UNIVERSITI PUTRA MALAYSIA

SCREENING OF ALPHA-THALASSAEMIA 1 IN BETA- THALASSAEMIA CARRIERS

CHONG YI MIN

FPSK(M) 2005 7
SCREENING OF ALPHA-THALASSAEMIA 1 IN BETA-THALASSAEMIA CARRIERS

By

CHONG YI MIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

August 2005
For my Dad & Mom
Thalassaemia is an inherited blood disorder in which there is a reduction or absence in the synthesis of the globin chains of human Hb. Thalassaemia remains a public health problem in Malaysia, with many not knowing they carry the gene for thalassaemia. Individuals may be carriers of both α and β-thalassaemia. Concurrent α-thalassaemia 1 (αα/−SEAs) and β-thalassaemia (β^{+}/β^{0}) carriers are potential parents to offspring with Hb Bart’s hydrops foetalis (−SEAs/−SEAs) and β-thalassaemia major (β^{0}/β^{0}). Hb Bart’s hydrops foetalis results from homozygous state of α-thalassaemia 1 and β-thalassaemia major from homozygous β^{0}.

This study determines the frequency of concurrent carriers of alpha and beta-thalassaemia. The information gathered from this study will aid government
agencies in policy-making, specifically on whether concurrent α-thalassaemia 1 identification needs to be done in any national screening programme for thalassaemia. Currently, most national screening programmes for thalassaemia including that in Malaysia concentrates on β-thalassaemia.

Blood samples were analyzed using conventional haematological methods. These include full blood counts/red cell indices followed by Hb analysis to quantify Hb subtypes by high performance liquid chromatography (HPLC). A thalassaemia carrier is presumptively identified by a cut-off value of MCV<80fL and MCH<27pg. On HPLC, those with HbA₂>4.0% are identified as β-thalassaemia carriers. DNA was extracted from blood samples of the β-thalassaemia carriers and Gap-polymerase chain reaction (Gap-PCR) was done to identify the α-thalassaemia 1 molecular defect. The amplified product was run on 1.5% agarose gel by electrophoresis. The separated PCR product was then viewed under UV transillumination to identify the characteristic 570bp band for the α-thalassaemia 1 determinant.

A total of 231 β-thalassaemia samples were studied. Eight were found to have concurrently inherited the α-thalassaemia 1 (−SEA) deletion, representing a carrier rate of 3.5%. The high carrier rate for α-thalassaemia 1 indicates the
need for the implementation of DNA analysis to complement thalassaemia diagnosis in a population screening programme. The relative risk of Chinese Malaysian to a non-Chinese being a concurrent carrier of α-thalassaemia 1 (--SEA) and β-thalassaemia is 2.8 fold.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SARINGAN ALPHA-THALASSAEMIA 1 DALAM PEMBAWA BETA-THALASSAEMIA

Oleh

CHONG YI MIN

Ogos 2005

Pengerusi: Profesor Elizabeth George, PhD

Fakulti: Perubatan dan Sains Kesihatan

Thalassaemia ialah sejenis penyakit darah keturunan di mana sintesis rantai globin dalam hemoglobin manusia berkurangan atau langsung tidak hadir. Thalassaemia kekal sebagai masalah kesihatan awam di Malaysia, dengan ramai yang tidak tahu mereka sebenarnya pembawa gen thalassaemia. Seseorang individu boleh membawa kedua-dua gene α and β-thalassaemia. Pembawa serentak α-thalassaemia 1 (αα/-SEA) dan β-thalassaemia (β^+/β°) berpotensi untuk melahirkan anak yang mempunyai penyakit Hb Bart’s hydrops foetalis (−SEA/−SEA) dan β-thalassaemia major (β°/β°). Hb Bart’s hydrops foetalis disebabkan oleh keadaan homozygous α-thalassaemia 1 dan β-thalassaemia major oleh keadaan homozygous β°.
Kajian ini menentukan kadar pembawa serentak alpha dan beta-thalassaemia. Maklumat ini akan diberi kepada agensi kerajaan untuk menentukan sama ada identifikasi serentak α-thalassaemia 1 perlu dijalankan dalam program penyaringan awam thalassaemia. Buat masa ini, kebanyakan program penyaringan awam thalassaemia tertumpu pada β-thalassaemia. termasuklah yang dijalankan di Malaysia.

Sampel darah dianalisa dengan menggunakan kaedah hematologi konvensional, termasuklah pengiraan darah automasi/indices sel darah merah, diikuti dengan analisa hemoglobin oleh ‘high performance liquid chromatography’ (HPLC) untuk mengkuantifikasi hemoglobin mengikut jenis. Pada mulanya, golongan yang mempunyai MCV<80fL dan MCH<27pg dianggap sebagai pembawa thalassaemia. Dengan HPLC, sampel yang mempunyai HbA₂>4.0% dikenali sebagai pembawa β-thalassaemia. DNA diekstrak dari sampel darah pembawa β-thalassaemia dan seterusnya ‘Gap-polymerase chain reaction’ (Gap-PCR) dijalankan untuk mengenalpasti kewujudan mutasi α-thalassaemia 1. Produk amplifikasi dianalisa atas gel agaros 1.5% dengan elektroforesis. Produk PCR yang dipisahkan dilihat dengan menggunakan cahaya UV untuk mengenalpasti saiz 570bp α-thalassaemia 1.
Sejumlah 231 sampel β-thalassaemia dikaji. Lapan dikenalpasti sebagai pembawa serentak yang mempunyai mutasi (SEA) α-thalassaemia 1. Ini mewakili kadar pembawa sebagai 3.5%. Kadar pembawa yang tinggi bagi α-thalassaemia 1 menunjukkan perlunya implimentasi analisa DNA bagi mengkomplementasikan diagnosis thalassaemia dalam program penyaringan awam. Peluang relatif seorang rakyat Malaysia berbangsa Cina dikenalpasti sebagai pembawa serentak α-thalassaemia 1 (SEA) dan β-thalassaemia berbanding dengan seorang rakyat Malaysia bukan Cina ialah 2.83 X.
ACKNOWLEDGEMENTS

First and foremost, I would like to extend my deepest gratitude to my supervisor, Prof. Dr. Elizabeth George for her guidance, advice and support that contributed significantly towards the completion of this project. Without her, this project would be impossible. She is always ready to give the guidance and help I need without hesitation. Prof. Dr. Elizabeth George has been my supervisor since my undergraduate years. In these 4 years, she never loses her temper even once towards me even though I might have done something terribly wrong. She is the supervisor most students can only dream of having - always kind, patient and understanding. Thank you so much, Prof! It’s a pity you’re not taking any more students.

I am equally grateful to Assoc. Prof. Dr. Zarida Hambali, my co supervisor, who gave me constructive advice on how to improve my thesis and presentation of my work. Apart from helping me academically, she also helped me personally when I was sick with parathyroid adenoma a few years ago. My secondary kidney stone would go undiagnosed if it wasn’t for her. She always showed a lot of care and concern about my health. That’s why in a way, she’s my saviour.
My sincere gratitude to Universiti Putra Malaysia (UPM) for providing the study grant, and to The Institute for Medical Research (IMR) for providing the facility which the study needed to be carried out.

Special thanks to Dr. Zubaidah Zakaria and Dr. Rahimah Ahmad for giving me permission to carry out the study in the laboratory of Hematology Department, IMR, and to Madam Kuldip Kaur, Puan Sapiah Rais, and Encik Mohd. Mokhtar Razali, also from IMR for giving me the guidance and help I need and being kind and generous for letting me share their laboratories. My special thanks also go to Dr Marianne Tan from Universiti Malaya (UM), for her generous contribution of β-thalassaemia samples that form part of the study group. I would also like to thank Mr. Quek Poh Boo from UPM for his advice and collaboration, and to staffs and doctors in Hospital Universiti Kebangsaan Malaysia (HUKM) and Hospital Assunta for their help in sample collections.

Sincere thanks to my family, although a million thanks would not justify what they did for me, especially both my parents, for their constant support both emotionally and financially. Their encouragement and advice have always been my source of motivation. There were times when I almost gave up pursuing this degree because of the stress and lack of confidence; it was
their constant support, comfort, motivation and encouragement that kept my head above the water. They are the kind of parents most students can only dream of having – wise, passionate, and inspirational. No one but me can truly understand what they have meant to me.

Last but not least, I would also like to thank my friends for their moral support and concern. Their friendship has made my life memorable and enjoyable.
I certify that an Examination Committee met on 19th August 2005 to conduct the final examination of Chong Yi Min on her Master of Science thesis entitled “Screening of Alpha-Thalassaemia 1 in Beta-Thalassaemia Carriers” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Datin Farida Fatima @ Farida Jamal, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Chong Pei Pei, PhD
Lecturer
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Zainina Seman, PhD
Lecturer
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Mary Anne Tan Jin Ai, PhD
Associate Professor
Faculty of Medicine
Universiti Malaya
(External Examiner)

GULAM RUSUL RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: **22 AUG 2005**
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Elizabeth George, F.R.C.P.A.
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Zarida Hambali, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 08 SEP 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

CHONG YI MIN

Date: 20/8/2005.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVALS</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION AND OBJECTIVES

1.1 Introduction 1
1.2 Objectives 5

2 LITERATURE REVIEW

2.1 Background Information 6

2.1.1 Inherited Haemoglobin Disorders Including Thalassaemia 6
2.1.2 Haemoglobin Structures 9
2.1.3 Thalassaemia 11

2.2 The Historical Aspects 14

2.3 Alpha-Thalassaemia 19

2.3.1 Alpha-Globin Gene Cluster 19
2.3.2 Molecular Basis of Alpha-Thalassaemia 20
2.3.3 Clinical Aspects of Alpha-Thalassaemia 27
2.3.4 Hb Bart’s Hydrops Foetalis 29

2.4 Beta-Thalassaemia 39

2.4.1 Beta-Globin Gene Cluster 39
2.4.2 Molecular Basis of Beta-Thalassaemia 39
2.4.3 Phenotypes of Beta-Thalassaemia: Trait and Disease 41
2.4.4 Prevalence and Epidemiology of Beta-Thalassaemia 44
2.4.5 Clinical Symptoms and Diagnosis 46
2.4.6 Beta-Thalassaemia Major 51
2.5 Concurrent Carriers of Thalassaemia 56
2.6 HbA2 Measurement in Thalassaemia Screening 60
2.6.1 Cellulose Acetate Electrophoresis 62
2.6.2 High Performance Liquid Chromatography (HPLC) 63
2.7 Polymerase Chain Reaction (PCR) 67
2.7.1 General Principles of PCR 68
2.7.2 Application of PCR in the Diagnosis of Alpha-Thalassaemia 70
2.8 Importance of Screening Programmes 73
2.9 Thalassaemia Carrier Identification 79
2.9.1 Full Blood Count (FBC)/Red Cell Indices 79
2.9.2 Osmotic Fragility Test (OFT) 83
2.9.3 Hb Analysis 84
2.9.4 DNA Analysis for Alpha-Thalassaemia 89
2.9.5 Conclusion 91

3 MATERIALS AND METHODS 92
3.1 Sample Collection 92
3.1.1 Ethics Approval 92
3.1.2 Selection of Subjects for the Study 92
3.2 DNA Extraction 93
3.2.1 Materials and Instruments 93
3.2.2 Methodology 94
3.3 DNA Purity Check 98
3.3.1 Materials and Instruments 98
3.3.2 Methodology 99
3.4 DNA Purification 100
3.4.1 Materials and Instruments 100
3.4.2 Methodology 101
3.5 Gap-Polymerase Chain Reaction (Gap-PCR) 102
3.5.1 Materials and Instruments 102
3.5.2 Methodology 104

4 RESULTS 110
4.1 Genomic DNA Yield From Whole Blood Extraction 110
4.2 Screening of Alpha-Thalassaemia Using Gap-PCR 111
4.3 Statistical Analysis 116
4.4 Relative Risk of a Chinese against Non-Chinese for Alpha-Thalassaemia 1 Carrier Status 117
DISCUSSION
5.1 Application of Methods Used in This Study for Screening Programmes
5.2 High Performance Liquid Chromatography
5.3 Polymerase Chain Reaction (PCR)
5.4 Agarose Gel Electrophoresis
5.5 Visualization of DNA
5.6 Thalassaemia in Malaysia
5.7 Beta-Thalassaemia
5.8 Alpha-Thalassaemia 1 (−SEA) Deletion
5.9 Concurrent Carriers
5.10 Screening Programmes
5.11 Limitations of Study

CONCLUSION AND RECOMMENDATIONS
6.1 Conclusion
6.2 Recommendations for Thalassaemia Screening Programmes
6.3 Recommendations for Future Research Work

REFERENCES
APPENDICES
BIODATA OF THE AUTHOR
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>50</td>
</tr>
<tr>
<td>2.6</td>
<td>67</td>
</tr>
<tr>
<td>3.1</td>
<td>95</td>
</tr>
<tr>
<td>3.2</td>
<td>104</td>
</tr>
<tr>
<td>3.3</td>
<td>107</td>
</tr>
<tr>
<td>3.4</td>
<td>108</td>
</tr>
<tr>
<td>4.1</td>
<td>112</td>
</tr>
<tr>
<td>4.2</td>
<td>114</td>
</tr>
<tr>
<td>4.3</td>
<td>118</td>
</tr>
</tbody>
</table>
A1 Multifaceted approach for presumptive identification of thalassaemias

B1 Sample Data

C1 Estimating a population proportion with specified absolute precision
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The normal human haemoglobin and the gene clusters that regulate their production</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Global distribution of α and β-thalassaemia</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>An early clinical study of thalassaemia in Asia</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Timeline: Thalassaemia: the first 75 years</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>The organization of the α-globin complex</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Displaced, but homologous, crossing-overs which produce the $\alpha^{3.7}$ (Z boxes) and the $\alpha^{4.2}$ (X boxes)</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>Alpha-thalassaemia deletions</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Pathophysiology caused by the absence of the α-globin genes</td>
<td>35</td>
</tr>
<tr>
<td>2.9</td>
<td>The β-globin gene cluster</td>
<td>39</td>
</tr>
<tr>
<td>2.10</td>
<td>Point mutations in β-thalassaemia</td>
<td>43</td>
</tr>
<tr>
<td>2.11</td>
<td>The distribution of haemoglobin E and β-thalassaemia in Southeast Asia</td>
<td>45</td>
</tr>
<tr>
<td>2.12</td>
<td>Population distribution of prevalent β-thalassaemia mutations</td>
<td>48</td>
</tr>
<tr>
<td>2.13</td>
<td>Beta-thalassaemia trait chromatogram by the BTS program on the BioRad VARIANT™</td>
<td>66</td>
</tr>
<tr>
<td>2.14</td>
<td>Steps involved in the first few rounds of a polymerase chain reaction</td>
<td>69</td>
</tr>
<tr>
<td>3.1</td>
<td>The location of PCR primers in the α-globin gene cluster</td>
<td>106</td>
</tr>
</tbody>
</table>
4.1 Preliminary check of the DNA yield 110
4.2 Racial distribution of studied population 111
4.3 Gel showing bands of normal and α-thalassaemia 1 (--SEA) deletion 113
4.4 Frequency of concurrent carriers 115
5.1 Basic structure of agarose 123
5.2 The relationship between the size of the DNA and its electrophoretic ability 125
5.3 Photography of gel by transmitted illumination 126
A1 Algorithm: Screening for Thalassaemia in Malaysia 157
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCIP</td>
<td>Dichlorophenolindophenol</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>Double-distilled water</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleotriphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>FBC</td>
<td>Full blood count</td>
</tr>
<tr>
<td>Hb</td>
<td>haemoglobin</td>
</tr>
<tr>
<td>HLA</td>
<td>Human leukocyte antigen</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HVR</td>
<td>Hypervariable region</td>
</tr>
<tr>
<td>IDA</td>
<td>Iron deficiency anaemia</td>
</tr>
<tr>
<td>MCH</td>
<td>Mean corpuscular haemoglobin</td>
</tr>
<tr>
<td>MCHC</td>
<td>Mean corpuscular haemoglobin concentration</td>
</tr>
<tr>
<td>MCV</td>
<td>Mean corpuscular volume</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>OFT</td>
<td>Osmotic fragility test</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>RBC</td>
<td>Red blood cells</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SEA</td>
<td>Southeast Asia</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>kb(p)</td>
<td>kilo base pairs</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION AND OBJECTIVES

1.1 Introduction

Thalassaemia is a disorder of haemoglobin (Hb) synthesis characterized by the absence or reduced synthesis of one or more of the globin chains, α, β, γ, δ, ε and ζ of human Hb. The two main types of thalassaemia that are clinically important are α and β-thalassaemia (Weatherall and Clegg, 2001).

Alpha-thalassaemia is the most common haemoglobin disorder in the world. Deletions of either one (α-thalassaemia 2) or both (α-thalassaemia 1) α-globin genes on chromosome 16 account for over 95% of α-thalassaemia cases (Higgs et al., 1989).

In Southeast Asia, the form of mutation in α-thalassaemia 1 carriers is most commonly the SEA deletion (−SEA). Alpha-thalassaemia 1 (−SEA) carriers are at risk of having Hb Bart’s hydrops foetalis offspring that usually dies in utero at the third trimester of pregnancy or shortly after birth.