TRANSPORT OF NITRATE AND ITS FATE IN AN UNCONFINED SANDY AQUIFER OF GAREH-BYGON PLAIN, ISLAMIC REPUBLIC OF IRAN

MEHRDAD MOHAMMADNIA

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA 2007

TRANSPORT OF NITRATE AND ITS FATE IN AN UNCONFINED SANDY AQUIFER OF GAREH-BYGON PLAIN, ISLAMIC REPUBLIC OF IRAN

By

MEHRDAD MOHAMMADNIA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

February 2007

DEDICATION

Dedicated to late Imam Khomeyni, the enlightener and messiah of Iranian

people,

and to my dear family

in memory of my departed father, mother and brother (Hedayat)

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

TRANSPORT OF NITRATE AND ITS FATE IN AN UNCONFINED SANDY AQUIFER OF GAREH-BYGON PLAIN, ISLAMIC REPUBLIC OF IRAN

By

MEHRDAD MOHAMMADNIA

February 2007

Chairman: Associate Professor Che Fauziah Ishak, PhD

Faculty: Agriculture

In response to the growing awareness of groundwater and surface water degradation, there has been increased concern about NO_3^- mobility and retention in soils. Artificial recharge of groundwater (ARG) through floodwater spreading systems (FWSS) is conducted in the Gareh-Bygon Plain (GBP), south east of Iran, to facilitate both drinking and irrigating water for desert dwellers. However, floodwater used for ARG, contains 60.30 mg L⁻¹ NO₃⁻ on average and may contaminate groundwater. The main objective of this study was to identify the most suitable place for extracting safe drinking water supply in the GBP. Identifying natural sources and main flow pathways of NO₃⁻, impacts of different landuse on the groundwater NO₃⁻ concentration, removal processes of NO₃⁻, and predicting NO₃⁻ transport using suitable computer model, were specific objectives of this study.

In the first study, 30 random geologic materials from the BZB were sampled and analyzed for NO_3^- concentration. This was carried out for atmospheric deposition

during 27 rainfall events. Moreover, surfacial floodwater and incoming groundwater as flow pathways into the aquifer, were monitored monthly and analyzed for NO_3^- , NH_4^+ , dissolved O_2 (DO), total organic carbon (TOC), Na^+ , K^+ , Ca^{+2} , Mg^{+2} , Fe_t, Mn^{+2} , Cl⁻, SO_4^{-2} , CO_3^{-2} , HCO_3^- , alkalinity, EC and pH. Results showed $NO_3^$ concentration in the geologic materials ranged from 0.94 to 123.31 mg kg⁻¹, however, that of the atmospheric deposition ranged from 0.88 to 19.12 mg L⁻¹. The concentrations of NO_3^- in the incoming groundwater ranged from 1.50 to 39.94 mg L⁻¹. Predominance of the oxidizing condition supports NO_3^- stability in the flow pathways and in the aquifer as well. As a consequence, geologic materials and atmospheric deposition were not responsible for the serious NO_3^- concentrations in the BZ groundwater.

The impact of different landuse on the groundwater NO_3^- concentration was investigated during the 12 months monitoring for the 2nd study (from 2003 to April 2004). Samples were analyzed for NO_3^- , NH_4^+ , DO, TOC, Na^+ , K^+ , Ca^{+2} , Mg^{+2} , Fe_t, Mn^{+2} , Cl⁻, SO_4^{-2} , CO_3^{-2} , HCO_3^- , alkalinity, EC and pH. Groundwater $NO_3^$ concentration ranged from 0.02 mg L⁻¹ in the recharge area to 94.45 mg L⁻¹ in the farming area which was higher than the permitted level of that ion in drinking water by United States Environmental Protection Agency (USEPA). Both farming areas, upstream and downstream the FWSS, increased NO_3^- concentration in the groundwater. However, recharge flow decreased groundwater NO_3^- through FWSS. Consequently, recharge area was found to be the most suitable and supply safe drinking water to inhabitants. In the 3rd study, the possible NO₃⁻ removal processes in the GBP was investigated through; i) absorption, ii) adsorption, and iii) dilution. Planted and non-planted packed leaching columns in saturated and semi-saturated conditions were examined in the laboratory and in the open field, respectively. Results for semi-saturated condition showed the average NO₃⁻ concentration in the planted leachate fractions (4.15 mg/L) was 6.54 times less than that of the control (27.15 mg/L). Breakthrough curve (BTC) obtained for saturated columns was asymmetric. Small average retardation factors, R = 2.38 and R \approx 0.00, for planted and non-planted columns, respectively, suggested non-significant NO₃⁻ absorption by seedlings in saturated condition. This implies the potential of the Eucalyptus forested area to take NO₃⁻ up from the recharge water flow in the real FWSS.

Batch adsorption isotherms and envelope tests were carried out for soil, sediment, and pure palygorskite as a vertical translocated clay species into the forested Eucalyptus rhizosphere. Results of all adsorption isotherms were best fitted to the Langmuir equation. Maximum NO_3^- adsorption occurred at pH < (PZC = 6.53) of the soil. Dilution was documented as the most effective NO_3^- removal process in the BZ aquifer using the average NO_3^-/Cl^- concentrations.

The HYDRUS-1D was found to be a useful software for predicting vertical nitrate transport through saturated soil column. Nitrate BTC obtained from leaching columns and simulated data were compatible in general. Nitrate distribution pattern throughout the BZ aquifer was also simulated successfully using a MODFLOW PMPATH computer code.

As the main result of this study, it was found that the most suitable drinking water for the rural people in the BZB is the water extracted from wells located in the forested recharge area. However, the most degraded water was found in the vicinity of the farming areas.

Keywords: Nitrate pollution, Drinking water, Denitrification, Artificial recharge, Floodwater spreading system, HYDRUS model, MODFLOW model.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGANGKUTAN NITRAT DALAM AKUIFER BERPASIR TIDAK TERBENDUNG, DATARUN GAREH-BYGON, I. R. IRAN

Oleh

MEHRDAD MOHAMMADNIA

Februari 2007

Pengerusi: Professor Madya Che Fauziah Ishak, PhD

Fakulti: Pertanian

Memandangkan kesedaran yang semakin meningkat terhadap degradasi air bawah tanah dan air permukaan, tumpuan telah diberikan terhadap pergerakan dan pengekalan NO₃⁻ dalam tanah. Recas buatan air bawah tanah (ARG) melalui sistem penyebaran banjir (FWSS) dijalankan di dataran Gareh-Bygon (GBP), di tenggara Iran, untuk memudahkan pengairan dan penyaliran air minuman untuk penduduk di padang pasir. Namun, air banjir yang digunakan untuk ARG mengandungi kepekatan purata sebanyak 60.30 mg L⁻¹ dan boleh mengakibatkan kontaminasi berlaku pada air bawah tanah. Objektif utama kajian ini ialah untuk mengenalpasti kawasan yang paling sesuai untuk mengesktrak bekalan air minuman yang selamat di GBP. Pengenalpastian sumber NO₃⁻ semulajadi dan laluan aliran utama NO₃⁻, kesan gunatanah yang berbeza ke atas kepekatan NO₃⁻ dalam air bawah tanah, proses penyahan NO₃⁻, dan menganggarkan pengangkutan NO₃⁻menggunakan model berkomputer yang bersesuaian, merupakan objektif-objektif spesifik untuk kajian ini.

Dalam kajian pertama, 30 bahan geologi dari BZB disampel secara rawak dan dianalisa untuk NO₃⁻. Ini dilakukan untuk mendapan dari atmosfera sebagai salah satu dari sumber potensi NO₃⁻ semasa 27 episod hujan. Juga, air permukaan semasa banjir dan air bawah tanah sebagai laluan aliran masuk ke akuifer, dipantau tiap-tiap bulan dan dianalisis untuk NO₃⁻, NH₄⁺, O₂ (DO) terlarut, jumlah karbon organik (TOC), Na⁺, K⁺, Ca⁺², Mg⁺², Fe_t, Mn⁺², Cl⁻, SO₄⁻², CO₃⁻², HCO₃⁻, kealkalian, kekonduksian elektrik (EC) dan pH. Keputusan menunjukkan bahawa julat kepekatan NO₃⁻ dalam bahan geologi adalah di antara 0.94 hingga 123.31 mg kg⁻¹, bagaimanapun, mendapan dari atmosfera adalah dari 0.88 hingga 19.12 mg L⁻¹. Julat kepekatan nitrat dalam air bawah tanah ialah di antara 1.50 hingga 39.94 mg L⁻¹. Keadaan teroksida yang dominan mempengaruhi kestabilan nitrat dalam air aliran dan juga akuifer. Adalah didapati, bahan geologi dan mendapan atmosfera bukanlah sumber yang bertanggungjawab keatas kontaminasi nitrat yang serius dalam air bawah tanah BZ.

Kesan daripada guna-tanah yang berbeza ke atas kepekatan NO₃⁻ dalam air bawah tanah dipantau selama 12 bulan untuk kajian kedua. Sampel diuji untuk NO₃⁻, NH₄⁺, O₂ terlarut, jumlah karbon organik (TOC), Na⁺, K⁺, Ca⁺², Mg⁺², Fe_t, Mn⁺², Cl⁻, SO₄⁻², CO₃⁻², HCO₃⁻, kealkalian, EC dan pH. Julat kepekatan nitrat dalam air bawah tanah ialah 0.02 mg L⁻¹ di kawasan recas sehingga 94.45 di kawasan pertanian, iaitu, takat yang lebih tinggi dari had maksimum untuk ion tersebut yang dibenarkan dalam air minuman oleh Agensi Perlindungan Alam Sekitar, U.S.A. Kedua-dua kawasan pertanian, satu di hulu dan satu lagi di hilir dari FWSS menunjukkan peningkatan kepekatan nitrat dalam air bawah tanah.Namun demikian, aliran recas mengurangkan kepekatan nitrat dalam air bawah tanah. Oleh itu, kawasan recas adalah merupakan

kawasan yang paling sesuai dan membekalkan air minuman yang selamat untuk penduduk.

Dalam kajian yang ketiga, proses penyahan NO₃⁻ yang mungkin berlaku di GBP ditentukan melalui; i) penyerapan NO₃⁻ oleh anak benih Eucalyptus dalam keadaan tepu dan separa tepu, ii) penjerapan NO₃⁻ oleh tanah dan sampel mendapan baru, dan iii) pencairan oleh NO₃⁻ oleh ARG. Turus luluhlarutan dengan dan tanpa tanaman pada keadaann tepu atau separa tepu air dikaji di makmal dan di lapangan. Keputusan untuk keadaan separa tepu menunjukkan purata kepekatan nitrat (4.15 mg L⁻¹) pada turus luluhlarutan dengan tanaman adalah 6.54 kali lebih rendah daripada rawatan kawalan (27.15 mg L⁻¹). Lekuk kemunculan (BTC) yang diperolehi untuk keadaan tepuair tak simetri. Bagaimanapun, faktor retardasi purata yang kecil R = 2.38, dan R \approx 0.00 telah diperolehi dari rawatan dengan tanaman dan tanpa tanaman, mengikut susunan, yang mencadangkan penyerapan NO₃⁻ secara tidak signifikan oleh anak benih dalam keadaan tepu. Ini memberi implikasi potensi kawasan hutan Eucalyptus untuk menyerap nitrat dari kawasan aliran air recas di FWSS yang sebenarnya.

Isoterma jerapan sesekumpul dan ujikaji "envelope" dijalankan ke atas tanah, sampel mendapan dan palygorskite tulen yang merupakan lempung yang mengalami proses translokasi menegak dan pengumpulan pada rizosfera hutan Eucalyptus. Hasil daripada semua isoterma jerapan mempunyai suaian terbaik dengan persamaan Langmuir. Perbezaan dalam luas permukaan spesifik CaCO₃ berfungsi mengawal jerapan NO₃⁻ oleh CaCO₃. Jerapan maksimum NO₃⁻ berlaku pada pH lebih rendah dari titik cas sifar (PZC) = 6.53 seperti ukuran pH_o pada sampel tanah. Pencairan nitrat telah didokumentasikan sebagai proses pengurangan NO_3^- yang paling efektif dalam air bawah tanah BZ dengan menggunakan konsentrasi purata NO_3^- / Cl⁻ sepanjang kajian dijalankan.

HYDRUS-1D merupakan perisian yang digunakan untuk menganggarkan pengangkutan nitrat secara menegak melalui turus tanah tepu air. Keluk kemunculan nitrat yang diperolehi dari turus luluhlarutan dan data simulasi adalah berpadanan secara amnya. Corak taburan nitrat sepanjang laluan air bawah tanah BZ, berjaya dianggarkan menggunakan kod berkomputer MODFLOW_PMPATH.

Hasil utama daripada kajian ini menunjukkan bahawa air minuman yang paling sesuai untuk penduduk pedalaman di BZB patut diekstrak dari perigi-perigi yang terletak di kawasan recas buatan. Walaubagaimanapun, air paling terdegradasi dijumpai di kawasan yang hampir dengan kawasan pertanian.

Kata kunci: Pencemaran nitrat, Air minuman, Denitrifikasi, Recas buatan, Sistem sebaran banjir, Model HYDRUS, Model MODFLOW

ACKNOWLEDGEMENTS

I thank GOD for all His blessings on me and thank Him for giving me courage and strength to finish my study. It is understood that human beings cannot repay one another enough. Hence, it is better to request Almighty Allah to reward the person who did a favor and to give him the best.

The completion of this thesis would have not been possible without the support and cooperation of many individuals and some institutions. I am very grateful to all of them.

I wish to thank Dr. Che Fauziah Ishak for spontaneously accepting the promotion of my study and for all her efforts. She really promptly reviewed all my chapters accurately and guided me throughout the structuring of my book. Her comments and suggestions on the structures and contents of the thesis have considerably improved its quality and readability. I learned a lot from her style of supervision and I really benefited from her knowledge and considerable experience in soil chemistry.

Many thanks to Professor Mohd Khanif Yusop, Dr. Rosenani Abu-Bakar and Professor Seyyed Ahang Kowsar, members of my supervisory committee who scrutinized my thesis, and for all the nice discussions we had, and for their invaluable comments and suggestions.

Many thanks go to the director and technical staff of Land Management Department in UPM especially Dr. Siti Zauyah and her PhD Student Dr. Abbyne, and Dr. M. Anda. Special thanks to the director of the Research Center for Agriculture and Natural Resources of Fars Province, Dr. Y.A. Saadat and his deputies Dr. M. Soufi and Mr. E. Hadaegh. I am thankful to Mr. M.T. Amanpour, Mr. M. Taheri, Prof. Karimian, Prof. Assadi, Dr. S. Zand Parsa, Dr. M. Dehghani, Dr. A. Adelpour, Dr. Gh. R. Badjian, Mr. K. Mohammadnia, Mrs. Jokar, Mr. Gh. Owji, Dr. Kompani, Mr. Adeli, Mr. Borhan, Mr. K. Dorostkar, Mr. Mesbah, Dr. Esfandiari, Dr. Rousta, Mr. Rahbar, Mr. Eilami, Mr. Pakparvar, Mr. Nejabat, Mr. Karimi, Mr. Moosavi, Mr. Ghahhari, Mr. Houseyni, Mr. Nekouian, Mr. Hashemi, Mr. Fereydounian, Mr. Nafisi, Mr. Shadkaam, Mr. Vali, Mr. Keshvarz, and all my other colleagues in the Fars Research Center. I am also grateful to the director of the Fars Jihad-e-Keshavarzi Organization, Mr. Razavi for his support of my study.

Finally, I would like to thank my wife and my daughters for their sacrifices and efforts during my study especially when I was not in Iran and they were alone. By no means could I ever be able to repay them. They should know that my thesis could never have come into being, without them as my source of inspiration and encouragement.

I certify that an Examination Committee has met on 15 February 2007 to conduct the final examination of Mehrdad Mohammadnia on his Doctor of Philosophy thesis entitled "Transport of Nitrate and its Fate in an Unconfined Sandy Aquifer of Gareh-Bygon Plain, Islamic Republic of Iran" in accordance with Universiti Pertanian Malaysia Act 1980 and Universiti Putra Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Chairman, PhD

Professor Dr. Shamshuddin Jusop Faculty of Agriculture University Putra Malaysia (Chairman)

EXAMINER 1, PhD

Professor Dr. Mohd. Amin Mohd. Soom Faculty of Engineering University Putra Malaysia (Member)

Examiner 2, PhD

Associate Professor Dr. Aminuddin Hussin Faculty of Agriculture Universiti Putra Malaysia (Member)

Independent examiner, PhD

Professor Dr. Van Cleemput Oswald Faculty of Graduate Studies and Applied Biological Sciences Ghent University Belgium (Independent Examiner)

HASANAH MOHD GHZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Che Fauziah Ishak, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Chairman)

Mohd Khanif Yusof, PhD

Professor Faculty of Agriculture Universiti Putra Malaysia (Member)

Rosenani Abu-Bakar, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Member)

Saeyyd Ahang Kowsar, PhD

Professor Fars Research Center for Agriculture and Natural Resources Shiraz, I.R.Iran (Member)

AINI IDERIS, PhD Professor / Dean School of Graduate Studies Universiti Putra Malaysia

Date: 12 April 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MEHRDAD MOHAMMADNIA

Date: 15 March 2007

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vii
AKNOWLEDGEMENTS	xi
APPROVAL	xiii
DECLARATION	XV
TABLE OF CONTENTS	xvi
LIST OF TABLES	xix
LIST OF FIGURES	xxi
LIST OF ABBREVIATIONS	XXV

CHAPTER

1	INT	RODUCTION	
	1.1	Awareness of groundwater and surface water degradation	1
	1.2	Scope of the problem	5
2	LITI	ERATURE REVIEW	
	2.1	Introduction	7
	2.2	Origin of nitrate in groundwater	13
		2.2.1 Anthropogenic activities	14
		2.2.2 Atmospheric deposition	15
		2.2.3 Geologic materials	16
	2.3	Nitrate transport pathways	20
		2.3.1 Nitrate transport by surfacial flow	21
		2.3.2 Nitrate transport by vertical flow	22
		2.3.3 Nitrate transport in groundwater	24
	2.4	Nitrate removal processes	25
		2.4.1 Denitrification	26
		2.4.2 Plant uptake	32
		2.4.3 Dilution	38
		2.4.4 Nitrate adsorption	40
	2.5	Landuse	42
		2.5.1 Farm management	43
	2.6	Prediction of nitrate transport using computer models	46
		2.6.1 The most useful existing models for solute transport	47
		prediction	
3	GEN	ERAL METHODOLOGY	
	3.1	Description of the study area	48
		3.1.1 Geology and geomorphology	48
		3.1.2 Hydrology	51
		3.1.3 Soil formation and their characteristics	58
		3.1.4 Native vegetation	61

		Water resources	62
		Aquifer Management Project (AMP)	63
		Demography	68
3.2		mples analyses	69
	3.2.1	Soil texture	69
		Measurement of soil total nitrogen content	70
	3.2.3	Measurement of inorganic nitrogen in soil sample	70
	3.2.4	Soil organic carbon measurement	71
	3.2.5	Soil phosphorus content measurement	72
	3.2.6	Soil calcium carbonate measurement	72
	3.2.7	Soil gypsum measurement	73
	3.2.8	Soil CEC measurement	73
	3.2.9	Soil AEC measurement	73
	3.2.10	Tissue nitrate analysis	74
3.3	Liquid	samples analyses	75
	3.3.1	Preparation of soil-water saturated paste	75
	3.3.2	Measurement of soil and water samples pH	75
	3.3.3	Measurement of soil extract and water samples EC	75
	3.3.4	Nitrate and Nitrite measurements	76
	3.3.5	Ammonium measurement	76
	3.3.6	Total organic carbon (TOC) measurement	76
	3.3.7	Measurement of Mg^{+2} and Ca^{+2}	77
		Measurement of chloride	77
	3.3.9	Measurement of CO_3^{-2} and HCO_3^{-1}	78
	3.3.10	Measurement of SO_4^{-2}	78
	3.3.11	Measurement of Na ⁺ , K ⁺ , Fe _t and Mn ⁺²	78
		Total rock samples dissolution	78
		Dissolved oxygen (DO) measurement	79
DETE	RMIN	ATION OF POTENTIAL NATURAL SOURCES	
OF N	TRAT	E CONCENTRATION TO THE GROUNDWATER,	
AND]	ITS CO	NCENTRATION IN THE MAIN FLOW PATHWAYS	
4.1	Introdu	action	81
4.2	Metho	dology	85
	4.2.1	Natural sources of nitrate	86
	4.2.2	Atmospheric deposition	89
		Nitrate concentration in the main flow pathways	90
4.3		s and Discussion	94
4.4	Conclu	ision	113
DETE	RMIN	ATION OF PERIODICAL IMPACTS OFDIFFERENT	
		N THE GROUNDWATER NITRATE	
		ATION THROUGH THE EXISTING PRODUCTION	
WEL			
5.1	Introdu	action	116

4

5

Introduction		116
Metho	odology	119
5.2.1	Monthly groundwater monitoring	119
5.2.2	Daily groundwater monitoring	124
5.2.3	Groundwater transmissivity measurement	124
	Metho 5.2.1 5.2.2	Introduction Methodology 5.2.1 Monthly groundwater monitoring 5.2.2 Daily groundwater monitoring 5.2.3 Groundwater transmissivity measurement

	5.3	Results and discussion 5.3.1 Zone 1 5.3.2 Zone 2	124 126 130
		5.3.3 Zone 3	130
		5.3.4 Zone 4	143
		5.3.5 Impacts of irrigation practices on the groundwater NO ₃ ⁻ at zones 2 and 4	149
	5.4	5.3.6 Groundwater: Overall view Conclusions	152
	5.4	Conclusions	163
6		CHANISMS OF NITRATE REMOVAL FROM SOIL AND)
		DUNDWATER SYSTEMS	1 (7
	6.1	Introduction	167
		6.1.1 Denitrification	167
		6.1.2 Absorption	168
		6.1.3 Adsorption	169
		6.1.4 Dilution	173
	6.2	Methodology	174
		6.2.1 Nitrate absorption	174
		6.2.2 Nitrate adsorption	179
		6.2.3 Dilution process	182
		6.2.4 Determination of pH of root surface of	182
		Eucalyptus camaldulensis Dehnh	100
	6.3	Results and discussion	183
		6.3.1 Nitrate absorption	183
		6.3.2 Nitrate adsorption	192
		6.3.3 Nitrate dilution	201
	6.4	Conclusion	203
7		RATE TRANSPORT PREDICTION IN THE SOIL COLU OPHREATIC ZONE OF THE BZ AQUIFER, USING HYD	
		MODFLOW MODELS	
	7.1	Introduction	205
	7.2	Input parameters for vertical nitrate transport	206
	7.3	prediction using HYDRUS-1D Nitrate transport prediction in the phreatic zone using	212
	1.5	MODFLOW-PMPATH	212
	7.4	Conclusion	218
8	GEN	VERAL CONCLUSION	219
REI	FEREN	CES	224
	PENDIC		248
		OF THE AUTHOR	271

LIST OF TABLES

Table		Page
3.1	Geographical characteristics of 3 sub-basins in the Gareh Bygon Plain	53
3.2	Date, amount of rainfall, maximum flow rate, and flow duration for the Bisheh Zard River, and the volume of floodwater diverted from it.	57
3.3	Response of water table to the artificial recharge of groundwater in the Gareh Bygon Plain.	57
3.4	Demographic data for the Gareh Bygon Plain	68
4.1	Flooding events occurred from March 2003 to February 2006 in the study area	91
4.2	Rainwater characteristics during the study period	95
4.3	Total N, NO_3^- , NH_4^+ , calcium carbonate equivalent (C.C.E.), organic carbon (O.C.) and total carbon (T.C.) content of geologic materials in the Bisheh Zard Basin, GBP.	97
4.4	Chemical analysis of floodwater samples collected at the BZ hydrometry station during the study period	102
4.5	Selected characteristics of the floodwater sampled on 29 March 2006	106
4.6	Effects of different sampling points on NO ₃ ⁻ , EC, and pH of floodwater	106
4.7	Total dissolution of the Agha-Jari sandstone measured by inductively coupled plasma	108
4.8	Mean values of floodwater main dissolved ions used in calculating the ionic strength of floodwater	111
4.9	Incoming groundwater analysis	114
5.1	Coordinates of the sampling wells located in the GBP	122
5.2	Incoming groundwater analyses during the monitoring period	129
5.3	Groundwater monitoring at well 2, zone 2, located in the anthropogenic activity area	135
5.4	Total N content of Eucalyptus camaldulensis Dehnh. leaf samples	138
5.5	Effects of different location of <i>Eucalyptus camaldulensis</i> Dehnh. on the total N content of leaf samples.	138

5.6	Groundwater monitoring at well 3 located in zone 3; FWSS (sedimentation basin)	140
5.7	Groundwater monitoring at well 4 located in zone 3; FWSS (sedimentation basin).	141
5.8	Groundwater monitoring at well 5 located in zone 3; FWSS (forested sedimentation basin)	142
5.9	Groundwater monitoring at well 6 located in zone 3; FWSS (forested sedimentation basin)	143
5.10	Groundwater monitoring at well 7 located in zone 4 downstream FWSS and marginally affected by FWSS	146
5.11	Groundwater monitoring at well 8 located in zone 4 downstream FWSS and in the middle of intensive farming area	147
5.12	Groundwater monitoring at well 9 located in zone 4 downstream FWSS and at the end part of the intensive farming areas and alluvial fan	147
5.13	Effects of different zones impacts on NO ₃ ⁻ , EC, and pH of the BZ groundwater	148
5.14	Effects of different sampling times on NO ₃ ⁻ , EC, and pH of the BZ groundwater	148
5.15	Monitoring groundwater at wells 2, 7 and 8 in the farming areas	151
6.1	Soil samples analysis of the planted and non-planted packed columns after the leaching experiment in the open field	191
6.2	Effects of Eucalyptus plantation on the soil selected specifications	191
6.3	Analyses of 21 surface soil samples collected from different land use	194
6.4	Nitrate adsorption isotherms data for 21 surface soil samples	196
6.5	Competitive SO_4^{-2} and NO_3^{-2} adsorption on the 21 soil samples	198

LIST OF FIGURES

Figur	Figure	
2.1	The global nitrogen cycle	8
2.2	Nitrogen charge in different oxidation states	10
2.3	General schematic for nitrogen cycling in a forest ecosystem	10
2.4	Scheme of proposed transport mechanisms for nitrate (nitrite) and ammonium at the plasmalemma of a plant cell	33
2.5	Growing and, in some cases, harvesting plants on a contaminated site as a remediation method	36
3.1	Sketch map of study site in the Gareh Bygon Plain, Qareh Aghaj Basin, Fars province and Iran	49
3.2	Geologic map of the southeast of Fars province; the BZB is delineated by the black line triangle	50
3.3	Geological log of well no. 14, prepared from well cuttings	54
3.4	Isopotential lines of the Gareh Bygon Plain aquifers	56
3.5	The sketch map of Gareh Bygon Plain floodwater spreading systems	67
3.6	Landsat image of the Gareh Bygon Plain floodwater spreading systems and rural areas.	69
4.1	Sampled part of the BZB	87
4.2	Situation of the BZ hydrometry and rain gauging stations	89
4.3	Floodwater sampling points in the BZ River and Conveyor-spreader channels	92
4.4	Top view of the groundwater sampling well locations on the BZ alluvial fan	93
4.5	X-ray difractogram of the Agha Jari sandstone in the BZB using Cu K α_1 radiation	96
4.6	XRD pattern for the $<2-\mu m$ fraction of the treated alluvium from the BZ ₁	98
4.7	Transmission electron micrograph (TEM) of palygorskite-sepiolite fibers	99

4.8	NO ₃ ⁻ concentration profile in the explorative sandstone study in the BZB	100
4.9	Spatial distribution of NO ₃ ⁻ concentration of 30 geologic material samples in the sampled part of the BZ Watershed using the SURFUR software	103
4.10	Flooding dates and volumes delivered in each event in the BZ Watershed during the study period	104
4.11	Inorganic N content of the floodwater samples during the study period	104
4.12	The Agha-Jari litharanite sandstone thin sections	107
4.13	Comparing NO ₃ ⁻² and SO ₄ ⁻² contents of floodwater samples	110
4.14	Linear relationship between EC and pH in floodwater	111
4.15	Nitrate concentration in the incoming groundwater into the BZ aquifer	113
5.1	Top view of the groundwater sampling well locations in the BZ alluvial fan	121
5.2	Cross section of the groundwater sampling wells in the GBP	122
5.3	Installing floating pump to facilitate groundwater sampling	123
5.4	Groundwater sampling from the pump head	123
5.5	Groundwater nitrate concentration in zone 1 (well 1) during the monitoring period	128
5.6	Groundwater nitrate concentration in zone 2 during the monitoring period	130
5.7	Groundwater EC values at well 2	131
5.8	Average NO ₃ ⁻ concentration of well waters located in zone 3	138
5.9	Groundwater NO_3^- monitoring for two weeks after irrigation at wells 2, 7 and 8	149
5.10	Groundwater EC monitoring for two weeks after irrigation at wells 2, 7 and 8	150
5.11	Comparative average SO ₄ ⁻² concentration in sampling wells located in the zones	152

5.12	Comparative average alkalinity in sampling wells located in the zones	153
5.13	Comparative average NH_4^+ concentration in sampling wells located in the zones	154
5.14	Comparative averages of NO_3^- , SO_4^{-2} , and Cl^- concentration in the sampling wells located in the indicated zones	155
5.15	NO_3^- concentration relative to that of Cl^- in the BZ groundwater	156
5.16	Comparative groundwater nitrate concentrations in the production wells	156
5.17	Comparative averages of dissolved O_2 (DO) concentration in the sampling wells located in the indicated zones	158
5.18	Linear relations between average NO ₃ concentrations in the Sampled wells and other elements and compounds	159
5.19	Linear relations between average Cl ⁻ concentrations in the sampled wells and other elements and compounds	160
5.20	Flow chart of the study site	165
6.1	Root development of Eucalyptus seedling (after leaching experiment)	176
6.2	Leachate collection of planted and non-planted columns in a trench dug in the 2 nd sedimentation basin of the BZ1 FWSS	178
6.3	Checking root development throughout the pipes	179
6.4	A typical eucalyptus root surface pH	183
6.5	Comparative average nitrate concentration in the leachate fractions of saturated leaching columns	184
6.6	Comparative average nitrate concentrations in the	188
6.7 6.7	leachate fractions of the intact soil columns in the open field Schematic proposed nitrate zonation in the packed soil columns 4 months of irrigation at the beginning of the leaching experiment in the open field	190
6.8	Calcium carbonate nodules found in soil clods of zones 1 and 2	192
6.9	Linear relationship between Clay and CEC	195

6.10	Linear relationship between Clay and AEC	195
6.11	Linear relationship between NO ₃ ⁻ Ads. _{max} and AEC	196
6.12	Linear relationship between NO ₃ ⁻ Ads. _{max} and CEC	196
6.13	NO_3^- adsorption envelope for soil sample with a 50 mg L ⁻¹ NO_3^- -N solution	199
6.14	Point of zero charge (PZC) of the soil sample	200
6.15	Nitrate adsorption isotherm for pure palygorskite	201
6.16	NO ₃ ⁻ concentration relative to that of Cl ⁻ in the BZ groundwater	202
7.1	Simulated saturating soil column; observation nodes and water pressure heads	211
7.2	Breakthrough curves obtained from observed leaching columns and predicted by HYDRUS	212
7.3	Average nitrate concentration in the BZ groundwater during the study period	214
7.4	Advective nitrate transport in the BZ aquifer predicted by the PMPATH in case of a low recharge volume	215
7.5	Advective nitrate transport in the BZ aquifer predicted by the PMPATH in case of a high recharge volume	216
7.6	Advective nitrate transport in the BZ aquifer predicted by the PMPATH in the case of sustainable farm management	217

LIST OF ABBREVIATIONS

Ads. _{max}	Maximum Adsorption
AEC	Anion Exchange Capacity
AJF	Agha-Jari Formation
AMP	Aquifer Management Project
ARG	Artificial Recharge of Groundwater
BZB	Bisheh- Zard Basin
BZ1	Bisheh-Zard One
BZ4	Bisheh-Zard Four
CCE	Calcium Carbonate Equivalent
CEC	Cation Exchange Capacity
DI	De Ionized
DO	Dissolved Oxygen
EC	Electrical Conductivity
FFZ	Forested Filter Zone
FWSS	Flood Water Spreading System
GBP	Gareh Bygon Plain
GW	Groundwater
HTAS	High Affinity Transport System
ICP	Inductively Coupled Plasma
IS	Ionic Strength
LATS	Low Affinity Transport System
ОМ	Organic Matter
PZC	Point of Zero Charge

- RA2 Rahim Abad Two
- SB Sedimentation Basin
- SSA Specific Surface Area
- TA Total Alkalinity
- TC Total Carbon
- TDL Theoretical Dilution Line
- TEM Transmission Electron Micrograph
- TH Total Hardness
- TIC Total Inorganic Carbon
- TN Total Nitrogen
- TOC Total Organic Carbon
- PV Pore Volume
- PVC Poly Vinyl Chloride
- USEPA United State Environmental Protection Agency
- WHO World Health Organization
- XRD X-ray Diffractogram