

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF A SOLID – BASED PAPER STRIP ASSAY FOR RAPID DIAGNOSIS OF PSEUDORABIES

TAM YEW JOON

FPV 2004 17

DEVELOPMENT OF A SOLID – BASED PAPER STRIP ASSAY FOR RAPID DIAGNOSIS OF PSEUDORABIES

By

TAM YEW JOON

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2004

This thesis is especially dedicated to my beloved "Ah Ma", family and friends.....

May all of your hopes, remembrance and memories live on forever......

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

DEVELOPMENT OF A SOLID – BASED PAPER STRIP ASSAY FOR RAPID DIAGNOSIS OF PSEUDORABIES

By

TAM YEW JOON

May 2004

Chairman: Professor Abdul Rani Bahaman, Ph.D.

Faculty: Veterinary Medicine

Pseudorabies (Aujeszky's disease) is an economically significant disease of swine known to cause central nervous disorders, respiratory disease, reproductive failure and mortality in infected pigs. In attempts to eradicate the disease from becoming endemic, early detection is important to prevent further economic losses and to allow for detection and removal of infected pigs in domestic herds. Thus, a rapid and sensitive technique is necessary for the detection of the virus. For rapid and simple examination, an immuno – chromatographic lateral – flow assay system based on immunologic recognition of specific pseudorabies virus antigen was developed by utilising, as signal generator, colloidal gold conjugated to secondary antibody to detect primary or sample antibody in the sera of pseudorabies infected animals. The pseudorabies virus used as a capture antigen in the test strip was first cultivated in VERO cell culture and then purified by sucrose gradient separation to produce the viral protein concentration of 3.8 mg/ml. A sample of the antigen stock was then subjected to SDS PAGE protein analysis. Minor differences were noted between

the sample proteins and reported protein profile of pseudorabies virus. The standard pseudorabies antigens reacted well with the hyperimmune serum (HIS).

The antibody detection system is basically composed of colloidal gold – labelled antibodies fixed on a conjugate pad, and the complementary pseudorabies antigen immobilised onto a nitrocellulose membrane forming capture zone. If the target antibody is present in a specimen, the colloidal goldlabelled antibody will form a complex with the antibody sample. Subsequently, the formed complex will migrate to the capture zone and is then bound to the solid phase via antigen – antibody interaction. As a result, a signal marker is generated by the accumulation of colloidal gold for detection confirmation.

The results obtained demonstrated that the optimum combination of pseudorabies antigen needed as the capture reagent and gold conjugate as secondary antibody recognition marker was at a concentration of 0.38mg/ml and at 1:10 dilution factor respectively. The sensitivity of the solid – based test strip towards pseudorabies antibodies was high with a detection limit of 1 to 10,000 – dilution factor. The specificity of the assay was 100% with no cross – reaction being observed with other sera or antibodies. Accurate reading time needed for confirmation of the assay can be completed in 5 min with a whole blood sample of 25 μ l. The colloidal gold – labelled antibody is stable at room temperature for 6 months or more.

Findings from this study indicated that the solid – based test strip assay system provided high sensitivity and specificity for the detection of pseudorabies at low levels of antibody concentration. The assay was rapid, simple, cheap, and does not require any sophisticated equipment. Thus, the solid based test strip will be a useful serological screening technique or for rapid diagnosis of an infectious disease in target populations of animals characterised by heterogeneous antibody responses.

v

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMBINAAN ESEI JALUR KERTAS BERASAS PEPEJAL DIAGNOSIS YANG PANTAS UNTUK PENGESANAN PSEUDORABIES

Oleh

TAM YEW JOON

Mei 2004

Pengerusi: Profesor Abdul Rani Bahaman, Ph.D.

Fakulti: Perubatan Veterinar

Pseudorabies (penyakit Aujeszky's) adalah penyakit yang amat penting dari segi ekonomi di dalam industri babi. Sebagaimana yang dilapori, penyakit ini mengakibatkan masalah saraf pusat, penyakit respirasi, kegagalan reproduksi dan kematian di kalangan haiwan yang dijangkiti. Dalam cubaan menghalang penyakit ini daripada menjadi endemik, pengesanan awal mesti diperolehi untuk mengenalpasti dan mengasingkan haiwan berjangkit daripada kelompok peliharaan. Dengan itu, satu teknik diagnosis yang pantas, ringkas dan peka adalah amat diperlukan untuk pengesanan virus ini.

Bagi mendapatkan pengesanan yang pantas dan mudah, satu teknik immunokromatograf sistem esei aliran lateral berpandukan pengecaman immunologi secara spesifik kepada pseudorabies dikaji dengan menggunakan zarah emas sebagai pembekal isyarat, yang berkonjugat kepada anti tikus untuk mengesan antibodi yang terdapat pada serum haiwan yang telah dijangkiti virus pseudorabies.

Antigen yang digunakan sebagai bahan penangkapan, terdahulu dibiak dan ditulenkan dengan pisahan kecerunan sukrose untuk pengeluaran protin pseudorabies yang berkepekatan 3.8 mg/ml. Daripada stok protin ini, sampel diambil dan diuji dengan kaedah SDS PAGE dan kandungan profilnya dibandingkan untuk pengesahan virus. Berpandukan kepada keputusan yang didapati, tiada perbezaan besar dijumpai diantara sampel yang diuji berbanding profil yang telah dilaporkan. Antigen pseudorabies menunjukkan tindakbalas imunogen yang baik kepada serum hiperimun (HIS) yang diperolehi.

Peranti ini pada asasnya terdiri daripada zarah emas yang berkonjugat kepada antibodi dipasang pada lapisan konjugat, dan antigen pseudorabies digerakan pada membran nitroselulosa untuk membentuk zon penangkapan. Jika antibodi yang dihendaki berada di dalam sampel, zarah emas berkonjugat akan membentuk kompleks dengannya dan akan berpindah kepada bahagian zon penangkapan. Di sini, kompleks emas berkonjugat dan antibodi daripada sampel akan diikat pada antigen pseudorabies melalui interaksi antigen – antibodi. Sebagai keputusan, satu isyarat akan dapat dilihat hasil daripada pengumpulan zarah – zarah emas tersebut menunjukkan pengesahan pengesanan.

Keputusan yang didapati menunjukkan bahawa kombinasi yang optimum diantara konsentrasi antigen pseudorabies yang diperlukan sebagai bahan penangkapan dan zarah emas berkonjugat sebagai pembekal isyarat adalah pada kepekatan 0.38mg/ml dan 1:10 faktor pencairan. Kepekaan jalur ujian berasas pepejal ini terhadap antibodi pseudorabies adalah tinggi dengan had pengesanan

pada 1:10,000 faktor pencairan. Spesifikasi esei ini adalah 100% dengan ketiadaan perentasan reaksi diantara sera atau antibodi yang lain. Masa yang diperlukan untuk pengesanan yang tepat untuk peranti ini adalah 5 minit dengan sampel darah minima berjumlah 25 μ l. Zarah emas berkonjugat yang digunakan dapat berada di dalam keadaan stabil pada suhu bilik pada sekurang – kurang 6 bulan atau lebih.

Kesimpulannya, keputusan yang didapati menunjukkan sistem jalur ujian berasa pepejal esei ini mempunyai kepekaan yang tinggi dan spesifikasi yang baik untuk pengesanan penyakit Pseudorabies. Peranti esei ini adalah pantas, senang dan murah untuk digunakan, dan juga tidak memerlukan sebarang perkakas atau alat tambahan. Oleh itu, sistem jalur ujian berasas pepejal adalah lebih berguna untuk mendiagnosis serologi penyaringan jangkitan penyakit dalam populasi haiwan sasaran berciri daripada respon antibodi heterogenus.

ACKNOWLEDGEMENTS

I would like to sincerely acknowledge and thank member of the Supervisory Committee, Professor Dr. Abdul Rani Bahaman, Professor Dr. Mohd. Zamri Saad and Professor Dr. Mohd. Azmi Mohd. Lila, for their continuous guidance, support and prompt helpful advice whenever required on this project.

My deepest appreciations go to members of the Virology lab, Lai, Zeenat, Zuridah, Sandy, Lee Shun, Chan, Yap, Dr. Phong, John, Yatie and Suria for their excellent assistance and patience not to mention thoughtful comments and friendship for during my temporary stay at the lab. My appreciation also goes to the members of Molecular Biology Lab, Cheng and Narumon for their unlimited help during my study years. Special thanks go to Mr. Kamaruddin, Mr. Zainuddin and Mr. Jeffrey for their kind help.

My gratitude and respect goes out to the Universiti Putra Malaysia for providing the Graduate Research Assistantship (GRA) and as always, much love and appreciation to my parents, Sis May and Swee Tin for their unlimited support, sacrifices and patience.

This study was supported by IRPA Grant No. 54001 from the Ministry of Science, Technology and the Environment, Malaysia.

I certify that an Examination Committee met on 12th May 2004 to conduct the final examination of Tam Yew Joon on his Master of Science thesis entitled "Development of a Solid – Based Paper Strip Assay for Rapid Diagnosis of Pseudorabies" in accordance with Universiti Pertanian (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

DATO' MOHAMED SHARIFF MOHAMED DIN, Ph.D.

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Chairman)

ABDUL RANI BAHAMAN, Ph.D.

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Member)

MOHD ZAMRI BIN SAAD, Ph.D.

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Member)

MOHD AZMI MOHD LILA, Ph.D.

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Member)

GULAM RUSUL RAHMAT ALI, Ph.D.

Professor/ Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Х

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

ABDUL RANI BAHAMAN, Ph.D.

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Chairman)

MOHD ZAMRI BIN SAAD, Ph.D.

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Member)

MOHD AZMI MOHD LILA, Ph.D.

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Member)

AINI IDERIS, Ph.D.

Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

TAM YEW JOON

Date:

TABLE OF CONTENTS

	Page
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	Х
DECLARATION	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	xix

CHAPTER

1	INT	RODUCTION	1
	1.1	Objectives of the Study	4
2	LIT	ERATURE REVIEW	5
	2.1	Introduction of Pseudorabies (Aujeszky's) Disease	5
	2.2	Nature of the Virus	5
		2.2.1 Virus Classification	5
		2.2.2 Virus Morphology	6
		2.2.3 Pathogenesis of Pseudorabies	6
		2.2.4 Mode of Spread (Infection Pathway)	10
	2.3	Approaches to the Diagnosis of Pseudorabies	11
		2.3.1 Enzyme Linked Immunosorbent Assay (ELISA)	12
		2.3.2 Polymerase Chain Reaction (PCR)	14
	2.4	Immuno – detection	16
		2.4.1 Signal Recognition	17
		2.4.1.1 Radioactive Markers	17
		2.4.1.2 Enzyme Markers	17
		2.4.1.3 Dye Markers	19
		2.4.1.4 Gold Markers	20
	2.5	Immuno – chromatography Test Strips	23
	2.6	Biosensors	26
		2.6.1 Affinity Biosensors	28
		2.6.2 Enzyme Biosensors	30
		2.6.3 Transmembrane Biosensors	31
		2.6.4 Cell Biosensors	32
	2.7	Biosensor and Immuno – chromatography Test Strips	32

MAT	TERIAL AND METHODS	34
3.1	General Methods	34
3.2	Chemical and Media	34
3.3	Virus Isolates	34
3.4	Virus Propagation	35
3.5	Virus Harvesting	35
3.6	Virus Purification	36
3.7	Titration of Virus Stock	36
3.8	Plaque Assay	37
3.9	Virus Growth Curve	38
3.10	Preparation of Mouse Hyper Immune Sera	39
3.11	ELISA Determination of Hyper Immune Serum	40
3.12	Sodium Dodecyl Sulphate - Polyacrylamide Gel	
	Electrophoresis (SDS-PAGE)	42
3.13	Western Blotting	43
3.14	Immobilisation	45
3.15	Construction of Analytical System	46
3.16	Analytical Procedure	48
3.17	Detection and Quantitation	48
3.18	Antigen Concentration in the Immunoassay	49
3.19	Effects of Antigen Purity in Immunoassay	49
	Determination of Optimal Concentration of Conjugate	50
	Sensitivity	50
	Specificity	51
	Sample Amount Determination in the Immunoassay	52
3.24	Reading Time Evaluation	52
RES	ULTS	53
	Virus Titre Determination by Plaque Assay	53
	Growth Curves	53
4.3	Cythopathogenicity of Pseudorabies Virus	56
4.4	Protein Profile of Pseudorabies Virus	56
4.5	Western Blotting	63
4.6	Hyper Immune Serum Titration Determination by ELISA	63
4.7	Blocking Agents for the Nitrocellulose Membranes	66
4.8	Effects of Drying Time of Blocked Membranes on	
	Recovery of Gold Conjugates	71
4.9	Effects of Antigen Concentration as Capture Reagent	73
	Effects of Antigen Purity as Capture Reagent	75
	Determination of Optimal Concentration of Conjugate	75
4.12	Sensitivity of Solid Based Test Strip for the Detection	
	of Pseudorabies Antibody	78
	Specificity Determination	78
	Sample Amount Determination	81
4.15	Reading Time Evaluation	84

xiv

5	DIS	CCUSSION	85
	5.1	Choice of Solid Phase	85
	5.2	The Solid Based Test Strip	86
	5.3	Basic Principles	88
	5.4	Relationship between Antigen, Antibody and Flow Rate	89
	5.5	Gold Conjugates	91
	5.6	Test Strip Standardisation	93
	5.7	Effects of Detergents, Salt Buffers and Alcohol	94
	5.8	Performance of the Assembled Pseudorabies	
		Antibody Test Strip	96
	5.9	Determination of the Cut – off Value	98
	5.10	Semi – quantitative Assay	99
	5.11	Turnaround Time Estimation and Cost Analysis	100
	5.12	Precautions in Solid Based Test Strip Practices	102
6	CON	ICLUSION	104
BIBL	IOGR	APHY	106
APPE	ENDIC	ES	116
VITA	L		124

.

LIST OF TABLES

Table		Page
1)	Comparison of the Characteristics of Labels Commonly Used in Rapid Tests	22
2)	Number and Molecular Weight of Polypeptide Bands Generated by 12% SDS PAGE of Purified Pseudorabies Virus and Stained with Coomassie Blue $R - 250$	62
3)	Hyper Immune Serum Response Following Being Challenged with Pseudorabies Virus	67
4)	Hyper Immune Serum Determination by ELISA	67
5)	Test Performance Using Different Purification of Virus Antigen as Capture Reagent	76
6)	Comparison of Solid Based Test Strip Method and ELISA	79

LIST OF FIGURES

Figure 1)	Schematic diagram of the pseudorabies virus	Page 7
2)	Transmission electron micrograph photo of pseudorabies virus	7
3)	Diagram of a typical immuno –chromatography based capillary flow solid based paper strip	27
4)	Membrane strip assay based on immuno – chromatography and the concept of detection	47
5)	Uninfected Vero cells. (x40)	54
6)	Plaque assay	54
7)	Growth cycle of pseudorabies virus in VERO cell culture	55
8)	VERO cells (x100)	57
9)	Small rounding CPE started to develop in infected VERO cells after 24 h post inoculation (x100)	57
10)	Early indication of plaque formation after 36 h of virus inoculation (x40)	58
11)	Plaques formation 48 h post inoculation (x40)	58
12)	Progressing stage of CPE activity after 72 h of post inoculation of pseudorabies virus (x40)	59
13)	Advance stage of CPE activity after 96 h of post inoculation of pseudorabies virus (x40)	59
14)	Advance cell degeneration 5 days after inoculation (x10)	60
15)	Advance cell degeneration 5 days after inoculation (x100)	60
16)	Protein profile of pseudorabies virus isolates analysed in 12% SDS PAGE and stained by Coomassie Blue $R - 250$	61
17)	Western blot of protein profiles of pseudorabies virus isolates immunologically detected by HIS	64
18)	ELISA screening of hyper immune serum (HIS) raised against pseudorabies antigen	64
		xvii

19)	Hyper immune serum response following challenge with pseudorabies virus	65
20)	Hyper immune serum determination by ELISA	68
21)	Effects of non – fat skim milk, skim milk, BSA and gelatin concentrations in blocking reagent on the recovery of gold conjugates dehydrated on the NC strips expressed as intensity signals of the pseudorabies antigen band produced by positive samples	69
22)	Effects of Tween – 20 concentrations in blocking reagent on the recovery of gold conjugates dehydrated on the NC strips expressed as intensity signals of the pseudorabies antigen band produced by positive samples	70
23)	Migration of carrier solution by capillary action	72
24)	Optimisation of pseudorabies antigen	74
25)	Optimisation of gold conjugate	77
26)	Examples of positive (A) and negative tests (B) for pseudorabies detection using solid based test strip	80
27)	Cross reactivity test performance with various antibodies	82
28)	Sample amount determination	83
29)	Alkaline phosphatase staining of antigen capture zone	87

LIST OF ABBREVIATIONS

ABTS	Azino – bis (3 – Ethylbenzthiazoline sulphonic acid)
Ag	antigen
Ab	antibody
AP	alkaline phophatase
ATV	antibiotic trypsin versene
BCIP	Bromochloroindolyl Phosphate. Disodium salt
BSA	bovine serum albumin
СМС	carboxyl methyl cellulose
CNS	central nervous system
CO_2	carbon dioxide
CPE	cytopathic effect
cm	centre meter
°C	degree Celsius
DAB	3, 3' Diaminobenzidine
DNA	deoxyribonucleic acid
ddH ₂ O	distilled and deionised water
EDTA	ethylenediamine tetraacetic acid
ELISA	enzyme linked immunosorbent assay
EIA	enzyme immunoassay
FBS	foetal bovine serum
	gram
g HCl	
HCl	hydrochloric acid
HIS	hyper immune serum

xix

h	hour
НА	haemaagglutination
HRP	horseradish peroxidase
H_2O_2	hydrogen peroxide
kbp	kilo base pair
KCl	potassium chloride
kD	kilo Dalton
KH ₂ PO ₄	di – potassium hydrogen phosphate anhydrous
L15M	Leibovitz – 15 media
L	litre
lb/sq	pounds per square cubic
М	molar
mM	millimolar
mg	milligram
ml	millilitre
M _r	molecular weight
μl	microlitre
min	minute
NaCl	natrium chloride
Na ₂ HPO ₄	di – natrium hydrogen phosphate
NBT	Nitro Blue Tetra sodium
NC	nitrocellulose
nm	nanometer
OD	optical density

XX

PRV	pseudorabies virus
PBS	phosphate – buffered saline
PBS-T	phosphate – buffered saline Tween – 20
PCR	polymerase chain reaction
p.f.u	plaque forming assay
pН	hydrogen ion exponent
%	percentage
rpm	revolutions per minute
SDS PAGE	sodium dodecyl sulphate – polyacrylamide gel electrophoresis
SDS PAGE	sodium dodecyl sulphate – polyacrylamide gel electrophoresis second
sec	second
sec TNE	second Tris NaCl EDTA
sec TNE U	second Tris NaCl EDTA unit
sec TNE U UPM	second Tris NaCl EDTA unit Universiti Putra Malaysia

CHAPTER 1

INTRODUCTION

Pseudorabies (Aujeszky's disease) is a highly contagious, widespread and economically significant disease of swine characterised by a range of clinical signs, including central nervous system disorders, respiratory diseases, reproductive failure and death, depending on age, reproductive status and immune status of the infected swine (Kluge *et al.*, 1992). Following a primary replication, pseudorabies virus can establish latent infection in swine. Under certain stress factors, latent virus may reactivate, which results in reshedding and transmission of the virus to susceptible animals (Ros Bascunana *et al.*, 1997). In geographic areas where pseudorabies virus (PRV) infection is enzootic, control and eradication programs often employed the use of vaccines and diagnostic tools as aids in the attempt to control the economic losses.

However, attempts for total eradication of the virus are still unsuccessful as carrier animals spread the infective virus without showing any signs of the disease. Van Nes *et al.* (2001) reported that transmission of pseudorabies was still detectable among groups of conventional pigs even though being vaccinated (Van Nes *et al.*, 2001). In Malaysia, despite vaccination, outbreak of the disease has been reported frequently in different parts of the country (Too, 1995). Due to the expanding population, the demand and consumption of swine products are expected to increase substantially. From these views, the disease has emerged to

be one of the most important problems affecting the swine industries and serious steps must be taken to prevent severe losses.

Rapid and accurate diagnosis of pseudorabies would definitely pave for a higher effectiveness in eradication of the disease. The classical, early direct diagnosis method for pseudorabies detection would have been the use of serum neutralizing test (SNT). This test was able to perform pseudorabies antibody serum titration and was generally used as comparison with newly developed methods. However, it becomes redundant due to complication in sample processing and time consuming. During the past decades, another widely used approach was the enzyme – linked immunosorbent assay (ELISA) which replaced SNT in pseudorabies detection. It offers high specificity, sensitivity and ease of operation over other standard laboratory procedures. Not to mention its ability to process large amount of samples at one time. Current diagnosis of pseudorabies detection utilises ELISA with gene deleted markers which have additional advantage of differentiating between vaccinated and infected swine (Kinker *et al.*, 1997).

Nevertheless, some of the disadvantages of the ELISA format which necessitates further improvement of the methodology include the lengthy time required for antigen – antibody reaction, reagent additions, enzymatic conversion of substrate and several washing steps between various operations. Many of the available immuno diagnostic tools were also not easy to apply in the field, since these techniques require special equipment and reagents, and performing any of

the tests even in the laboratory takes time, sometimes needing overnight incubation steps.

As an alternative to the use of current diagnostic tools, the immuno – chromatography test strip assay has become a new approach for detecting many veterinary diseases. With the advent in immuno – chromatography based techniques, numerous reports describing the advantages and functions in diagnosing diseases were published attesting to the perceived importance of this new diagnostic tool (Eliades *et al.*, 1998; Kim and Choi, 2000). Thus, the employment of immuno – chromatographic test strip will provide an easy mean for detection of pseudorabies virus. The use of labelling substances like gold and the immobilisation of biological components (antigen / antibody) makes it possible to facilitate a convenient and relatively inexpensive approach to obtain rapid analytical results due to the elimination of washing steps and faster antigen – antibody interaction.

The development of an on – site test strip that uses visual identification provide many advantages such as safety, rapidity, simplicity, easy handling, economic and high sensitivity. With the development of immuno – chromatography principles proceeding towards the test strips, the ability to perform diagnostic tests at a location remote from the laboratory would be highly desirable for speed and economy.

