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Spatial statistics has received much attention in the last three decades and has 

covered various disciplines. It involves methods which take into account the 

locational information for exploring and modelling the data. Many models have 

been considered for spatial processes and these include the Simultaneous 

Autoregressive model, the Conditional Autoregressive model and the Moving 

Average model. However, most researchers focused only on first-order models. In 

this thesis, a second-order spatial unilateral Autoregressive Moving Average 

(ARMA) model, denoted as ARMA(2,1;2,1) model, is introduced and some 

properties of this model are studied. This model is a special case of the spatial 

unilateral models which is believed to be useful in describing and modelling spatial 

correlations in the data. It is also important in the field of digital filtering and 

systems theory and for data whenever there is a natural ordering to the sites. 

 

Some explicit stationarity conditions for this model are established and some 

numerical computer simulations are conducted to verify the results. The general 
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explicit correlation structure for this model over the fourth quadrant is obtained 

which is then specialised to AR(2,1), MA(2,1) and the second-order separable 

models. The results from simulation studies show that the theoretical correlations are 

in good agreement with the empirical correlations. A procedure using the maximum 

likelihood (ML) method is provided to estimate the parameters of the AR(2,1) 

model. This procedure is then extended to the case of spatial AR model of any order. 

For the AR(2,1) model, in terms of the absolute bias and the RMSE value, the 

results from simulation studies show that this estimator outperforms the other 

estimators, namely the Yule-Walker estimator, the ‘unbiased’ Yule-Walker 

estimator and the conditional Least Squares estimator. The ML procedure is then 

demonstrated by fitting the AR(1,1) and AR(2,1) models to two sets of data. Since 

the AR(2,1) model has the second-order terms which are only in one direction, two 

types of data orientation are taken into consideration. The results show that there is a 

preferred orientation of these data sets and the AR(2,1) model gives better fit. 

Finally, some directions for further research are given. 

 

In this research, inter alia, the field of spatial modelling has been advanced by 

establishing the explicit stationarity conditions for the ARMA(2,1;2,1) model, by 

deriving the explicit correlation structure over the fourth lag quadrant for 

ARMA(2,1;2,1) model and its special cases and by providing a modified practical 

procedure to estimate the parameters of the spatial unilateral AR model. 
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Februari 2005 

 

Pengerusi: Mahendran Shitan, PhD 
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Statistik reruang mula mendapat lebih perhatian semenjak tiga dekad lalu dan ia 

mencakupi pelbagai disiplin ilmu. Statistik ini melibatkan kaedah-kaedah yang 

mengambilkira maklumat lokasi dalam menjelajah dan memodel data reruang. 

Banyak model yang telah dipertimbangkan bagi proses reruang termasuk model 

autoregresi serentak, model autoregresi bersyarat dan model purata bergerak. Namun 

demikian, hampir kesemua kajian ditumpukan pada model peringkat pertama. 

Dalam tesis ini, model reruang sesisi autoregresi purata bergerak (ARMA) peringkat 

kedua, ditulis sebagai ARMA(2,1;2,1) diperkenalkan dan sifat-sifatnya dikaji. Ia 

adalah kes istimewa model reruang sesisi yang bermanfaat dalam menerang dan 

memodel korelasi reruang yang wujud dalam data. Ia juga penting dalam ilmu 

penyaringan digital dan sistem teori dan bilamana terdapat penertiban semulajadi 

pada tapak data. 

 

Beberapa syarat tak tersirat bagi kepegunan model ini diperolehi dan keputusan 

disahkan dengan ujian simulasi komputer berangka. Struktur korelasi tak tersirat 
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bagi model ini berserta kes-kes khasnya seperti model AR(2,1), model MA(2,1) dan 

model-model terpisahkan peringkat kedua diperolehi bagi sukuan keempat jeda. 

Keputusan ujian simulasi menunjukkan bahawa struktur korelasi yang diperolehi ini 

berpadanan dengan korelasi empirik. Prosedur penganggaran menggunakan kaedah 

kebolehjadian maksimum (ML) diperolehi bagi menganggar parameter model 

AR(2,1). Prosedur ini kemudiannya diperluaskan kepada model reruang sesisi 

autoregresi (AR) sebarang peringkat. Bagi model AR(2,1), kajian simulasi 

menunjukkan kaedah ML ini adalah lebih baik secara keseluruhannya berbanding 

kaedah-kaedah lain seperti Yule-Walker (YW), YW saksama dan kuasa dua terkecil 

bersyarat berdasarkan nilai pincang mutlak dan punca min ralat kuasa dua.  Kaedah 

ML ini didemonstrasi dengan menyuai model AR(1,1) dan model AR(2,1) pada dua 

set data. Memandangkan model AR(2,1) mengandungi sebutan-sebutan peringkat 

kedua pada satu arah sahaja, dua jenis orientasi data dipertimbangkan. Kajian 

mendapati orientasi yang berbeza memberikan keputusan yang berbeza dan secara 

amnya model AR(2,1) adalah lebih baik bagi dua set data ini. Akhir sekali, beberapa 

arahtuju bagi penyelidikan lanjut dicadangkan. 

 

Dalam penyelidikan ini, ilmu permodelan reruang dimajukan antaranya dengan 

menyediakan syarat-syarat kepegunan tak tersirat bagi model ARMA(2,1;2,1), 

dengan menerbitkan struktur korelasi tak tersirat bagi sukuan keempat jeda untuk 

model ini dan kes-kes khasnya, dan dengan menyediakan prosedur terubahsuai yang 

praktikal untuk menganggar parameter model reruang sesisi AR. 
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CHAPTER 1 

 

INTRODUCTION 

 

Spatial statistics has received much attention in the last three decades and interest in 

this area is increasing rapidly. A large amount of research in modelling spatial 

processes has been conducted and they have covered various applications. Spatial 

statistics involves methods which take into account the locational information for 

exploring and modelling the data.  

 

Many observed phenomena are spatial in nature. For examples, the spread of 

infectious diseases, rainfall, ore grade in mining blocks, tumour growth and plant 

yields in agricultural experiments or plantation. It is believed that data which are 

close together tend to be alike than those which are far apart. In contrast to the non-

spatial models, the spatial models admit this spatial variation into the generating 

mechanism. 

 

In this introductory chapter, some background on spatial processes, the statement of 

problems, list of the research objectives and the outline of the thesis structure are 

given. 
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1.1 Introduction to Spatial Processes                                                                                                     

 

A formal definition of spatial series is a sequence of d-dimensional random variables 

{ }AXYX ∈,  on a probability space ( )PF ,,Ω , where A is a denumerable subset of 

R
d
 (Tjøstheim, 1993). A process which generates such random variables is called a 

spatial process. Spatial processes have been analysed and studied in wide varieties of 

disciplines such as agriculture field trials (Kempton and Howes, 1981, Gleeson and 

Cullis, 1987, Cullis et. al, 1989, Martin, 1990 and Cullis and Gleeson, 1991), 

business microdata (Franconi and Stander, 2003), plant ecology (Besag, 1974), 

geography (Cliff and Ord, 1981 and Bronars and Jansen, 1986), geology (Cressie, 

1993), biology, image processing, meteorology and so on.  

 

Most studies on spatial processes are focused on two-dimensional cases although 

there has been some work for general d-dimensional processes (Tjøstheim, 1978 and 

1983 and Guyon, 1982). In recent years, there has been an interest examining 

processes on higher dimensions, for example, a three-dimensional process 

considered by Martin (1997). 

 

There are many types of spatial data and they are classified according to  

i) whether the associated random variables are continuous or discrete,  

ii) whether they are spatial aggregations or observations at points in space,  

iii) whether their spatial locations or system of sites regular or irregular, and  

iv) whether those locations are from a spatial continuum or a discrete set.  
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Besag (1974) discussed broadly and provided many examples of various kinds of 

spatial data. Generally, spatial data may be categorised into three main classes 

namely, geostatistical data, lattice data and point patterns (Cressie, 1993) as 

explained in the following paragraphs.  

 

The data are called geostatistical data if they are indexed over continuous space, or 

by a formal definition, if A is a fixed subset of R
d
 and XY  is a random variable at 

location AX ∈ . The word geostatistics is meant by a hybrid discipline of mining 

engineering, geology, mathematics and statistics. It recognises spatial variability for 

both large scale (trend) and small scale (correlation). Trend-surface methods deal 

with large scale variation and assume the errors are independent. Some examples of 

geostatistical data are the soil pH in water, rainfall and mining data, for instance, 

ore-reserve in a mining field which is important in analysing and predicting the ore 

grade in a mining block (i.e. kriging). 

 

For the processes which are indexed over lattices in space, the data are called the 

lattice data. In this case, A is a fixed (regular or irregular) subset of Z
d
, where Z is 

the set of integers, and XY  is a random variable at location AX ∈ . Some examples 

include grid data obtained from remote sensing (Kiiveri and Campbell, 1989) and 

field trials (Modjeska and Rawlings, 1983 and Besag and Kempton, 1986). A spatial 

data on regular lattice is analogous to a time series observed at equally spaces time 

points. 
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When A is a point process in R
d
 or a subset of R

d
 and XY  is a random variable at 

location AX ∈ , we obtain the point patterns. In this case, the important variable to 

be analysed is the location of ‘events’ and we examine whether the pattern is 

exhibiting complete spatial randomness, clustering or regularity. Examples include 

spread of infectious diseases and tumour growth. 

 

In this thesis, spatial lattice processes on two-dimensional regular grid are 

considered. 

 

1.2 Statement of Problems 

 

Although a spatial series may be considered as a generalisation of time series, 

analyzing it is considerably more difficult (Tjøstheim, 1978), including estimating 

the parameters of the models. Unlike time series which is unidirectional following a 

natural distinction made between past and present, dependence in spatial series 

extends in all directions.  

 

Spatial series encounter larger proportion of edge effects compared to time series 

and hence, analysing the data is not easy due to substantial mathematical and 

computational difficulties. This problem has been discussed in Whittle 

(1954), Besag (1972 and 1974), Ord (1975), Haining (1978a, b), Martin 

(1979 and 1990), Tjøstheim (1978 and 1983), Guyon (1982), Dahlhaus and 

Kunsch (1987) and Kiiveri and Campbell (1989). To overcome this problem, 

Haining (1978a) and Gleeson and McGilchrist (1980) considered the 

likelihood methods conditional on  


