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DEVELOPMENT OF A RECOMBINANT RETROVIRUS EXPRESSING THE 
CHICKEN ANAEMIA VIRUS VP3 PROTEIN 

 

By 

SURIA MOHD SAAD 

September 2006 

 

Chairman : Professor Mohd Azmi Mohd Lila, PhD 

Faculty :      Veterinary Medicine 

 

Retrovirus is an infectious particle, hence it could be used as an efficient vector to 

deliver a desired gene product into mammalian cells. In this study, a recombinant viral 

vector was employed to carry a gene that induces apoptosis in various transformed and 

cancerous cell lines. The VP3 gene was cloned into pMSCV plasmid and the 

recombinant was used to transfect a packaging cell line to produce infectious 

replication-incompetent recombinant VP3-retrovirus. The sequence of the full length 

ORF encoding VP3 gene is similar to that of the reference CAV Cux-1 strain indicating 

that the VP3 gene was stably integrated into the RNA genome of the recombinant 

retrovirus. Real-time RT-PCR analysis showed virus production in packaging cells 

increased from day one, but gradually decreased on day three and day four and 

eventually were undetectable on day five post-infection. The number of packaging cells 

undergoing apoptosis was shown to be directly associated with recombinant VP3-

retrovirus replication and the rate of cell-to-cell infection. Cells infected by recombinant 
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VP3-retrovirus expressed the VP3 protein in transformed and cancerous cell lines as 

confirmed by indirect immunoperoxidase assay using anti-VP3 monoclonal antibody. 

The VP3 protein was detected primarily in the nucleus of infected cells, the site in which 

the protein is believed to initiate the cascade of programmed cell death or apoptosis. 

Apoptotic genomic DNA cleavage of the transformed cells was observed. Terminal 

deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay 

confirmed the occurrence of apoptosis following infection by the recombinant VP3-

retrovirus. This study demonstrated the potential application of recombinant VP3-

retrovirus in cancer therapy. The current recombinant VP3-retrovirus construct may 

serve as an excellent prototype for the generation of alternative therapy to prevent the 

progressive growth of many types of cancer cells.  
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VP3 VIRUS ANAEMIA AYAM 
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Pengerusi : Profesor Mohd Azmi Mohd Lila, PhD 

Fakulti : Perubatan Veterinar 

 

Retrovirus adalah partikel berjangkit, maka ia boleh digunakan sebagai vektor efisien 

untuk membawa produk gen yang diingini ke dalam sel-sel mamalia. Dalam kajian ini, 

vektor virus rekombinan digunakan untuk membawa gen yang meransang apoptosis 

dalam pelbagai lapisan sel terubah dan sel kanser. Gen VP3 diklonkan ke dalam plasmid 

pMSCV dan rekombinan digunakan untuk menjangkiti lapisan sel pembungkusan untuk 

menghasilkan VP3-retrovirus rekombinan berjangkit tidak mampu-mereplikasi. 

Penjujukan panjang keseluruhan rangka pembacaan terbuka pengkodan gen VP3 adalah  

sama dengan baka CAV Cux-1 rujukan menunjukkan yang gen VP3 secara stabil 

disatukan ke dalam genom RNA retrovirus rekombinan. Analisis RT-PCR masa-sebenar 

menunjukkan penghasilan virus dalam sel pembungkusan meningkat daripada hari 

pertama, tetapi menurun secara perlahan-lahan pada hari ketiga dan keempat dan 

akhirnya tidak dapat dikesan pada hari kelima selepas jangkitan. Bilangan sel 

pembungkusan menjalani apoptosis berkadar lansung dengan replikasi VP3-retrovirus 
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rekombinan dan kadar jangkitan sel ke sel. Sel-sel yang dijangkiti oleh VP3-retrovirus 

rekombinan mengekspreskan protein VP3 seperti yang disahkan melalui ujian 

immunoperoksidase tidak lansung menggunakan antibodi monoklonal anti-VP3. Protein 

VP3 dikesan terutamanya dalam nukleus sel-sel terjangkit, tempat dimana protein 

dipercayai memulakan urutan kematian sel terprogram atau apoptosis. Pemotongan 

DNA genomik apoptotik sel-sel terubah diperhatikan. Ujian perlabelan hujung celah 

perantaraan-transferase deoksinukleotidil terminal dUTP (TUNEL) mengesahkan 

kejadian apoptosis berikutan jangkitan oleh VP3-retrovirus rekombinan. Kajian ini 

menunjukkan potensi aplikasi VP3-retrovirus rekombinan dalam terapi kanser. 

Pembinaan VP3-retrovirus rekombinan terkini boleh bertindak sebagai prototaip terbaik 

terapi alternatif untuk mencegah pertumbuhan progresif pelbagai jenis sel kanser.  
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TCID50 Tissue culture infective dose at 50% 

TdT Terminal deoxynucleotidyl transferase 

TE Tris-EDTA 

TGFβ Transforming growth factor-beta 

TNFα Tumour necrosis factor-alpha 

TUNEL TdT-mediated dUTP Nick-End Labeling 

U Unit 

UPM Universiti Putra Malaysia 

UV Ultraviolet 

V Volt 

VERO African green monkey kidney cell 

v/v Volume per volume 
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