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Since the introduction of the concepts of chromatically unique graphs and chro-

matically equivalent graphs, numerous families of such graphs have been ob-

tained. The purpose of this thesis is to continue with the search of families of

chromatically unique bipartite graphs.

In Chapters 1 and 2, we define the concept of graph colouring, the associated

chromatic polynomial and some properties of a chromatic polynomial. We also

give some necessary conditions for graphs that are chromatically unique or chro-

matically equivalent. We end this chapter by stating some known results on the

chromaticity of bipartite graphs, denoted as K(p,q).

Let K−s(p, q)(resp. K−s
2 (p, q)) denote the set of connected (resp. 2−connected)

bipartite graphs which can be obtained from K(p, q) by deleting a set of s edges.

For a bipartite graph G = (A,B;E) with bipartition A and B and edge set E, let

G′ = (A′, B′;E′) be the bipartite graph induced by the edge set E′ = {xy | xy /∈

E, x ∈ A, y ∈ B }, where A′ ⊆ A and B′ ⊆ B. We write G′ = K(p, q) − G,

where p = |A| and q = |B|. Let △(G′) denote the maximum degree of G′.
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In Chapter 3, we study the chromatic uniqueness of any G ∈ K−s
2 (p, q) where

p ≥ q ≥ 3, 9 ≤ s ≤ q−1 and △(G′) = s−3. In Chapter 4, we give a similar result

by examining the chromatic uniqueness of any G ∈ K−s
2 (p, q) where p ≥ q ≥ 3,

11 ≤ s ≤ q − 1 and △(G′) = s− 4.

Let α(G, k) denote the number of k−independent partitions inG. Define α′(G, 3)

= α(G, 3) − (2|A|−1 + 2|B|−1 − 2). For t = 0, 1, 2, . . . , let B(p, q, s, t) denote the

set of graphs G ∈ K−s(p, q) with α′(G, 3) = s + t. It is known that if G is

2−connected graph in B(p, q, s, t) for 0 ≤ t ≤ 4 or t = 2s − s − 1, then G is

chromatically unique. In Chapter 5, we examine the chromatic uniqueness of a

2-connected graph G in B(p, q, s, 5) ∪ B(p, q, s, 6). We continue this work and

prove the chromatic uniqueness of every 2-connected graph G in B(p, q, s, 7) in

Chapter 6.

In Chapter 7, we investigate the chromatic uniqueness of the graphs in K−s
2 (p, q),

where p ≥ q ≥ 6 and 5 ≤ s ≤ min{q − 1, 7}. In the final chapter, we study the

chromatic uniqueness of the graphs in K−s
2 (p, q), where p ≥ q = 5 and s = 5. We

also present a short discussion and some open problems for futher research.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia

sebagai memenuhi keperluan untuk ijazah Doktor Falasafah

KEKROMATIKAN GRAF BIPARTIT TERTENTU

Oleh

ROSLAN BIN HASNI @ ABDULLAH

January 2005

Pengerusi: Profesor Peng Yee Hock, PhD

Fakulti: Sains

Sejak konsep graf unik kromatik dan setara kromatik diperkenalkan, banyak

famili graf yang unik kromatik dan setara kromatik telah diperolehi. Tesis ini

bertujuan meneruskan pencarian famili graf bipartit yang unik kromatik.

Dalam Bab 1 dan 2, kami takrifkan konsep pewarnaan graf, polinomial kromatik

yang berkaitan dan beberapa ciri polinomial kromatik. Kami juga kemukakan be-

berapa syarat perlu supaya sesuatu graf itu unik kromatik atau setara kromatik.

Kami mengakhiri bab ini dengan menyatakan beberapa keputusan yang telah

diketahui tentang kekromatikan graf bipartit, yang ditandakan dengan K(p,q).

Biarkan K−s(p, q)( atau K−s
2 (p, q) ) menandai famili graf bipartit terkait ( atau

terkait−2 ) yang diperolehi daripada K(p, q) dengan menyingkirkan suatu set

sisi s. Bagi graf bipartit G = (A,B;E) dengan bipartisi A dan B dan set sisi

E, biarkan G′ = (A′, B′;E′) adalah graf bipartit yang diaruhkan oleh set sisi

E′ = {xy | xy /∈ E, x ∈ A, y ∈ B }, dengan A′ ⊆ A dan B′ ⊆ B. Kita tulis

G′ = K(p, q) − G, dengan p = |A| dan q = |B|. Biarkan △(G′) menandakan

darjah maksimum bagi G′. Dalam Bab 3, kami mengkaji keunikan kromatik
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bagi sebarang G ∈ K−s
2 (p, q) dengan p ≥ q ≥ 3, 9 ≤ s ≤ q − 1 dan △(G′) =

s− 3. Dalam Bab 4, kami mengemukakan keputusan serupa dengan memeriksa

keunikan kromatik bagi sebarang G ∈ K−s
2 (p, q) dengan p ≥ q ≥ 3, 11 ≤ s ≤ q−1

dan △(G′) = s− 4.

Biarkan α(G, k) menandakan bilangan partisi tak bersandar-k dalam G. Takrif-

kan α′(G, 3) = α(G, 3) − (2|A|−1 + 2|B|−1 − 2). Untuk t = 0, 1, 2, . . . , biarlah

B(p, q, s, t) menandakan famili graf G ∈ K−s(p, q) dengan α′(G, 3) = s+ t. Dike-

tahui bahawa jika G adalah graf terkait−2 dalam B(p, q, s, t) bagi 0 ≤ t ≤ 4 atau

t = 2s − s − 1, maka G adalah unik kromatik. Dalam Bab 5, kami memeriksa

keunikan kromatik bagi graf G yang terkait−2 dalam B(p, q, s, 5) ∪ B(p, q, s, 6).

Kajian diteruskan dengan membuktikan keunikan kromatik bagi graf G yang

terkait−2 dalam B(p, q, s, 7) dalam Bab 6.

Dalam Bab 7, kami menyiasat keunikan kromatik bagi graf dalam K−s
2 (p, q),

dengan p ≥ q ≥ 6 dan 5 ≤ s ≤ min{q − 1, 7}. Dalam bab terakhir, kami

mengkaji keunikan kromatik bagi graf dalam K−s
2 (p, q), dengan p ≥ q = 5 dan

s = 5. Kami juga mengemukakan perbincangan ringkas dan beberapa masalah

terbuka untuk kajian selanjutnya.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Throughtout this thesis, a graph G is a finite non-empty vertex set V (G) together

with an (possibly empty) edge set E(G) (disjoint from V (G)) of two-element

subsets of distinct elements of V (G). We denote by n and m respectively the

order and size of G where n = |V (G)| and m = |E(G)| unless otherwise stated.

We denote uv for the edge e = {u, v}. An edge e = uv is said to join the vertices

u and v. If e = uv is an edge of a graph G, then u and v are adjacent vertices

while u and e are incident, as are v and e. The vertices contained in an edge are

its endpoints. The repeated edges and edges with the same endpoints are called

multiple edges and loops, respectively. A graph is simple if it has no loops and no

multiple edges. A directed graph is a finite nonempty set V (G) with a set E(G)

of ordered pairs of distinct elements of V (G), where set E(G) is disjoint from

V (G). All graphs considered here are finite, undirected, simple and loopless. We

shall refer to [1] for all notations and terminologies not explained in this thesis.

The four-colour problem has played a role of the utmost importance in the devel-

opment of graph theory as we know it today. It was young Francis Guthrie who
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conjectured, while colouring the district map of England, that four colours were

sufficient to colour the world map so that adjacent countries receive distinct

colours. Ever since the conjecture was first published in 1852, many eminent

mathematicians, especially graph theorists, attempted to settle the conjecture.

In 1912, Birkhoff [2] initiated a new quantitative approach to attack the prob-

lem. For a given positive integer λ and a given map M , he introduced the symbol

P (λ) to denote the number of ways of colouring the regions of M when λ colours

are available such that adjacent regions have different colours. The function for

number of ways of such colouring, P (λ) was then proved to be a polynomial in

λ.

In 1932, Whitney [28] extended Birkhoff’s idea of map colourings to vertex colour-

ing of a graph G. The general problem of colouring graphs had been mentioned

earlier by Kempe [15] but little work had been done on this problem prior to

1930. Whitney used the notation M(λ) to denote the number of ways of colour-

ing the vertices of a graph G when λ colours are available; as in the case of a

map, the function M is a polynomial function of λ. This function P (G,λ) now

known as chromatic polynomial, was then used by Birkhoff and Lewis [3] in 1946

trying to solve the four-colour conjecture by characterizing what polynomials

were chromatic polynomials of maps. They also proved that P (G,λ) is a poly-

nomial for any graph G. The minimum integer λ such that P (G,λ) is nonzero

is called the chromatic number of G, denoted χ(G). For the development and

more information about the chromatic polynomial, see [20], [21], [22] and [26].

The problem of characterizing the chromatic polynomial is remaining unsolved

until today. However, it leads to the concept of chromatically equivalence and

chromatically unique graphs. The concept of chromatically unique graphs was
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first introduced by Chao and Whitehead [5] in 1978. Since then, various families

of chromatically unique graphs have been found successively (see [17] and [18]).

1.2 Organization of Thesis

Since the introduction of the concepts of chromatically unique graphs and chro-

matically equivalent graphs, numerous families of such graphs have been ob-

tained. The purpose of this thesis is to continue the search of chromatically

unique bipartite graphs.

In Chapter 2, we give a brief literature review of the works done on the chro-

maticity of graphs and in particular, the chromaticity of bipartite graphs.

Dong et al. [9] proved that if G ∈ K−s
2 (p, q) with p ≥ q ≥ 3, where 5 ≤ s ≤ q− 1

and △(G′) = s − 1, or 7 ≤ s ≤ q − 1 and △(G′) = s − 2, then G is χ−unique.

We shall study the chromatic uniqueness of any G ∈ K−s
2 (p, q) with p ≥ q ≥ 3,

where 9 ≤ s ≤ q − 1 and △(G′) = s − 3 in Chapter 3. In Chapter 4, we give a

similar result by examining the chromatic uniqueness of any G ∈ K−s
2 (p, q) with

p ≥ q ≥ 3, where 11 ≤ s ≤ q − 1 and △(G′) = s− 4.

Dong et al. [11] have shown that if G is 2−connected graphs in B(p, q, s, 0) ∪

B(p, q, s, 2s−s−1), then G is chromatically unique. The chromatic uniqueness of

2−connected graphs G ∈ B(p, q, s, t) for 1 ≤ t ≤ 4, was later on studied by Dong

et al. in [10]. We shall examine the chromatic uniqueness of 2-connected graphs

G in B(p, q, s, 5)∪B(p, q, s, 6) in Chapter 5. In Chapter 6, we continue this work

and prove the chromatic uniqueness of 2-connected graphs G in B(p, q, s, 7).

Dong et al. [10] also showed that any G ∈ K−s
2 (p, q) is χ−unique if p ≥ q ≥ 3 and

1 ≤ s ≤ min{q − 1, 4}. In Chapter 7, we investigate the chromatic uniqueness
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of the graphs in K−s
2 (p, q), where p ≥ q ≥ 6 and 5 ≤ s ≤ min{q − 1, 7}.

In the final chapter, we investigate the chromatic uniqueness of the graphs in

K−s
2 (p, q), where p ≥ q = 5 and s = 5. We also present a short discussion and

some open problems for further research.



CHAPTER 2

LITERATURE REVIEW

2.1 The Fundamental Results on Chromatic Polynomial

We first give the formal definition of the chromatic polynomial of a graph. An

assignment of at most λ colours to the vertices of a graph G is a λ−colouring of

G, and such a colouring of G is proper if no two adjacent vertices are assigned

the same colour. More precisely, a proper λ−colouring of G is a mapping

f : V (G) = { v1, v2, . . . , vn } → { 1, 2, . . . , λ }

such that f(vi) �= f(vj) whenever vivj ∈ E(G). Two proper λ−colourings f and

g of G are considered different if f(vi) �= g(vi) for some vertex vi in G. Let

P (G,λ) (or simply P (G) if there is no danger of confusion) denote the number

of different proper λ−colourings of G.

An empty graph is a graph with no edges while a complete graph is a graph in

which each pair of distinct vertices is joined by an edge. Thus, for instance, if

On is the empty graph of order n, then P (On, λ) = λn; and if Kn is the complete

graph of order n, then P (Kn, λ) = λ(λ−1). . . (λ−n+1). Observe that P (On, λ)

and P (Kn, λ) are polynomials in λ. It turns out (see Theorem 2.5) that for any
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6

graph G, P (G,λ) is in fact a polynomial in λ, called the chromatic polynomial

of G.

The following result is very useful in determining P (G,λ) or in showing that

certain graphs are chromatically unique.

Theorem 2.1 (Fundamental Reduction Theorem)(Whitney [29]) Let G be a

graph and e an edge in G. Then

P (G) = P (G− e) − P (G · e)

where G − e is the graph obtained from G by deleting e, and G · e is the graph

obtained from G by contracting the two vertices incident with e and removing all

but one of the multiple edges, if they arise.

By means of Theorem 2.1, the chromatic polynomial of a graph can be expressed

in terms of the chromatic polynomials of a graph with an extra less, and another

with one fewer vertices. When applying this theorem repeatedly, we can express

chromatic polynomials as a sum of the chromatic polynomials of empty graphs.

The Fundamental Reduction Theorem can also be used in another way. Let

vi, vj ∈ V (G) such that vivj �∈ E(G). Then

P (G,λ) = P (G + vivj, λ) + P (G · vivj, λ)

where G+vivj is the graph obtained from G by adding the edge vivj and G·vivj is

the graph obtained from G by identifying the vertices vi and vj. In this way, one

can express P (G,λ) as a sum of the chromatic polynomials of complete graphs.

Suppose G1 and G2 are the graphs each containing a complete subgraph

Kr(r ≥ 1). Let G be the graph obtained from the union of G1 and G2 by
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identifying the two subgraphs Kr in arbitrary way, then G is called a Kr−gluing

of G1 and G2. Note thatK1−gluing and K2−gluing are called a vertex-gluing and

edge-gluing of G1 and G2, respectively. The following two lemmas will provide a

shortcut for computing P (G,λ).

Lemma 2.1 (Zykov [32]) Let G be a Kr−gluing of graphs G1 and G2. Then

P (G) =
P (G1)P (G2)

P (Kr)
=

P (G1)P (G2)

λ(λ − 1) · · · (λ− r + 1)
.

Lemma 2.2 (Read [20]) If a graph G has connected components G1, G2, . . . , Gk,

then

P (G) = P (G1)P (G2) . . . P (Gk).

We shall now list some properties of the chromatic polynomial P (G,λ) of a graph

G.

Theorem 2.2 (Read [20]) Let G be a graph of order n and size m. Then P (G,λ)

is a polynomial in λ such that

(i) deg(P (G,λ)) = n;

(ii) all the coefficients are integers;

(iii) the leading term is λn;

(iv) the constant term is zero;

(v) the coefficient alternate in sign;

(vi) the absolute value of the coefficient of λn−1 is the number of edges of G;

(vii) either P (G,λ) = λn or the sum of the coefficients in P (G,λ) is zero.
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The following two results for determining P (G,λ) are due to Whitney, which can

be proved by using the Principle of Inclusion and Exclusion.

Theorem 2.3 (Whitney [28]) Let G be a graph of order n and size m. Then

P (G,λ) =
n

∑

k=1

( m
∑

r=0

(−1)rN(k, r)
)

λk

where N(k, r) denotes the number of spanning subgraphs of G having exactly k

components and r edges.

Let G be a graph with an arbitrary bijection β : E(G) → { 1, 2,. . . ,m }. Let C

be any cycle in G and e be an edge in C such that β(e) ≥ β(x) for each edge x

in C. Then the path C − e is called a broken cycle in G induced by β. Thus we

have the following theorem.

Theorem 2.4 (Broken-Cycle Theorem)(Whitney [28]) Let G be a graph of order

n and size m, and let β : E(G) → { 1, 2,. . . ,m } be a bijection. Then

P (G,λ) =
n−1
∑

i=0

(−1)ihiλ
n−i

where hi is the number of spanning subgraphs of G that have exactly i edges and

that contain no broken cycles induced by β.

Let G be a graph of order n. By using Theorems 2.3 and 2.4, we then can derive

the coefficient of λi, where n − 3 ≤ i ≤ n, expressed in terms of the numbers of

certain simple subgraphs of G. Let t1(G), t2(G) and t3(G) denote respectively

the number of triangles K3, the number of cycles of order 4 without chords and

the number of K4 in G.
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Theorem 2.5 (Farrell [12]) Let G be a graph of order n and size m. Then in

the polynomial P (G,λ), the coefficient of

(i) λn is 1;

(ii) λn−1 is −m;

(iii) λn−2 is
(

m
2

)

− t1(G);

(iv) λn−3 is −
(

m
3

)

+ (m− 2)t1(G) + t2(G) − 2t3(G).

2.2 Chromatically Unique Graphs and

Chromatically Equivalent Graphs

It can be proved by Lemma 2.1 that for any tree T of order n, P (T, λ) = λ(λ −

1)n−1. Thus there exists non-isomorphic graphs which have the same chromatic

polynomial. On the other hand, there are graphs like the complete graph Kn

and the empty graph On such that no other graphs will have the same chromatic

polynomial as Kn or On. These observations lead to the following definitions.

Let P (G,λ) be the chromatic polynomial of a graph G. Two graphs G and

H are chromatically equivalent or simply χ−equivalent, symbolically G ∼ H,

if P (G,λ) = P (H,λ). A graph G is chromatically unique or simply χ−unique

if G ∼= H for any graph H such that H ∼ G. Trivially, the relation ∼ is an

equivalence relation on the class of graphs. We shall denote by [G] the chromatic

equivalence class determined by G under ∼; indeed, [G] is the set of all graphs

having the same chromatic polynomial P (G,λ). Clearly, G is χ−unique if and

only if [G] = {G} (up to isomorphism).
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Recall that t1(G), t2(G) and t3(G) denote respectively the number of triangles

K3, the number of cycles of order 4 without chords and the number of K4 in G.

Let χ(G) denote the chromatic number of G. Then χ(G) is the smallest integer

λ such that P (G,λ) > 0. The following lemma can be derived from Theorem

2.5.

Lemma 2.3 Let G and H be graphs such that G ∼ H. Then

(i) G and H have the same order;

(ii) G and H have the same size;

(iii) t1(G) = t1(H);

(iv) t2(G) − 2t3(G) = t2(H) − 2t3(H);

(v) χ(G) = χ(H);

(vi) G is connected if and only if H is connected.

Since there are no general methods for constructing families of χ−unique graphs,

it is very helpful to know as many as possible necessary conditions for two graphs

to be χ−equivalent. Thus, the above lemma is just the necessary conditions for

two graphs G and H to be χ−equivalent.

The following result is obvious.

Lemma 2.4 Let G be a graph of size m. Then m ≥ 1 if and only if

λ(λ − 1)|P (G,λ).
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A block of a graph G is a maximal subgraph of G which contains no cut-vertices.

Whitehead and Zhao [27] proved the following results.

Theorem 2.6 Let G be a graph. The multiplicity of the root 1 in P (G,λ) is the

number of non-trivial blocks of G.

Corollary 2.1 Let G be a connected graph of order n. Then G contains a cut-

vertex if and only if (λ− 1)2|P (G,λ).

We say a graph G is k−connected if we need to remove at least k vertices of G

in order to get a disconnected graph from G.

Corollary 2.2 Let G and H be two graphs such that G ∼ H. Then G is

2−connected if and only if H is 2−connected.

We shall now give some typical examples of χ−unique graphs.

(a) The empty graph On of order n is χ−unique and P (On, λ) = λn.

(b) The complete graph Kn of order n is χ−unique and P (Kn, λ) = λ(λ −

1) . . . (λ − n + 1).

(c) Let Cn be the cycle of order n, n ≥ 3. Then P (Cn, λ) = (λ−1)n+(−1)n(λ−

1). Chao and Whitehead [5] proved that every cycle is χ−unique.

(d) A θ−graph denoted by θ(p, q), consists of two cycles Cp and Cq with a an

edge in common. Then

P (θ(p, q), λ) =
P (Cp, λ)P (Cq, λ)

λ(λ− 1)
.

Chao and Whitehead [5] proved that θ(p, q) is χ−unique.
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2.3 Chromaticity of Bipartite Graphs

In this section, we give a brief survey of the works done on the chromaticity of

bipartite graphs. A bipartite graph is a graph whose vertex set can be partitioned

into two subsets A and B such that every edge of the graph joins a vertex in A

to a vertex in B. It is called a complete bipartite graph if every vertex in A is

adjacent to every vertex in B. For any two positive integers p and q, let K(p, q)

denote the complete bipartite graph with |A| = p and |B| = q.

Salzberg et al. [23] characterized bipartite graphs by their chromatic polynomials

as follows.

Theorem 2.7 A graph G is a bipartite graph if and only if (λ− 2) � |P (G,λ).

By applying Whitney’s Broken-Cycle Theorem, Hong [14] gave a different char-

acterization of bipartite graphs.

Theorem 2.8 Let G be a graph of order n. Let

P (G,λ) =
n−1
∑

i=1

(−1)ihiλ
n−i

be the chromatic polynomial of G where hi is the number of spanning subgraphs

of G that have i edges and that contain no broken cycles induced by a bijection

β : E(G) → { 1, 2,. . . ,m }. Then G is a bipartite graph if and only if hn−1 is an

odd number.

Farrell [12] has given explicit expressions in terms of the number of certain sub-

graphs of the graph for the first five coefficients of the chromatic polynomial of
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a graph. As a consequence of his result and Lemma 2.3, the following result is

obtained.

Theorem 2.9 (Peng [19], Salzberg et al. [23]) Let G be a bipartite graph. If H

is a graph such that H ∼ G, then H is also a bipartite graph having the same

number of vertices, edges, cycles of order 4 and complete bipartite subgraphs

K(2, 3) as G.

A complete bipartite graph K(p, q) has p + q vertices and pq edges. Therefore,

according to Theorem 2.9, the following result is obtained.

Theorem 2.10 Suppose that H ∼ K(p, q), then H is isomorphic with the com-

plete bipartite graph K(p + k, q − k) with (q − p)k − k2 edges deleted where

0 ≤ k ≤ (q − p)/2.

In [6], Chao and Novacky proved that the graphs K(p, p) and K(p, p − 1) are

chromatically unique. In 1978, Chao conjectured (see [23]) that the graphK(p, q)

is chromatically unique if p ≥ 2 and 0 ≤ p − q ≤ 2. This was later confirmed

by Salzberg et al. in [23]. From Theorems 2.9 and 2.10 and analysis of some

particular cases, Salzberg et al. [23] proved more generally that the graph K(p, q)

is chromatically unique if p ≥ 2 and 0 ≤ q−p ≤ max{ 5,
√

2p }; and conjectured

further that the graph K(p, q) is chromatically unique for all p, q with p ≥ q ≥

2. Through the study of some extremal properties of 3−colourings of certain

bipartite graphs, Tomescu [25] improved the above result slightly by showing

that the graph K(p, q) is chromatically unique if p ≥ 2 and 0 ≤ q−p ≤ 2
√
p+ 1.

In spite of this, the conjecture due to Salzberg et al. [23] still remains unsettled.
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By studying the simplified adjacency matrix of a bipartite graph, Teo and Koh

[24] eventually settled the conjecture.

For a graph G containing a cycle, the girth g(G)(= g) of G is the length of a

shortest cycle in G. Let σg(G) denote the number of cycles of length g(G) in G.

Teo and Koh in [16] established the following result.

Theorem 2.11 Let G be a 2-connected graph of order n, size m, and girth g.

Then

(i) σg(G) ≥






m
g

(m− n+ 1) if g is even,
n
g
(m− n+ 1) if g is odd.

(ii) For even g, the equality in (i) holds if and only if every two edges of G are

contained in a common shortest cycle Cg.

(iii) For odd g, the equality in (i) holds if and only if every vertex and every

edge of G are contained in common shortest cycle Cg.

By means of Theorem 2.11, Teo and Koh [16] showed that the graph K(p, q) is

χ−unique for all p ≥ q ≥ 2. This result was also obtained by Dong [8] using

an idea similar to but not as general as that given in Theorem 2.11. In [31], Xu

by considering the number of induced complete bipartite subgraphs of G, also

proved that K(p, q) is χ−unique for all p ≥ q ≥ 2 but unfortunately the proof is

found invalid (see [30]).

Theorem 2.12 (Teo and Koh [16, 24])(see also [8], [30] and [31]) Every complete

bipartite graph K(p, q) is χ−unique for all p, q with p ≥ q ≥ 2.

For integers p,q,s with p ≥ q ≥ 2 and s ≥ 0, let K−s(p, q)(resp. K−s
2 (p, q)) denote

the set of connected (resp. 2−connected) bipartite graphs which can be obtained
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from K(p, q) by deleting a set of s edges. Salzberg et al. [23] proved that every

graph in K−1(p, q) is χ−unique if p ≥ 3 and 0 ≤ q − p ≤ 1. Teo and Koh in [24]

then proved every graph in K−1(p, q) is χ−unique if p ≥ q ≥ 3.

The case s ≥ 2 has been studied by Giudici and Lima de Sa [13], Peng [19],

Borowiecki and Drgas-Burchardt [4]. Their typical results are of the following:

(i) If 2 ≤ s ≤ 4 and p − q is small enough, then each graph in K−s(p, q) is

χ−unique;

(ii) If G ∈ K−s(p, q), where 0 ≤ p− q ≤ 1, such that the set of s edges deleted

forms a matching, then G is χ−unique.

Chen [7] showed that if G ∈ K−s(p, q), where 3 ≤ s ≤ p − q and

q ≥ max
{

1

2
(p− q)(s− 1) +

3

2
,

8

27
(p − q)2 +

1

3
(p − q) + 5s+ 6

}

,

and the set of s edges deleted forms a matching or a star (among other possibil-

ities), then G is χ−unique.

Recall that A and B are the partite sets of K(p, q) with |A| = p and |B| = q. For

1 ≤ s ≤ p− 1, let H1(p, q, s) denote the graph obtained from K(p, q) by deleting

a set of s edges that induces a star with the center in B; let H2(p, q, s) denote

the graph obtained from K(p, q) by deleting a set of s edges that induces a star

with the center in A; and for 1 ≤ s ≤ q, let H3(p, q, s) denote the graph obtained

from K(p, q) by deleting a set of s edges that forms a matching of K(p, q). The

following result was obtained in [11].
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Theorem 2.13 For positive integers p,q,s with p ≥ q ≥ 3,

(i) when 1 ≤ s ≤ q − 2, Hi(p, q, s) is χ−unique for i = 1, 2;

(ii) when q − 1 ≤ s ≤ p − 2, H1(p, q, s) is χ−unique; and

(iii) when 0 ≤ s ≤ q − 1, H3(p, q, s) is χ−unique.

For a bipartite graph G = (A,B;E) with bipartition A and B and edge set E, let

G′ = (A′, B′;E′) be the bipartite graph induced by the edge set E′ = {xy | xy /∈

E, x ∈ A, y ∈ B }, where A′ ⊆ A and B′ ⊆ B. We write G′ = K(p, q) − G,

where p = |A| and q = |B|. Let △(G′) denote the maximum degree of G′.

Partition K−s(p, q) into the following subsets:

Di(p, q, s) =
{

G ∈ K−s(p, q)
∣

∣

∣

∣

△(G′) = i
}

, i = 1, 2, . . . , s.

Dong et al. [9] established the following result.

Theorem 2.14 (1) For any G ∈ K−s
2 (p, q) with p ≥ q ≥ s+1 ≥ 6, if △(G′) =

s− 1, then G is χ−unique.

(2) For any G ∈ K−s
2 (p, q) with p ≥ q ≥ s + 1 ≥ 8, if △(G′) = s − 2, then G

is χ−unique.

Motivated by the work done by Dong et al. [9] above, we shall investigate the

chromatic uniqueness of any G ∈ K−s
2 (p, q) when △(G′) ≥ s− 3.

For a graph G and a positive integer k, a partition { A1, A2, . . . , Ak } of V (G) is

called a k-independent partition in G if each Ai is a non-empty independent set
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of G. Let α(G, k) denote the number of k−independent partitions in G. For any

bipartite graph G = (A,B;E) with bipartition A and B and edge set E, define

α′(G, 3) = α(G, 3) − (2|A|−1 + 2|B|−1 − 2).

In [11], the authors found the following sharp bounds for α′(G, 3).

Theorem 2.15 For G ∈ K−s
2 (p, q) with p ≥ q ≥ 3 and 0 ≤ s ≤ q − 1,

s ≤ α′(G, 3) ≤ 2s − 1,

where α′(G, 3) = s iff ∆(G′) = 1, and α′(G, 3) = 2s − 1 iff ∆(G′) = s.

For t = 0, 1, 2, . . . , let B(p, q, s, t) denote the set of graphs G ∈ K−s(p, q) with

α′(G, 3) = s+ t. Thus, K−s(p, q) is partitioned into the following subsets:

B(p, q, s, 0), B(p, q, s, 1), . . . ,B(p, q, s, 2s − s− 1).

Assume that B(p, q, s, t) = ∅ for t > 2s − s− 1.

Dong et al. [10] then obtained the following two results.

Theorem 2.16 Let p,q and s be integers with p ≥ q ≥ 3 and 0 ≤ s ≤ q−1. For

every G ∈ B(p, q, s, t) for 1 ≤ t ≤ 4, if G is 2-connected, then G is χ−unique.

Theorem 2.17 For any G ∈ K−s
2 (p, q) with p ≥ q ≥ 3 and 0 ≤ s ≤ min{ q −

1, 4 }, G is χ−unique.

Motivated by Theorems 2.16 and 2.17 above, we shall examine the chromatic

uniqueness of 2−connected graphs G ∈ B(p, q, s, t) for t ≥ 5 and the chromatic

uniqueness of any G ∈ K−s
2 (p, q) if 5 ≤ s ≤ q − 1.



CHAPTER 3

CHROMATIC UNIQUENESS OF COMPLETE BIPARTITE

GRAPHS WITH CERTAIN EDGES DELETED

3.1 Introduction

Recall that Dong et al. [9] have proved the following results.

(1) For any G ∈ K−s
2 (p, q) with p ≥ q ≥ s+ 1 ≥ 6, if △(G′) = s− 1, then G is

χ−unique.

(2) For any G ∈ K−s
2 (p, q) with p ≥ q ≥ s+ 1 ≥ 8, if △(G′) = s− 2, then G is

χ−unique.

In this chapter, we shall study the chromatic uniqueness of every G ∈ K−s
2 (p, q),

where 9 ≤ s ≤ q− 1 and △(G′) = s− 3; and the main result will be presented in

Section 3.3. In Section 3.2, we give some known results and notations which will

be used to prove our main result. In Section 3.4, we give the detailed proof of this

result by using the same approach introduced by Dong et al. [9]. The chromatic

uniqueness of any G ∈ K−s
2 (p, q), where 11 ≤ s ≤ q − 1 and △(G′) = s− 4, will

be discussed in the next chapter.
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3.2 Preliminary Results and Notations

For any graph G of order n, we have (see [21]):

P (G,λ) =
n

∑

k=1

α(G, k)λ(λ − 1) · · · (λ− k + 1).

Thus, we have

Lemma 3.1 If G ∼ H, then α(G, k) = α(H, k) for k = 1, 2, . . ..

For a set G of graphs, if [G] ⊆ G for every G ∈ G, then G is said to be χ−closed.

For two sets G1 and G2 of graphs, if P (G1, λ) �= P (G2, λ) for every G1 ∈ G1

and G2 ∈ G2, then G1 and G2 are said to be chromatically disjoint, or simply

χ−disjoint.

Recall that K−s(p, q) can be partitioned into the following subsets:

Di(p, q, s) =
{

G ∈ K−s(p, q)
∣

∣

∣

∣

△(G′) = i
}

, i = 1, 2, . . . , s.

The above partition then will be used to study the chromaticity of bipartite

graphs. Thus we need the following known result which is obtained in [9].

Theorem 3.1 Let p ≥ q ≥ 3 and 1 ≤ s ≤ q − 1.

(i) D1(p, q, s) is χ−closed.

(ii) ∪2≤i≤(s+3)/2Di(p, q, s) is χ−closed for s ≥ 2.

(iii) Di(p, q, s) is χ−closed for each i with ⌈(s+ 3)/2⌉ ≤ i ≤ min{s, q − 2}.

(iv) Dq−1(p, q, s) ∩ K−s
2 (p, q) is χ−closed for s = q − 1.
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Recall that for any bipartite graph G = (A,B;E) with bipartition A and B and

edge set E, we have

α′(G, 3) = α(G, 3) − (2|A|−1 + 2|B|−1 − 2). (3.1)

For a bipartite graph G = (A,B;E), let I(G) be the set of independent sets in

G and let

Ω(G) = { Q ∈ I(G) | Q ∩A �= ∅, Q ∩B �= ∅ }.

The following result is then obtained.

Lemma 3.2 (Dong et al. [11]) For G ∈ K−s(p, q),

α′(G, 3) = |Ω(G)| ≥ 2△(G′) + s − 1 −△(G′).

For a bipartite graph G = (A,B;E), the number of 4−independent partitions

{ A1, A2, A3, A4 } in G with Ai ⊆ A or Ai ⊆ B for all i = 1, 2, 3, 4 is

(2|A|−1 − 1)(2|B|−1 − 1) +
1

3!
(3|A| − 3 · 2|A| + 3) +

1

3!
(3|B| − 3 · 2|B| + 3)

= (2|A|−1 − 2)(2|B|−1 − 2) +
1

2
(3|A| + 3|B|) − 2.

Define

α′(G, 4) = α(G, 4) −
{

(2|A|−1 − 2)(2|B|−1 − 2) +
1

2
(3|A| + 3|B|) − 2

}

.

Observe that for G,H ∈ K−s(p, q),

α(G, 4) = α(H, 4) if and only if α′(G, 4) = α′(H, 4).

The following lemmas will be used to prove our main result.
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Lemma 3.3 (Dong et al. [10]) For G = (A,B;E) ∈ K−s(p, q) with |A| = p and

|B| = q,

α′(G, 4) =
∑

Q∈Ω(G)

(2p−1−|Q∩A| + 2q−1−|Q∩B| − 2)

+ | { {Q1, Q2} | Q1, Q2 ∈ Ω(G), Q1 ∩Q2 = ∅ } | .

Lemma 3.4 (Dong et al. [10]) For a bipartite graph G = (A,B;E), if uvw is a

path in G′ with dG′(u) = 1 and dG′(v) = 2, then for any k ≥ 2,

α(G, k) = α(G + uv, k) + α(G − {u, v}, k − 1) + α(G − {u, v,w}, k − 1).

The following lemma is an extension of Lemma 3.4 which is also useful to prove

certain case in our main result.

Lemma 3.5 For a bipartite graph G = (A,B;E), if uvw, uvy and wvy are three

paths in G′ with dG′(u) = 1 and dG′(v) = 3, then for any k ≥ 2,

α(G, k) = α(G + uv, k) + α(G− {u, v}, k − 1) + α(G − {u, v,w}, k − 1) +

α(G − {u, v, y}, k− 1) + α(G− {u, v,w, y}, k− 1).

Proof Since P (G,λ) = P (G+ uv, λ) + P (G · uv, λ), we have

α(G, k) = α(G + uv, k) + α(G · uv, k).

Let x be the vertex in G ·uv produced by identifying u and v, and z the vertex in

G·uv·xw produced by identifying x and w. Notice that x is adjacent to all vertices

in V (G ·uv)−{x,w, y} and z is adjacent to all vertices in V (G(uv ·xw)−{z, y}.

Thus

G · uv + xw + xy = K1 + (G− {u, v}),
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(G · uv + xw) · xy = K1 + (G− {u, v, y}),

G · uv · xw + zy = K1 + (G− {u, v,w}) and

G · uv · xw · zy = K1 + (G− {u, v,w, y}).

We also observe that for any graph H, α(K1 +H, k) = α(H, k−1), since P (K1 +

H,λ) = λP (H,λ − 1). Hence

α(G · uv, k) = α(G · uv + xw, k) + α(G · uv · xw, k)

= α(G · uv + xw + xy, k) + α((G · uv + xw) · xy, k) +

α(G · uv · xw + zy, k) + α(G · uv · xw · zy, k)

= α(K1 + (G − {u, v}), k) + α(K1 + (G− {u, v, y}), k) +

α(K1 + (G− {u, v,w}), k) + α(K1 + (G− {u, v,w, y}), k)

= α(G − {u, v}, k − 1) + α(G − {u, v, y}, k− 1) +

α(G − {u, v,w}, k − 1) + α(G − {u, v,w, y}, k− 1).

The lemma is then obtained.

3.3 Main Result

In [11], Dong et al. proved that every 2−connected graph in Ds(p, q, s) is

χ−unique. Then, Dong et al. in [9] also proved that G is χ−unique for ev-

ery G ∈ Ds−1(p, q, s), where s ≥ 5, and that G is χ−unique for every G ∈

Ds−2(p, q, s), where s ≥ 7. In this section, we shall study the chromaticity of

all the graphs in Ds−3(p, q, s), where s ≥ 9. We first have the following lemma

which can be easily proved by construction.
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Lemma 3.6 For any G in Ds−3(p, q, s), where s ≥ 9, G′ is one of the 21 graphs

in Figure 3.1 and G′ = K(p, q) −G.

By Lemma 3.6 above, Ds−3(p, q, s) contains 48 graphs, which are named as V1,

V2, . . ., V48 (see Table 3.1). Note that Figure 3.1 and Table 3.1 are shown at the

end of this chapter.

We now calculate the values of α′(Vi, 3) for these 48 graphs by using Lemma 3.2

and these values are in column three of Table 3.1. Thus we have the following

observations.

(i) α′(Vi, 3) = 2s−3 + 13, for i=1,2;

(ii) α′(Vi, 3) = 2s−3 + 12, for i=3,4;

(iii) α′(Vi, 3) = 2s−3 + 9, for i=5,6,7,8;

(iv) α′(Vi, 3) = 2s−3 + 7, for i=9,10,. . .,16;

(v) α′(Vi, 3) = 2s−3 + 6, for i=17,18,. . .,24;

(vi) α′(Vi, 3) = 2s−3 + 5, for i=25,26,. . .,30;

(vii) α′(Vi, 3) = 2s−3 + 4, for i=31,32,. . .,40;

(viii) α′(Vi, 3) = 2s−3 + 3, for i=41,42,. . .,46;

(ix) α′(Vi, 3) = 2s−3 + 2, for i=47,48.

We then group these graphs according to their α′(Vi, 3). Hence we have the

following classification of the graphs.

T1 = { V1, V2 }
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T2 = { V3, V4 }

T3 = { V5, V6, V7, V8 }

T4 = { V9, V10, V11, V12, V13, V14, V15, V16 }

T5 = { V17, V18, V19, V20, V21, V22, V23, V24 }

T6 = { V25, V26, V27, V28, V29, V30 }

T7 = { V31, V32, V33, V34, V35, V36, V37, V38, V39, V40 }

T8 = { V41, V42, V43, V44, V45, V46 }

T9 = { V47, V48 }.

We also calculate the values of α′(Vi, 4) by using Lemma 3.3 and we list them in

column four of Table 3.1.

We now present our main result in the following theorem.

Theorem 3.2 For any G ∈ K−s
2 (p, q), with p ≥ q ≥ s+1 ≥ 10, if △(G′) = s−3,

then G is χ−unique.

Proof Since s ≥ 9, then (s+ 3)/2 ≤ s− 3. Thus by Theorem 3.1, Ds−3(p, q, s)

is χ−closed. Observe that for any i, j with 1 ≤ i < j ≤ 9, α′(Vi1, 3) > α′(Vj1 , 3)

if Vi1 ∈ Ti and Vj1 ∈ Tj . Thus by Lemma 3.1 and Equation (3.1), Ti and Tj

(1 ≤ i < j ≤ 9) are χ−disjoint; and since Ds−3(p, q, s) is χ−closed, each Ti

(1 ≤ i ≤ 9) is χ−closed. Hence, for each i, to show that all graphs in Ti are

χ−unique, it suffices to show that for any two graphs, Vi1, Vi2 ∈ Ti, if Vi1 �∼= Vi2,

then either α′(Vi1 , 4) �= α′(Vi2 , 4) or α(Vi1 , 5) �= α(Vi2 , 5). Generally, we use a

method similar to that of Dong et al. in [9], where we shall compare every two

graphs in each Ti (1 ≤ i ≤ 9). The detailed proof will be presented in Section

3.4.


