SYNTHESIS OF PALM BIODIESEL USING DIRECT APPLICATION OF PURE SODIUM METHOXIDE AS THE CATALYST

AZHARI

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2006

DEDICATED TO

MY WIFE, DAUGHTER, PARENTS with love

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

SYNTHESIS OF PALM BIODIESEL USING DIRECT APPLICATION OF PURE SODIUM METHOXIDE AS THE CATALYST

By

AZHARI

September 2006

Chairman: Associate Professor Robiah Yunus, PhD

Faculty: Engineering

Palm biodiesel (methyl ester) was successfully synthesized from refined bleached deodorized palm oil (RBDPO) by transesterification reaction. The alkali catalyst was selected for this reaction, and the effects of operating variables such as molar ratio, reaction temperature, reaction time, and quantity of catalyst were investigated. The reaction was carried out under atmospheric pressure. The reaction temperatures were varied among 55, 60, 65 and 70°C, while the reaction times were between 50, 60, 70, 80 and 90 min respectively. The effects of two alkali catalysts namely sodium methoxide (NaOCH₃) and sodium hydroxide (NaOH) at catalyst amounts of 1.0% w/w and molar ratios of methanol to RBDPO at 3:1, 4:1, 5:1, and 6:1 were investigated on reaction yield. The optimum conditions for NaOCH₃ catalyst are as follows: reaction temperature is 65°C, reaction time is 60 minutes, molar ratio is 6:1, and catalyst amount, 1.0% w/w. The reaction conversion was almost 99%. While using NaOH catalyst, the conversion was 94%. The low pour point palm biodiesel was produced through winterization and vacuum distillation process. The vacuum

distillation operated under pressure and temperature were between 5.2-6.0 mbar and 156-158°C. Basically, the lower the content of saturated components in a biodiesel, a better pour point biodiesel would be produced. However, in this experiment, the lowest of saturated component achievable was 16% w/w, and the lowest pour point attainable for palm biodiesel was at 3°C. Besides that, the kinetics study on transesterification of RBDPO with methanol established that the reaction occurred via two stepwise and irreversible elementary reactions. The rate constants for the formation of intermediate diglycerides and the final product palm oil methyl esters were determined at various temperatures. The conversion of triglycerides (TG) and diglycerides (DG) appeared to be following the second order reaction. The values of k_{TG} were between 0.005 – 0.013 and the values of k_{DG} were between 0.019 – 0.027. The activation energies for stepwise reaction in transesterification of palm based oils with methanol ranged from 6.87 to 11.45 kcal/mol.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SINTESIS BIODIESEL KELAPA SAWIT MENGGUNAKAN APLIKASI LANGSUNG NATRIUM METOKSIDA TULIN SEBAGAI PEMANGKIN

Oleh

AZHARI

September 2006

Pengerusi : Profesor Madya Robiah Yunus, PhD

Fakulti : Kejuruteraan

Sintesis bahan bakar diesel (biodiesel) kelapa sawit telah berjaya dijalankan melalui tindakbalas transesterifikasi kimia minyak kelapa sawit yang telah ditapis, diluntur dan dienyahbau (RBDPO) Pemangkin alkali dipilih pada tindakbalas ini, dan kesan pembolehubah kendali iaitu: nisbah mol, suhu tindakbalas, masa tindakbalas, dan kuantiti pemangkin dikaji. Tindakbalas dijalankan dibawah tekanan atmosfera. Suhu tindakbalas diubah antara 55, 60, 65 dan 70°C, sedangkan masa tindakbalas antara 50, 60, 70, 80 dan 90 minit. Kesan dua pemangkin alkali iaitu natrium metoksida (NaOCH₃) dan natrium hidroksida (NaOH) pada kuantiti pemangkin 1% w/w dan nisbah mol metanol kepada minyak RBDPO pada 3:1, 4:1, 5:1, dan 6:1 dikaji terhadap hasil tindakbalas. Keadaan optimum dengan menggunakan pemangkin NaOCH₃ adalah seperti berikut: suhu tindakbalas 65°C, masa tindakbalas 60 minit, nisbah mol 6:1, dan kuantiti pemangkin yang digunakan adalah 1% w/w. Penukaran tindakbalas juga hampir 99%. Sedangkan dengan menggunakan pemangkin NaOH tindakbalas adalah 94%. Takat tuang yang rendah diperolehi melalui kaedah "winterisasi" dan kaedah penyulingan vakum. Penyulingan vakum beroperasi pada tekanan 5.2-6.0 mbar dan suhu 156-158°C. Pada asasnya, semakin rendah kandungan komponen tepu di dalam biodiesel, semakin baik takat tuang biodiesel yang diperolehi. Walaubagaimanapun, pada ujikaji ini kandungan tepu terendah yang dihasilkan adalah 16% w/w, dan nilai takat tuang terendah yang diperolehi adalah 3°C. Disamping itu juga, kajian kinetik keatas transesterifikasi minyak RBDPO dengan metanol menunjukkan tindakbalas berlaku secara turutan dan melibatkan dua tindakbalas asas tak berbalik. Kadar pemalar untuk pembentukan digliserida perantaraan dan produk akhir metil ester minyak kelapa sawit (bioidesel) dikaji pada beberapa suhu. Penukaran trigliserida (TG) dan digliserida (DG) didapati berada pada kadar kedua pada keseluruhan masa tindakbalas. Nilai-nilai k_{TG} berada pada julat 0.005–0.013 dan k_{DG} adalah diantara 0.014–0.027. Tenaga keaktivifan bagi tindakbalas sintesis transesterifikasi tersebut berada diantara 6.87–11.45 kcal/mol.

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

AZHARI

Date: 22 NOVEMBER 2006

TABLE OF CONTENTS

ii
iii
V
vii
viii
Х
xiii
XV
xviii

CHAPTER

INTRODUC	CTION	1
1.1	Background	1
1.2	Objectives and Scopes of Work	5
LITERATU	RE REVIEW	7
Intro	oduction	7
Bac	kground	8
	Straight Fats and Oils Fuel	8
	Biodiesel	11
Proc	cess Overview	14
	Transesterification	14
	Esterification	19
	Supercritical Methanol	20
	Biocatalyst	22
	Pyrolysis	25
	Microemulsion	28
Rea	ction Kinetic and Mechanism	31
Ana	lysis of Transesterification Product	34
Effe	ects of Operating Conditions	37
	Temperature of Reaction	37
	Ratio of Alcohol to Oil	38
	Catalyst	39
	Mixing Intensity	42
	Reaction Time	43
Qua	lity Specification of Biodiesel	43
Perf	formance of Biodiesel	44
Low	Temperature Properties	46
Sum	imary	48
		50

METHODOLOGY50Materials and Equipments50

Experimental Procedures	51
Synthesis of Palm-Based Methyl Esters	52
Separation of Product	54
Removal of Catalyst	55
Kinetics Study	55
Analysis Procedures	56
Standard Solution	56
Gas Chromatography	57
Reduction of Saturated Methyl Esters Content	60
Vacuum Distillation	61
Winterization	63
Pour Point	64

RESULTS AND DISCUSSIONS

66

Introduction	66	
GC Analysis	67	
Transesterification Reaction	67	
Effects of Reactants Molar Ratio	68	
Effects of Temperature on Methyl Ester		
Formation		71
Effects of Catalyst	74	
Effects of Reaction Time	76	
Transesterification Kinetics of Palm-Based		
Triglycerides		77
Reaction Kinetics	78	
Determination of Reaction Rate Constant	83	
Rate of Constant, k _{TG}	86	
Rate of Constant, k _{DG}	91	
Determination of Activation Energy	92	
Vacuum Distillation	94	
Winterization	96	
Pour Point	98	

CONCLUSION AND RECOMMENDATIONS

100	
Conclusion	100
Recommendations	102

104
114
141

LIST OF TABLES

Table

2.1.	Provisional ASTM standard for pure (100%) biodiesel	44
4.1.	The Specification of Refined Bleached Deodorized Palm Oil	66
4.2.	Rate constant, k_{TG} for reaction between methanol and palm oil-based triglycerides	90
4.3.	Rate constant, k_{DG} for reaction between methanol and palm oil-based diglycerides	92
4.4.	Activation energy for transesterification of palm oil triglycerides with methanol	93
4.5.	Remaining composition of saturated components after vacuum distillation at constant temperature range 156-158°C	95
4.6.	Pour point of different grades of palm methyl esters	99
C.1.	Tabulated data on kinetic reaction at 55°C, Catalyst NaOCH ₃	125
C.2.	Tabulated data on kinetic reaction at 60°C, Catalyst NaOCH ₃	126
C.3.	Tabulated data on kinetic reaction at 65°C, Catalyst NaOCH ₃	127
C.4.	Tabulated data on kinetic reaction at 70°C, Catalyst NaOCH ₃	128
C.5.	Tabulated data on kinetic reaction at 60°C, Catalyst NaOH	129
C.6.	Mass and mole of methyl esters at various temperatures (molar ratio 3:1, reaction time, 60 min, catalyst NaOCH ₃)	130
C.7.	Mass and mole of methyl esters at various temperatures (molar ratio 4:1, reaction time, 60 min, catalyst NaOCH ₃)	130
C.8.	Mass and mole of methyl esters at various temperatures (molar ratio 5:1, reaction time, 60 min, catalyst NaOCH ₃)	130
C.9.	Mass and mole of methyl esters at various temperatures (molar ratio 6:1, reaction time, 60 min, catalyst NaOCH ₃)	131
C.10). Mass and mole of methyl esters at various temperatures (molar ratio 3:1, reaction time, 60 min, catalyst NaOH)	131

C.11. Mass and mole of methyl esters at various temperatures (molar ratio 4:1, reaction time, 60 min, catalyst NaOH)	131
C.12. Mass and mole of methyl esters at various temperatures (molar ratio 5:1, reaction time, 60 min, catalyst NaOH)	132
C.13. Mass and mole of methyl esters at various temperatures (molar ratio 6:1, reaction time, 60 min, catalyst NaOH)	132

LIST OF FIGURES

Figure

Page

3.1.	Flow diagram of the methodology	51
3.2.	Schematic diagram of synthesis of palm biodiesel	52
3.3.	Experimental setup for synthesis of palm biodiesel	53
3.4.	Separation of methyl ester product from glycerol	54
3.5.	Samples taken over the specified time of reaction	55
3.6.	Gas Chromatography analysis	58
3.7.	GC chromatogram of refined bleached and deodorized palm oil (RBDPO) triglycerides	59
3.8.	Gas chromatogram of methyl ester product	60
3.9.	Schematic diagram of vacuum distillation	61
3.10.	Setup of fractionation process of the methyl ester	62
3.11.	Winterization set	63
4.1.	Effect of molar ratio on methyl ester yield at various temperatures (Reaction time, 60 minutes, catalyst 1% NaOCH ₃)	70
4.2.	Effect of molar ratio on methyl ester yield at various temperatures (Reaction time, 60 minutes, catalyst 1% NaOH)	71
4.3.	Effect of temperature on methyl ester yield at various molar ratios (Reaction time, 60 minutes, catalyst 1% NaOCH ₃)	72
4.4.	Effect of temperature on methyl ester yield at various molar ratios (Reaction time, 60 minutes, catalyst 1% NaOH)	73
4.5.	Effect of catalyst type on methyl ester yield (Molar ratio was 6:1, reaction time, 60 minutes)	75
4.6.	Effect of reaction time on composition rate of methyl ester product (Molar ratio was 6:1, catalyst NaOCH ₃)	76

4.7.	Composition of reaction products during transesterification of refine bleached deodorized palm oil (RBDPO) (a) at 55° C, and (b) at 60° C ratio was 6:1, catalyst 1% NaOCH ₃	ed C, molar 80
4.8.	Composition of reaction products during transesterification of refine bleached deodorized palm oil (RBDPO) at (a) 65°C and (b) 70°C, molar ratio was 6:1, catalyst 1% NaOCH ₃	ed 81
4.9.	Composition of reaction products during transesterification of refine bleached deodorized palm oil (RBDPO) at 60°C, molar ratio was 6: catalyst 1% NaOH	ed :1, 82
4.10.	GC chromatogram of kinetics sample at 3 min of reaction time (NaOCH ₃ as catalyst)	85
4.11.	Second order kinetic model for transesterification of palm oil-based triglycerides with methanol at 55°C	l 86
4.12.	Second order kinetic model for transesterification of palm oil-based triglycerides with methanol at 60°	87
4.13.	Second order kinetic model for transesterification of palm oil-based triglycerides with methanol at 65°	88
4.14.	Second order kinetic model for transesterification of palm oil-based triglycerides with methanol at 70°	l 89
4.15.	First order kinetic model for transesterification of palm oil-based triglycerides with methanol at 65°C	90
4.16.	Arrhenius plot showing the temperature dependency of reaction rate constants	e 93
A.1.	Second order kinetic model for transesterification of palm oil-based diglycerides with methanol, (a) at 55°C and (b) at 60°C	114
A.2.	Second order kinetic model for transesterification of palm oil-based diglycerides with methanol, (a) at 65°C and (b) at 70°C	115
B.1.	GC chromatogram of kinetic reaction at 65°C, reaction time, 1 min	116
B.2.	GC chromatogram of kinetic reaction at 65°C, reaction time, 2 min	116
B.3.	GC chromatogram of kinetic reaction at 65°C, reaction time, 3 min	117
B.4.	GC chromatogram of kinetic reaction at 65°C, reaction time, 5 min	117
B.5.	GC chromatogram of kinetic reaction at 65°C, reaction time, 7 min	118
B.6.	GC chromatogram of kinetic reaction at 65°C, reaction time, 10 min	n 118

B.7.	GC chromatogram of kinetic reaction at 65°C, reaction time, 13 min	119
B.8.	GC chromatogram of kinetic reaction at 65°C, reaction time, 16 min	119
B.9.	GC chromatogram of kinetic reaction at 65°C, reaction time, 20 min	120
B.10.	GC chromatogram of kinetic reaction at 65°C, reaction time, 25 min	120
B.11.	GC chromatogram of kinetic reaction at 65°C, reaction time, 30 min	121
B.12.	GC chromatogram of kinetic reaction at 65°C, reaction time, 35 min	121
B.13.	GC chromatogram of kinetic reaction at 65°C, reaction time, 40 min	122
B.14.	GC chromatogram of kinetic reaction at 65°C, reaction time, 45 min	122
B.15.	GC chromatogram of kinetic reaction at 65°C, reaction time, 50 min	123
B.16.	GC chromatogram of kinetic reaction at 65°C, reaction time, 55 min	123
B.17.	GC chromatogram of kinetic reaction at 65°C, reaction time, 60 min	124

LIST OF ABBREVIATIONS

ASTM	American Society for Testing and Materials
BSTFA	N,O-Bis(Trimethylsilyl)trifluoroacetamide
СР	Cloud Point
CFC	Chloro Flouro Carbon
DF	Diesel Fuel
DG	Diglyceride
ELSD	Evaporative Light Scattering Detector
FAME	Fatty Acid Methyl Ester
FFA	Free Fatty Acid
FID	Flame Ionization Detection
GC	Gas Chromatography
HPLC	High Performance Liquid Chromatography
HPSEC	High Performance Size-Exclusion Chromatography
ID	Inside Diameter
K	Kilo
ME	Methyl Ester
MG	Monoglyceride
POME	Palm Oil Methyl Ester
PORIM	Palm Oil Research Institute Malaysia
PP	Pour Point
RBDPO	Refined Bleached Deodorized Palm Oil
TG	Triglyceride
UV	Ultra Violet

US	United State
Al_2O_3	Aluminium Oxide
CO_2	Carbon Dioxide
NaOCH ₃	Natrium Methoxide
NaOH	Natrium Hydroxide
SiO ₂	Silicon Dioxide
H_2SO_4	Sulfuric Acid
D2	No.2 Diesel
cal	calorie
g	gram
h	hour
mL	milliliter
min	minute
nm	nanometer
rpm	rotation per minute