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In this thesis, issues such as link adaptation that include adaptive spatial mode in the 

context of orthogonal frequency division multiplexing (OFDM) is addressed, 

particularly in a multiple-input single-output (MISO) configuration suitable for 

mobile communications. The performances of ST- and SF-OFDM incorporating 

channel coding are extensively investigated in the presence of channel fading and 

noise. Realizing that ST and SF behave differently in different environments, a new 

adaptive spatial mode (ASM)-OFDM is proposed. This scheme selects the mode of 

transmission based on the instantaneous signal to noise ratio (SNR) for a 12×  MISO 

system. A new adaptive multiple antenna selection (AdMAS) using second-order 

moment of the channel impulse response between multiple transmitting antennas and 

a single receiver MISO-OFDM configuration is also proposed as a major 

contribution. This scheme employs a 14×  space-time-frequency coding with a 

symbol rate of ¾, using orthogonal signals, to avoid high complexity in detection.  In 
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the proposed AdMAS scheme the worst faded channel(s) is(are) adaptively turned 

off based on the calculated second-order moment of the channel impulse response. 

Findings show that the proposed scheme outperforms other multiple antenna 

schemes such as the one based on the mean of the channel impulse response, 

especially at higher order modulation. Throughout the simulation, channel state 

information (CSI) is assumed to be known both by the transmitter and the receiver 

which may be achieved via a dedicated feedback channel or through the reciprocity 

of the channel such as that found in time division duplex (TDD) system.  

 

Minor contribution of this thesis includes a simplified sphere decoding algorithm for 

MIMO that forms part of the detection scheme at the receiver. A maximum 

achievable diversity order of the 14×  MISO-OFDM has also been derived 

analytically and proved through simulation. A diversity gain of more than 10 dB can 

be achieved with Binary Phase Shift Keying modulation when compared to 

Alamouti’s Space-Time Block Code (STBC) at a bit error rate (BER) of 10
-3
. This 

makes the proposed scheme a potential scheme to be considered for the future high 

data rate communication. The proposed schemes are tested through simulations in 

different types of practical channels such as Wireless Local Area Network (WLAN) 

IEEE 802.11, Rayleigh fading with various delay spreads, as well as the most recent 

Fixed Broadband Wireless Access (FBWA) IEEE 802.16 Stanford University 

Interim channels, or better known as the WiMAX channels.  
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Dalam tesis ini, isu seperti mudah-suai hubungan termasuk mod mudah-suai ruang 

dalam konteks OFDM diberi tumpuan, terutamanya dalam konfigurasi berbilang 

masukan satu keluaran (MISO) yang sesuai untuk sistem komunikasi bergerak. 

Prestasi ST dan SF-OFDM yang dilengkapi dengan pengkodan saluran dikaji secara 

menyeluruh dalam kedaaan saluran pudar dan hingar. Memandangkan skema ST dan 

SF menunjukkan sifat yang berbeza dalam keadaan saluran yang berbeza, satu skema 

mudah-suai mod ruang (ASM) yang baru telah disarankan. Skema ini memilih mod 

dengan memudah-suaikan mod penghantaran berdasarkan nisbah ketika isyarat 

kepada hangar (SNR) bagi konfigurasi MISO 12× .  Satu lagi skema baru yang 

dicadangkan adalah skema mudah-suai pemilihan berbagai antenna (AdMAS) 

dengan menggunakan momen aturan kedua bagi sambutan denyut saluran di antara 

penghantar berbilang antenna dengan penerima satu antenna. Skema ini merupakan 

sumbangan utama tesis ini. Skema ini menggunakan 14×  pengkodan ruang-masa-
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frekuensi (STF)-OFDM dengan kadar simbol sebanyak ¾, menggunakan isyarat 

ortogonal, bagi mengelakkan kesukaran pengesanan. Dalam skema AdMAS yang di 

cadangkan ini, saluran yang paling pudar akan diabaikan dengan mematikan antenna 

penghantar tersebut. Ini dilakukan secara mudah-suai berdasarkan momen aturan 

kedua sambutan denyut saluran yang telah dikira terlebih dahulu. Ini boleh dilakukan 

dengan tanggapan keadaan informasi saluran (CSI) diketahui oleh kedua-dua 

penghantar dan penerima yang boleh dicapai melalui saluran penghantaran balik atau 

melalui saluran pengkosian sebagaimana terdapat dalam sistem dupleks 

pembahagian masa (TDD). 

 

Sumbangan kecil yang juga terdapat dalam tesis ini termasuklah algoritma 

penyahkodan sphere yang dimudahkan, yang membentuk sebahagian dari skema 

pengesanan simbol dalam penerima. Aturan diversiti maksimum yang boleh dicapai 

juga telah dikeluarkan bagi konfigurasi 14×  MISO STF-OFDM dan dibuktikan 

melalui simulasi. Gandaan diversiti sebanyak 10 dB telah diperolehi dengan 

modulasi Kekunci Anjakan Fasa Binari (BPSK) berbanding dengan kaedah Kod 

Blok ST Alamouti pada kadar ralat (BER) 10
-3
. Ini membuatkan skema yang 

dicadangkan berpotensi untuk menjadi skema pilihan untuk sistem komunikasi akan 

datang. Skema-skema yang dicadangkan di atas telah diuji melalui simulasi dalam 

saluran praktikal yang berbeza seperti saluran Rangkaian Setempat Wayarles 

(WLAN) IEEE 802.11, pemudaran Rayleigh dengan nilai-nilai serakan lengah yang 

berbeza, serta saluran IEEE 802.16e Stanford Univerity Interim (SUI) bagi sistem 

Capaian Wayarles Jalur Lebar Tetap (FBWA) atau lebih dikenali sebagai WiMAX.   
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cf  carrier frequency 

  

)(tlα  attenuation factor for the l -th path 
 

  

( )l tτ  propagation delay for the l -th path 

  

A  the envelope of the channel impulse response lth ),(τ  

  

)(apA  probability density function of A  

  

τ  mean access delay 

  

τσ  root mean square (rms) delay spread 

  

)( kP τ  power delay profile  

  

CT  channel coherence time 

  

sT  symbol period 

  

CB  coherence bandwidth  

  

τ∆  differential delay between the time of the direct path and the next path 

  

)( ωjH  system transfer function  

  

TN  number of transmit antennas  

  

RN  number of receive antennas 
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ijρ  fading correlation between antennas i  and j  

  

(.)2

0J  Bessel function of the first kind with zero-th order 

  

ijd  separation between antennas i  and j  in meters 

  

λ  wavelength of the operating frequency 

  

Λ  angular spread of the incoming signal intercepted by an array of 

omnidirectional antennas 

  

TXΣ  correlation matrix of the transmit antenna arrays  

  

RXΣ  correlation matrix of the receive antenna arrays 

  

H  )( RT NN ×  correlated MIMO channel matrix 

  

vec{.} the vector operation of stacking the columns of a matrix into a single 

column vector 

  

⊗  Kronecker product   

  

G  )( RT NN ×  uncorrelated MIMO channel matrix 

  
2

(0, )
2

N
kσ  zero mean Gaussian random variable with variance 

2

2
kσ  

  

rmsT  delay spread of the channel 

  

kb  data sequence   

  
( )k
ts  M -QAM or M -PSK symbol represents a log2M  bits per symbol 

transmitted over k -th subcarrier during t -th OFDM symbol (frame) 
resulted after the IFFT operation  

  

chN  independent QAM/PSK channels, each operating at the same symbol 

rate T/1 , but each having a distinct  QAM/PSK constellation 

  
)(k

tS  complex-valued signal points corresponding to the information 

symbols on the subcarriers 

  

)(ts  transmitted signal waveform resulted from passing the signal samples 

}{ )(ks  through a digital-to analog converter 

  

( )y t  the received signal (or the output of the channel) 
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( )n t  additive white Guassian noise in the channel 

  

∗  convolution operator 

  

f∆  bandwidth of each subchannel  

  
( )kY  the N -point of discrete Fourier transform (DFT) of the received 

samples )(ky    

  

kb̂  
estimated output sequence 

  

F  an NN ×  Fourier transformation matrix 

  

0N  variance of the additive white Gaussian noise )(i
tn . 

  

OFDMT  OFDM symbol duration   

  

CPT  cyclic prefix duration 

  

STBCR  rate of a space-time block code   

  

X̂  estimated symbol X  

  
H[.]  denotes Hermitian of a matrix and  

  

F
.  denotes the Frobenius norm of an expression 

  

r  denotes the rank of matrix )ˆ( XX −    

  

rλλλ Λ,, 21  the nonzero eigenvalues of )ˆ()ˆ( XXXX −− H . 

  

i

r

i

λ∏
=1

 
the products of non zero eigenvalues rλλλ Λ,, 21  over all pairs of 

distinct codewords X  and X̂  

  

4C  4 4×  transmission matrix 

  
A  signal constellation  of  either M -QAM or M -PSK 

  

1δ   a phase delay applied to signal )(ns  

  

ic  combining weights applied to the received signals at receive 

antenna 1,2, , Ri N= K  
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ε  energy of )(ns   

  

0N  noise power spectral density of  additive white Gaussian noise, )(nν  

  

TL  the number of transmit antenna chosen by the system out of 

TN available antennas that yield the best performing signals  

  

RL  the number of receive antenna chosen by the system out of RN  

available antennas  that yield the best performing signals  

  

ps  resulting sequence of modulated signal after adding the cyclic prefix 

of length P 

  

1X  the M-th block data symbol vector   

  

2X  the (M+1)-th block data symbol vector 

  

I  identity matrix 

  

eX  the even component of data symbol X  

  

oX  the odd component of data symbol X 

  

e,1X  , e,2X  the even component vectors of 1X  and 2X  

  

o,1X  , o,2X  the odd component vectors of 1X  and 2X  

  

N number of subcarriers  

  

BW broadband bandwidth, 

  

4A  44 ×  orthogonal transmission matrix of rate ¾ 

  

,i tS  correspond to data symbol vectors transmitted during the t -th time 
from the i -th transmitting antenna 

  

oeti /,,S  denotes the data symbol vectors transmitted on the even/odd 

subcarrier of the t -th time slot from the i -th antenna  
  

oeti /,,H  denotes the channel frequency response of the even/odd subcarrier of 

the t -th time slot from the i -th antenna 
  

K constraint length of a convolutional code   
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k/n convolutional code rate, expressed as a ratio of the number of bits (k) 

into the convolutional encoder to the number of channel symbols 

output, (n) by the convolutional encoder in a given encoder cycle 

  

m memory length of the convolutional encoder.  

  

MN  number of QAM/PSK symbols in the block vector 
T

MNSSS )]1()1()0([ −= ΛS   

  

SN  number of OFDM symbols 

  

STF OFDMR −   the proposed STF code rate 

 

  

 

 


