Cells Stained with AO/PI Following Treatment with CLA Isomers and Tamoxifen at Their Respective IC_{50} for 72 Hours as Viewed under Fluorescent Microscope	74
13	TUNEL Positive MCF7 Cells Following Treatment with CLA Isomers and Tamoxifen at Their Respective IC_{50} for 72 Hours as Viewed under Fluorescent Microscope	76
14	TUNEL Positive HepG2 Cells Following Treatment with CLA Isomers and 5-Fluorouracil (5-FU) at Their Respective IC_{50} for 72 Hours as Viewed under Fluorescent Microscope	77
15	Percentage of Apoptotic HepG2 Cells Following Treatment with CLA Isomers and 5-Fluorouracil at Their Respective IC_{50} for 72 Hours	78
16	Percentage of Apoptotic MCF7 Cells Following Treatment with CLA Isomers and Tamoxifen at Their Respective IC_{50} for 72 Hours	79
17	Cell Cycle Phase Status of HepG2 Cells Following Treatment with CLA Isomers and 5-Fluorouracil at Their Respective IC_{50} for 72 Hours	80
18	Cell Cycle Phase Status of MCF7 Cells Following Treatment with CLA Isomers and Tamoxifen at Their Respective IC_{50} for 72 Hours	81

LIST OF APPENDICES

Appendix		Page
А	Important Naturally Occurring Fatty Acids in Animal Products	104
В	Concentration of Conjugated Linoleic Acid and Linoleic Acid in Representative Foodstuff	105
С	Gross Colour Appearance of MTT Reagent after 4 Hours of Incubation of Treated Cells with CLA Isomers	106
D	Flow Cytometric Histogram of Apoptotic and Non-Apoptotic HepG2 Cells Following Treatment with CLA Isomers and 5- Fluorouracil	107
E	Flow Cytometric Histogram of Apoptotic and Non-Apoptotic MCF7 Cells Following Treatment with CLA Isomers and Tamoxifen	108
F	Flow Cytometric DNA Content Histograms of HepG2 Cells Following Treatment with CLA Isomers and 5-Fluorouracil	109
G	Flow Cytometric DNA Content Histograms of MCF7 Cells Following Treatment with CLA Isomers and Tamoxifen	110
Н	Cancer Cell Lines Used in This Study as Viewed under Phase Contrast Microscope	111
Ι	Questionnaire to Collect Data at the Abattoirs during Sampling	112

LIST OF ABBREVIATIONS AND SYMBOLS

%	Percent
Δ^9	Delta 9
°C	degree Celsius
μL	microlitre
5-FU	5-Fluorouracil
ACS	American Cancer Society
ANOVA	Analysis of Variance
AOAC	Association of Official Analytical Chemists
AO/PI	Acridine Orange/Propidium Iodide
ATCC	American Type Culture Collection
BHT	Butylated Hydroxytoluene
BrdUTP	5-Bromo-2'-deoxyuridine-5'-triphosphate
С	cis
<i>c</i> 12	cis-12
<i>c</i> 9	cis-9
<i>c</i> 9, <i>t</i> 11 CLA	cis-9,trans-11 isomer of Conjugated Linoleic Acid
Cdk	Cyclin dependent kinase
CLAs	Conjugated Linoleic Acids
cm	centimetre
CO ₂	Carbon dioxide
DMSO	Dimethyl Sulphoxide
DNA	Deoxyribonucleic Acid
ed.	Edition
EDTA	Ethylenediaminetetraacetic acid
FAME	Fatty Acid Methyl Ester

FBS	Foetal Bovine Serum
FID	Flame Ionization Detector
g	gram
GC	Gas Chromatography
Go	resting /quiescent/ phase of the cell cycle
G_1	Gap /growth/ one phase of cell cycle
G ₂	Gap /growth/ two phase of cell cycle
HepG2	Human hepatoma cell line
HT - 29	Colon cancer cell line
IAEA	International Atomic Energy Agency
IC ₅₀	Median (50 %) Inhibitory Concentration
kcal/g	kilocalorie per gram
kJ/g	kilojoule per gram
KK	Kedah-Kelantan
m	metre
М	Mitosis phase of the cell cycle
MCF7	Breast Cancer Cell Line
mg/g	milligram per gram
mg/mL	milligram per millilitre
mL	millilitre
mm	millimetre
MTT Assay	3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide
	/Microculture Tetrazolium/ Assay
MUFA	Monounsaturated Fatty Acids
n-3 PUFA	Omega 3 Polyunsaturated Fatty Acids
n-6 PUFA	Omega 6 Polyunsaturated Fatty Acids
nm	nanometre

PBS	Phosphate Buffer Saline
PCD	Programmed Cell Death
рр	Page
PUFA	Polyunsaturated Fatty Acids
RNA	Ribonucleic Acid
rpm	revolution per minute
S	Synthesis phase of the cell cycle
SFA	Saturated Fatty Acid
SD	Standard Deviation
SPSS	Statistical Package for the Social Sciences
t	trans
<i>t</i> 10	trans-10
<i>t</i> 10, <i>c</i> 12 CLA	trans-10, cis-12 Isomer of Conjugated Linoleic acid
<i>t</i> 11	trans-11
<i>t</i> 9	trans-9
<i>t</i> 9, <i>t</i> 11 CLA	trans-9, trans-11 Isomer of Conjugated Linoleic acid
Tam	Tamoxifen
TdT	Terminal deoxynucleotidyl Transferase
TUNEL	Terminal Uridyltransferase Nick End Labelling
U/mL	Unit per millilitre
UPM	Universiti Putra Malaysia
\mathbf{V}/\mathbf{V}	Volume per Volume
WHO	World Health Organization
w/v	Weight per Volume
w/w	Weight per Weight
μg/mL	microgram per millilitre
μm	micrometre
µmol/L	micromole per litre

CHAPTER I

GENERAL INTRODUCTION

Cancer continues to be one of the major causes of death worldwide and only limited progress has been made in reducing the morbidity and mortality caused by this dreadful disease. Studies have shown that the best way of fighting cancer involves multiranged approach encompassing dietary, management, with continuous screening for new remedies including those from diets. This is because dietary substances could contain bioactive compounds that may play role in chemoprevention and/or chemotherapy of cancer. One set of these bioactive compounds derived mainly from ruminant meat and milk products are conjugated linoleic acids (CLAs). Conjugated linoleic acids are group of geometrical and positional isomers of octadecadienoic (18:2) acid. Conjugated linoleic acids were discovered by Pariza and his co-workers in 1979 (Cook and Pariza, 1998) and since then, CLAs have been the subject of numerous investigations. In vivo and in vitro studies have shown that CLAs have anticarcinogenic, antioxidant, antiatherosclerotic and antidiabetic effects (Bhattacharya et al., 2006). Experimental models have been extended to include the positive role of CLAs on body composition, immune system and bone health (Bhattacharya et al., 2006; MacDonald, 2000). Hence, CLAs are unique and fascinating fatty acids that attract the interest of scholars in animal husbandry, nutrition and health fields.

