EFFECT OF PLANT PIGMENTS ON BROODSTOCK, EGG QUALITY AND GROWTH OF RAINBOW TROUT

YADOLLAH MEHRABI

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2006

EFFECT OF PLANT PIGMENTS ON BROODSTOCK, EGG QUALITY AND GROWTH OF RAINBOW TROUT

YADOLLAH MEHRABI

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfillment of the Requirements for the Degree of Doctor of Philosophy

June 2006

DEDICATION

To my wife Farkhondeh and my children, Vahid, Navid and Yasaman and my parents and my brother Khani Mehrabi, who gave me supports and understanding during my study. Abstract of thesis submitted to the senate of University Putra Malaysia in fulfilment of the requirements for the Degree of Doctor of Philosophy

EFFECT OF PLANT PIGMENTS ON BROODSTOCK, EGG QUALITY AND GROWTH OF RAINBOW TROUT

By

YADOLLAH MEHRABI

June 2006

Chairman: Associate Professor Che Roos Saad

Faculty: Agriculture

Four experiments were conducted to determine the effects of plant pigments (carotenoids) on rainbow trout (*Oncorhynchus mykiss*) broodstock, egg quality, growth, FCR, SGR, survival and carotenoids retention in the flesh, skin, egg of female and male broodstocks. Six experimental diets with different sources of plant pigments containing alfalfa, clover, carrot, tomato, acorn fruit and corn gluten meal and two other diets consisting of commercial feed + 50ppm artificial astaxanthin for broodstock and commercial feed +100ppm for fingerling and juvenile were examined. In the first experiment the effects of plant pigments on broodstock were studied. In this experiment, each replication contained 10 females and 5 males broodstock aged about four years old with $1240 \pm 10g$ lives weight. There were 8 treatments namely control (A) which contained commercial feed and treatment B (A+5%alfalfa meal), treatment C (A+5% clover meal), treatment D (A+5% tomato meal),

treatment G (A+5% corn gluten) and treatment H (A+50ppm artificial astaxanthin) for broodstock and (A+100ppm astaxanthin) for fingerling. Duration of this experiment was six months. Results indicated that higher amount of carotenoids deposited in female broodstock as compared to the male broodstock. The amount of different carotenoids deposited in their tissues also varies. For example, females fed with diet H (artificial astaxanthin) retained astaxanthin 32.87 mg/kg and 25.57mg/kg of canthaxanthin in their flesh, while fish fed diet B (alfalfa meal) retained 43.15mg/kg α -carotene and 38.2mg/kg β -carotene in their flesh. Lycopene was retained the most in fish fed diet F (41.75mg/kg). The female broodstock also retained higher amount of carotenoids in eggs and skin and significantly (P<0.05) different than the control treatment. Similarly, the same results were observed in the flesh, skin and testis of the male broodstocks. Plant pigments had no adverse effect on mortality of broodstock and is significantly different (P<0.05) with the control treatment. Plant pigments also had no negative effect on all stripped fish, but instead they increased the relative fecundity and production of green egg. Fish fed diet F (tomatoes) had the highest relative fecundity of 451.4g/fish and 45991 green egg were produced while the control treatment had only a fecundity of 332.7g/fish and 28997 of green eggs produced and was significantly different (P<0.05) with other treatments. It was shown that plant pigments also increased egg fertilization, survival and reduced mortality in different stages of egg development. Similarly fish fed diet containing tomatoes had the highest fertilized and eyed eggs and hatched into larvae. Plant pigments increased the survival of fish fingerlings that similarly pigments were deposited in the flesh of the fingerlings. Fish fed diet

containing artificial astaxanthin had 93.6% survival compared to control and other treatments and was significantly different (P<0.05). Similar results in juvenile were also observed, which showed that plant pigments would increase survival and retention of carotenoids in their flesh. The juvenile fed diet containing tomato had the highest total length (24.2 cm), survival (92.3%), SGR (1.7) and FCR (1.1) and were significantly different (P<0.05) to control. It can be concluded that plant pigments have significant positive effects on health, survival, FCR, SGR, development of egg, and pigment retention in the flesh, skin and gonads. Additionally, carotenoids were shown to protect the fishes against most diseases because they have important roles in respiration, membrane permeability, light absorption and immune system.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia untuk memenuhi syarat mendapatkan ijazah Doktor Falsafah

KESAN PIGMEN TUMBUHAN KE ATAS INDUK, KUALITI TELUR DAN PERTUMBUHAN IKAN RAINBOW TROUT

Oleh

YADOLLAH MEHRABI

Jun 2006

Pengerusi: Professor Madya Che Roos Saad

Fakulti: Pertanian

Empat eksperimen telah dijalankan untuk menentukan kesan pigmen-pigmen tumbuhan (karotenoid) ke atas induk ikan (*Oncorhynchus mykiss*), kualiti telur, pertumbuhan, kadar pertukaran makanan (KPM), kadar pertumbuhan spesifik (KPS), kadar hidup, dan pengekalan karotenoid dalam isi, kulit untuk ikan induk jantan dan betina serta telur bagi ikan betina. Lapan jenis diet, satu setiap rawatan, disediakan. Ini termasuk enam diet mengandungi sumber pigmen-pigmen tumbuhan yang berbeza iaitu alfalfa, clover, lobak merah, tomato, buah acorn dan gluten jagung dan dua jenis diet yang mengandungi diet komersil + 50ppm astaxanthin tiruan untuk induk ikan dan diet komersil +100ppm astaxanthin tiruan untuk ikan genama disediakan. Setiap eksperimen yang dijalankan telah diulang sebanyak 4 kali. Ikan diberi makan dalam 32 kolam pembelaan konkrit secara rawak. Eksperimen yang pertama telah mengkaji kesan-kesan pigmen tumbuhan ke atas induk ikan. Dalam kajian ini setiap replikasi menerima sebanyak 10 ekor

induk ikan betina dan 5 ekor induk ikan jantan berumur dalam lingkungan 4 tahun dengan berat basah sebanyak 1240 + 10g. Terdapat 8 kumpulan rawatan iaitu kawalan (A) mengandungi diet komersil, rawatan B (A+5% diet alfalfa), rawatan C (A+5 % diet clover), rawatan D (A+5% diet lobak merah), rawatan E (A+5% diet buah acorn), rawatan F (A+5% diet tomato), rawatan G (A+5% gluten jagung) dan rawatan H (A+50 ppm astaxanthin tiruan) untuk ikan induk dan (A+100 ppm astaxanthin) untuk ikan saiz jejari dan juvana. Jangkamasa kajian adalah selama 6 bulan. Hasil kajian menunjukkan amaun keratenoid yang dikekalkan dalam induk ikan betina adalah lebih tinggi berbanding amaun yang dikekalkan dalam induk Amaun jenis keratenoid yang dikekalkan dalam ikan juga berbeda. jantan. Contohnya, induk betina yang diberi makan diet H (astaxanthin tiruan) mengekalkan kandungan sebanyak 32.87mg/kg astaxanthin dan 25.57mg/kg canthaxanthin yang tertinggi dalam isi, manakala ikan yang diberi makan diet B (alfalfa mil) mengekalkan kandungan alfa karoten sebanyak 43.15mg/kg dan beta karoten sebanyak 38.2mg/kg dalam isi. Sementara itu, lycopen dikekalkan terbanyak dalam ikan yang diberi makan diet F (41.75mg/kg). Induk betina juga mengekalkan amaun keratenoid terbanyak dalam telur dan kulit berbanding dengan induk yang menerima rawatan kawalan (P<0.05). Keputusan yang sama juga dapat dilihat pada isi, kulit dan testis bagi induk ikan jantan. Pigmen-pigmen tumbuhan tidak mempunyai kesan negatif ke atas keupayaan untuk hidup dan perbezaan ini adalah signifikan (P < 0.05) berbanding kumpulan kawalan. Pigmen-pigmen tumbuhan juga tidak mempunyai kesan negatif ke atas semua ikan yang dilurut, tetapi meningkatkan fekunditi relatif dan penghasilan telur hijau. Ikan yang diberi

makan diet F (tomato) mempunyai fekunditi relatif yang paling tinggi iaitu sebanyak 451.4g/ikan dan sebanyak 45991 telur hijau telah dihasilkan sementara kumpulan kawalan hanya mempunyai fekunditi relatif sebanyak 332.7g/ikan dan sebanyak 28997 telur hijau dihasilkan. Didapati, perbezaan ini adalah signifikan dengan kumpulan-kumpulan rawatan yanglain (P < 0.05). Didapati pigmen-pigmen tumbuhan juga meningkatkan pensenyawaan telur, kemandirian yang tinggi dalam tahap perkembangan telur yang berbeda. Begitu itu juga bagi ikan yang diberi makan diet mengandungi tomato juga mempunyai jumlah telur ikan yang disenyawakan dan telur yang bermata (eyed eggs) yang paling banyak dan menetas kepada larva. Pigmen-pigmen tumbuhan juga dikenalpasti dapat meningkatkan kemandirian dan kadar penyerapan pigmen-pigmen tumbuhan ke dalam isi bagi kumpulan ikan jejari. Ikan yang diberi makan diet mengandungi astaxanthin tiruan pula mempunyai 93.6% kemandirian berbanding ikan dalam kumpulan kawalan dan rawatan yang lain. Perbezaan ini adalah signifikan (P < 0.05). Hasil yang sama juga dapat dilihat dalam ikan juvana dimana pigmen-pigmen tumbuhan meningkatkan kemandirian dan pengekalan karotenoid dalam badan mereka. Kumpulan juvana yang diberi makan diet mengandungi tomato mempunyai saiz ikan paling panjang (24.2 cm), kemandirian yang paling tinggi (92.3%), KPS (1.7) dan KPM (1.1) dan mempunyai perbedaan yang bererti (P< 0.05) berbanding dengan kumpulan ikan yang mendapat rawatan kawalan. Adalah disimpulkan bahawa pigmen tumbuhan mempunyai kesan yang signifikan ke atas kesihatan, kemandirian, KPM, KPS, perkembangan telur dan pengekalan pigmen dalam isi, kulit dan gonad ikan. Tambahan pula, karotenoid telah diketahui dapat melindungi ikan daripada kebanyakan jenis penyakit kerana fungsi pentingnya ke atas respirasi, kadar serapan membran, penyerapan cahaya dan sistem imun badan.

ACKNOWLEDGMENTS

All my thanks to God keeping me healthy and making me able to successfully finish this research work. I am extremely grateful to the Chairman of the Supervisory committee Associate Professor Dr. Che Roos Saad for his guidance, advice and encouragement. I would also like to express my thanks to members of the Supervisory Committee, Professor Dr. Abdul Razak Alimon, Dr. Hishamuddin Omar, and Dr H. Mahmoudzadeh, for their invaluable suggestions.

My sincere gratitude is also due to the former Director of Iranian Fisheries Organization, Engineer Mohammadzadeh and the Director of Iranian Fisheries Research Organization, Dr Rezvani and their authorities for their help and kindness.

My special thanks to Dr Hassan Salehy and Engineer Hosain Abdulhy for their help, guidance, advice and encouragement during my study. I wish also to express my thanks to Dr. Hassan Fazaeli, Dr. Omidvar Farhadian and his family, Dr. Keysamy, Dr. Abrahimzadeh and Dr. Mirmasomy for their helps and kindness.

I am also grateful to the Shahid Motahari Authorities and my colleagues and those who were involved in my study and last, but not least, my deep appreciation goes to my wife, Farkhondeh and my children Vahid, Navid and Yasaman for their constant encouragement and love. I would also like to express my thanks to my brother Khani Mehrabi and my relatives, Amir Hossin, Hooshang, Amir Hasan, Hamid, Saaid, Bahador, Khaton and Fariba Ghazanfari and Mr Bakhshaie for their help and guidance. Lastly, I wish to thank the Dean of Agriculture Faculty and the Head of Agrotechnolgy Department, Assoc. Prof. Dr. Mihdzar Abdul Kadir, and all the professors and staffs of School of Graduate Studies who helped me during my stay of study in Malaysia.

I certify that an Examination Committee has met on 2nd June 2006 to conduct the final Examination of Yadollah Mehrabi on his Doctor of Philosophy thesis entitled "Effects of plant pigments on broodstock, egg quality and growth of rainbow trout (*Oncorhynchus mykiss*)" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Sharr Azni b. Harmin, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Chairman)

Zainal Aznam Mohd Jelan, PhD

Professor Faculty of Agriculture Universiti Putra Malaysia (Internal Examiner)

Annie Christianus, PhD

Lecturer Faculty of Agriculture Universiti Putra Malaysia (Internal Examiner)

Roshada Hashim, PhD

Professor School of Biological Sciences Universiti Sains Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for degree of Doctor of Philosophy. The members Supervisory Committee are as follows:

Che Roos Saad, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Chairman)

Abdul Razak Alimon, PhD

Professor Faculty of Agriculture Universiti Putra Malaysia (Member)

Hishamuddin Omar, PhD

Lecturer Faculty of Science Universiti Putra Malaysia (Member)

Homayon Mahmoudzadeh, PhD

Professor Faculty of Veterinary Tehran University (Member)

AINI IDERIS, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or currently submitted for other degree at UPM or other institution.

YADOLLAH MEHRABI

Date:

TABLE OF CONTENTS

Page

DEDICATION	ij
ABSTRACT	 111
ABSTRAK	vi
ACKNOWLEDGEMENTS	Х
APPROVAL	xii
DECLARATION	xiv
LIST OF TABLES	xix
LIST OF FIGURES	xxi
LIST OF APPENDIX TABLES	xxiv
LIST OF ABBREVIATIONS	XXX

CHAPTER

1	INT	RODUC	TION		1
	1.1	Backgr	ound of the	e study	1
	1.2	Statem	ent of the p	problem	4
	1.3	Signifi	cance of st	udy	4
	1.4	Objecti	ives	-	6
2	LITI	ERATUI	RE REVIE	ZW	7
	2.1	Rainbo	w trout		7
		2.1.1	Reprodu	uction	8
		2.1.2	Egg dev	velopment	10
		2.1.3	Water q	uality requirement	13
	2.2	Caroter	noids		16
		2.2.1	Definiti	on of carotenoids	16
		2.2.2	Sources	of carotenoids	18
			2.2.2.1	Alfalfa	19
			2.2.2.2	Clover	19
			2.2.2.3	Tomato	20
			2.2.2.4	Carrot	21
			2.2.2.5	Acorn	21
			2.2.2.6	Corn gluten meal	22
			2.2.2.7	Astaxanthin	23
		2.2.3	Benefit of	of carotenoids	24
		2.2.4	Metabol	ism of astaxanthin and canthaxanthin	26
			2.2.4.1	Gastrointestinal tract	26
			2.2.4.2	Intestinal wall	27
			2.2.4.3	Intestinal adipose tissue	27
			2.2.4.4	Blood and lymph	28
			2.2.4.5	Liver	29

		2.2.4.6 Kidney	29
		2.2.4.7 Flesh	30
		2.2.4.8 Skin	31
		2.2.4.9 Gonads	32
		2.2.5 Digestibility and retention	33
	2.3	Factors affecting pigmentation	34
		2.3.1 Diet composition	35
		2.3.2 Dietary concentration of carotenoids	37
		2.3.3 Feeding rate	37
		2.3.4 Sexual maturation	38
		2.3.5 Genetic factor	38
		2.3.6 Environmental factors	39
3	GEN	ERAL MATERIALS AND METHODS	41
-		Location of study	41
		Preparation of ponds	42
		Proximate analysis	43
		3.3.1 Determination of dry matter (DM)	43
		3.3.2 Determination of crude protein (CP)	44
		3.3.3 Determination of crude fat	44
		3.3.4 Determination of crude fiber (CF)	45
		3.3.5 Determination of ash	46
		3.3.6 Determination of gross energy	46
	3.4		46
	3.5		47
	3.6	Feed preparation	48
	3.7		48
	3.8	Experimental design	49
	3.9	Statistical analysis	49
4		ERIMENT 1: EFFECTS OF PLANT PIGMENT ON OODSTOCK	50
	4 .1	Introduction	50
	4.2	Materials and methods	53
	7.2	4.2.1 Pond preparation	53
		4.2.2 Feed preparation	55
		4.2.3 Feeding	55 59
		4.2.4 Biometry of broodstock	59
		4.2.5 Spawning	59
		4.2.5 Spawning 4.2.6 Data measurements	59 60
		4.2.7 FCR and SGR, mortality and survival	60 62
		4.2.7 FCR and SOR, mortanty and survival 4.2.8 Statistical analyses	62 62
	4.3	Results	62 63
	4.3	4.3.1 Comparison of carotenoids in ingredients and rations	63
		4.3.1 Comparison of carotenoids in ingredients and rations 4.3.2 Carotenoids deposition in the flesh of female	67
		T.5.2 Carotenolus deposition in the nesit of remate	07

broodstock

5

6

		Droodstock	
	4.3.3	1	
		broodstock	71
	4.3.4	Carotenoids deposition in the egg of female	
		broodstock	75
	4.3.5	Caotenoids deposition in the flesh of male	
	126	broodstock	78
	4.3.6	Carotenoids deposition in the skin of male	0.7
	427	broodstock	82
	4.3.7	Carotenoids deposition in the testis of male broodstock	86
	4.3.8	Effects of plant pigments on mortality, FCR	00
	4.3.0	and SGR in broodstock	89
	4.3.9	Effects of plant pigments on broodstock	0)
	1.5.7	propagation	91
4.4	Discu	1 1 0	96
	4.4.1	Carotenoids content in the ingredients and rations	96
	4.4.2	Carotenoids in the flesh, skin and eggs of female	
		broodstock	97
	4.4.3	Carotenoids in the flesh, skin and testis of male	
		broodstock	100
	4.4.4	Effects of carotenoid levels on FCR, SGR, egg	
		development, relative fecundity and survival	101
4.5	Concl	usion	102
FVI	DEDIM	ENT 2: EFFECTS OF PLANT PIGMENTS ON EC	\mathbf{T}
		PMENT UNTIL FIRST FEEDING	103
5 .1		uction	103
5.2		ials and methods	105
0.2	5.2.1		105
	5.2.2	Incubation of eggs	105
	5.2.3	Experimental design	106
5.3	Result		109
	5.3.1	Period of fertilization till first feeding	109
	5.3.2	Effects of plant pigments on fertilization till	
		beginning of first feeding	109
5.4	Discu		117
5.5	Concl	usion	119
FWD			
		ENT 3: EFFECTS OF PLANT PIGMENTS ON	
		AND SURVIVAL OF RAINBOW TROUT FRY	120
0NI 6.1		INGERLING STAGE	120 120
6.1 6.2		ials and method	120
0.2	6.2.1	Preparation of ponds	123
	U.4.1		143

	-F	
6.2.2	Preparation of feed	124

		6.2.3	Fry management	124
		6.2.4	Feeding	124
		6.2.5	Biometry of fry until fingerling	125
		6.2.6	Measurement on mortality, survival, FCR and SGR	125
		6.2.7	Experimental design and statistical analyses	125
	6.3	Results		
		6.3.1	Proximate analyses of ingredients and rations of	
			Fingerling	126
		6.3.2	Carotenoid analyses in ingredients and rations of	
			fingerlings	127
		6.3.3	Effects of plant pigments on survival of fingerling	131
		6.3.4	Effects of plant pigments on FCR, SGR of fingerlings	134
		6.3.5	Deposition of carotenoids in the flesh of fingerlings	137
	6.4	Discussi	ion	142
		6.4.1	Effects of plant pigments on mortality and survival	
			in rainbow trout fingerlings	142
		6.4.2	Deposition of carotenoids in the flesh of fingerlings	143
	6.5	Conclus	ion	144
7	EXP	PERIMEN	NT 4: EFFECTS OF PLANT PIGMENTS ON	
	GRO		F RAINBOW TROUT JUVENILE	145
	7.1	Introduc		145
	7.2	Material	ls and methods	148
		7.2.1	Preparation of ponds	148
		7.2.2	Feed preparation	148
		7.2.3	Transfer of fingerlings	148
		7.2.4	Feeding	149
		7.2.5	Biometry of fingerlings till juveniles	149
		7.2.6	Mortality, survival, FCR and SGR	150
		7.2.7	Carotenoid analyses in rations and flesh of juveniles	150
		7.2.8	Water quality measurement	151
		7.2.9	Experimental design and statistical analyses	151
	7.3	Results		152
		7.3.1	Carotenoids in ingredients of feed for juveniles	152
		7.3.2	Carotenoids in rations	152
		7.3.3	Effects of plant pigments on length (cm) in juveniles	155
		7.3.4	Effects of plant pigments on survival, FCR, and SGR	
			in juveniles	156
		7.3.5	Deposition of carotenoids in the flesh of juveniles	162
	7.4	Discussi		165
	7.5	Conclus	ion	167
8	GEN	NERAL D	DISCUSSION AND CONCLUSIONS	168
	REF	FERENCI	ES	174
	APP	ENDICE	S	184
	BIO	DATA O	F THE AUTHOR	227

LIST OF TABLES

Table		Page
2.1	Classification of rainbow trout	7
2.2	Water quality parameters	15
2.3	Parameters for heavy metals and insecticides	15
2.4	Nutritive value of 100 g of tomato	20
2.5	Typical analysis of dried tomato	20
4.1	Randomized block of experimental design	53
4.2	Treatments and signs of replications	55
4.3	Feed formulations (in percentage)	56
4.4	Ingredient analysis in rainbow trout broodstock's ration	57
4.5	Ration analysis of rainbow trout broodstock	57
4.6	Feeding table for rainbow trout	60
4.7	Carotenoids mg/kg analyses in ingredients of rations	64
4.8	Carotenoids mg/kg analyses in rations of broodstock	65
4.9	Mean (\pm Se) carotenoids mg/kg concentrations in the flesh of female broodstock	69
4.10	Mean (\pm Se) carotenoids mg/kg concentrations in the analyses in the skin of female broodstock	73
4.11	Mean (\pm Se) carotenoids mg/kg concentrations in the egg of female broodstock	76
4.12	Mean (\pm Se) carotenoids mg/kg concentrations in the flesh of male broodstock	80
4.13	Mean (\pm se) carotenoids mg/kg concentrations in the skin of male broodstock	84

4.14	Mean (\pm Se) carotenoids mg/kg concentrations in the testis of male broodstock	87
4.15	Mean(<u>+</u> Se) of FCR, SGR produced egg No,, total egg / fish of broodstock	92
5.1	Mean (\pm Se) of survival and mortality from fertilization until hatching of egg development	112
5.2	Mean (\pm Se) of survival and mortality percentage from hatching until start first feeding	114
5.3	Mean (\pm Se) of total survival and mortality from fertilization until start first feeding	116
6.1	Proximate analyses of ingredients used as fingerling rations	126
6.2	Proximate analyses of fingerling rations	126
6.3	Carotenoids mg/kg analyses in ingredients of fingerling diets	127
6.4	Carotenoids mg/kg analyses in rations of the fingerlings	129
6.5	Mean (\pm Se) of mortality and survival in fingerlings	133
6.6	Mean (\pm Se) FCR and SGR and increased weight in different treatments of fingerlings	136
6.7	Carotenoids mg/kg deposition Mean (\pm Se) in the flesh of fingerlings	140
7.1	Proximate analyses of juvenile rations	152
7.2	Carotenoids mg/kg analyses in the rations of juvenile	153
7.3	Mean (\pm Se) of length(cm) and weight(g) in juvenile	160
7.4	Mean (\pm Se) of mortality and survival percentage in juvenile	160
7.5	Mean (\pm Se) of FCR and SGR in juvenile	161
7.6	Mean (\pm Se) of carotenoids mg/kg deposition in the flesh of juvenile	163

LIST OF FIGURES

Figures		Page
2.1	Rainbow trout broodstock	9
3.1	Shahid Motahary Yasuj rearing and propagation center	41
3.2	Prepared ponds of rainbow trout broodstock	42
4.1	Ponds of rainbow trout broodstock	54
4.2	Measurement of pH and oxygen	54
4.3	Some of ingredients in the rations	58
4.4	Prepared rations for rainbow trout	58
4.5	Striping egg of rainbow trout broodstock	61
4.6	Striping milt of male rainbow trout broodstock	61
4.7	Amount of carotenoids in different rations of broodstock	66
4.8	Carotenoids deposited in the flesh of female broodstock	70
4.9	Carotenoids deposited in the skin of female broodstock	74
4.10	Carotenoids deposited in the egg of female broodstock	77
4.11	Carotenoids deposited in the flesh of male broodstock	81
4.12	Carotenoids deposited in the skin of male broodstock	85
4.13	Carotenoids deposited in the testis of male broodstock	88
4.14	Comparison of SGR in different treatments of broodstock	90
4.15	Comparison of FCR in different treatments of broodstock	90
4.16	Comparison of relative fecundity (egg weight/fish) in different treatments of female broodstock	93
4.17	Comparison of egg weight/ kg of fish in different treatments	

	of female broodstock	93
4.18	Number of green egg in different treatments of female broodstock	94
4.19	Comparison of egg number/ fish in different treatments of female broodstock	94
4.20	Comparison of egg number/ kg fish in different treatments of female broodstock	95
5.1	Fertilization of eggs	106
5.2	Hardening of eggs	107
5.3	Eyed eggs	107
5.4	Early hatching of larva	108
5.5	Larvae with yolk sacs	108
5.6	Number of fertilized egg, eyed egg, larva number and fry number in different treatments	111
5.7	Mortality percentage from fertilized egg till hatching	113
5.8	Survival percentage from hatching until first feeding and total survival percentage	115
6.1	Ponds used in the study	123
6.2	Amount of carotenoids in different rations of fingerling	130
6.3	Comparison of mortality (%) in different treatment of fingerling	131
6.4	Comparison of survival (%) in different treatment of fingerling	132
6.5	Comparison of FCR in different treatment of fingerling	134
6.6	Comparison of SGR in different treatments of rainbow trout fingerling	135
6.7	Comparison of weight in different treatments of rainbow trout fingerling	135
6.8	Carotenoids deposited in the flesh of fingerling	141

7.1	Biometry of juveniles	149
7.2	A juvenile of rainbow trout	150
7.3	Amount of carotenoids in different rations of juveniles	154
7.4	Comparison of length in different treatments of juveniles	155
7.5	Comparison of weight in different treatments of juveniles	156
7.6	Comparison of survival percentage in different treatments of juveniles	157
7.7	Comparison of FCR in different treatments of juveniles	158
7.8	Comparison of SGR in different treatments of juveniles	159
7.9	Carotenoids deposited in the flesh of juvenile	164

LIST OF APPENDIX TABLES

Table		Page
4.1	Analyses of variance for concentration of astaxanthin in the flesh of female broodstock (mg/kg)	184
4.2	Analyses of variance for concentration of canthaxanthin in the flesh of female broodstock(mg/kg)	184
4.3	Analyses of variance for concentration of alfa carotene in the flesh of female broodstock(mg/kg)	185
4.4	Analyses of variance for concentration of beta carotene in the flesh of female broodstock(mg/kg)	185
4.5	Analyses of variance for concentration of lycopene in the flesh of female broodstock(mg/kg)	186
4.6	Analyses of variance for concentration of total carotenoids in the flesh of female broodstock(mg/kg)	186
4.7	Analyses of variance for concentration of astaxanthin in the egg of broodstock(mg/kg)	187
4.8	Analyses of variance for concentration of canthaxanthin in the egg of broodstock(mg/kg)	g 187
4.9	Analyses of variance for concentration of alfa carotene in the egg of broodstock(mg/kg)	188
4.10	Analyses of variance for concentration of beta carotene in the egg of broodstock(mg/kg)	188
4.11	Analyses of variance for concentration of lycopene in the egg of broodstock(mg/kg)	189
4.12	Analyses of variance for concentration of total carotenoid in the egg of broodstock(mg/kg)	189
4.13	Analyses of variance for concentration of astaxanthin in the skin of female broodstock (mg/kg)	190

4.14	Analyses of variance for concentration of canthaxanthin in the skin of female broodstock (mg/kg)	190
4.15	Analyses of variance for concentration of α - carotene in the skin of female broodstock (mg/kg)	191
4.16	Analyses of variance for concentration of beta carotene in the skin of female broodstock(mg/kg)	191
4.17	Analyses of variance for concentration of lycopene in the skin of female broodstock(mg/kg)	192
4.18	Analyses of variance for concentration of total carotenoids in the skin of female broodstock(mg/kg)	192
4.19	Analyses of variance for concentration of astaxanthin in the flesh of male broodstock(mg/kg)	193
4.20	Analyses of variance for concentration of canthaxanthin in the flesh of male broodstock (mg/kg)	193
4.21	Analyses of variance for concentration of alfa carotene in the flesh of male broodstock(mg/kg)	194
4.22	Analyses of variance for concentration of beta carotene in the flesh of male broodstock(mg/kg)	194
4.23	Analyses of variance for concentration of lycopene in the flesh of male broodstock(mg/kg)	195
4.24	Analyses of variance for concentration of total carotenoids in the flesh of male broodstock(mg/kg)	195
4.25	Analyses of variance for concentration of astaxanthin in the skin of male broodstock(mg/kg)	196
4.26	Analyses of variance for concentration of canthaxanthin in the skin of male broodstock (mg/kg)	196
4.27	Analyses of variance for concentration of α - carotene in the skin of male broodstock (mg/kg)	197
4.28	Analyses of variance for concentration of beta carotene in the skin of male broodstock (mg/kg)	197
4.29	Analyses of variance for concentration of lycopene in the skin of male broodstock(mg/kg)	198

4.30	Analyses of variance for concentration of total carotenoids in the skin of male broodstock(mg/kg)	198
4.31	Analyses of variance for concentration of astaxanthin in the testis of male broodstock (mg/kg)	199
4.32	Analyses of variance for concentration of canthaxanthin in the testis of male broodstock(mg/kg)	199
4.33	Analyses of variance for concentration of alfa carotene in the testis of male broodstock(mg/kg)	200
4.34	Analyses of variance for concentration of beta carotene in the testis of male broodstock(mg/kg)	200
4.35	Analyses of variance for concentration of lycopene in the testis of male broodstock(mg/kg)	201
4.36	Analyses of variance for concentration of total carotenoids in the testis of male broodstock(mg/kg)	201
4.37	Analyses of variance for fish mortality percentage of female broodstock	202
4.38	Analyses of variance for fish mortality percentage of male broodstock	202
4.39	Analyses of variance for FCR of broodstock in different treatments	203
4.40	Analyses of variance for SGR of broodstock in different treatments	203
4.41	Analyses of variance for striped fish number	204
4.42	Analyses of variance for striped fish percentage	204
4.43	Analyses of variance for the total green Egg produced /No	205
4.44	Analyses of variance for the egg weight/fish (g)	205
4.45	Analyses of variance for the egg weight/kg/fish (g)	206
4.46	Analyses of variance for the total green egg(No/ /fish)	206

4.47	Analyses of variance for the total green egg (No/ /kg fish)	207
4.48	Analyses of variance for the green egg (No/ /kg egg)	207
5.1	Analyses of variance for produced fertilized egg number	208
5.2	Analyses of variance for mortality number from fertilization until eyed egg	208
5.3	Analyses of variance for mortality percentage from fertilization until eyed egg	209
5.4	Analyses of variance for produced eyed egg number	209
5.5	Analyses of variance for mortality number from eyed egg until hatching	210
5.6	Analyses of variance for mortality percentage from eyed egg until hatching	210
5.7	Analyses of variance for produced larva number	211
5.8	Analyses of variance for mortality number from hatching until first feeding starting	211
5.9	Analyses of variance for mortality percentage from hatching until first feeding starting	212
5.10	Analyses of variance for survival number from hatching until first feeding starting	212
5.11	Analyses of variance for survival percentage from hatching until first feeding starting	213
5.12	Analyses of variance for mortality number from fertilization until first feeding starting	213
5.13	Analyses of variance for total mortality percentage from fertilization until first feeding starting	214
5.14	Analyses of variance for total survival number from fertilization until first feeding starting	214
5.15	Analyses of variance for total survival percentage from fertilization until first feeding starting	215

6.1	Analyses of variance for mortality number of fingerling	215
6.2	Analyses of variance for survival number of fingerling	216
6.3	Analyses of variance for mortality percentage of fingerling	216
6.4	Analyses of variance for survival percentage of fingerling	217
6.5	Analyses of variance for FCR of fingerling	217
6.6	Analyses of variance for SGR of fingerling	218
6.7	Analyses of variance for concentration of astaxanthin in the flesh of fingerling (mg/kg)	218
6.8	Analyses of variance for concentration of canthaxanthin in the flesh of fingerling (mg/kg)	219
6.9	Analyses of variance for concentration of alpha carotene in the flesh of fingerling (mg/kg)	219
6.10	Analyses of variance for concentration of beta carotene in the flesh of fingerling (mg/kg)	220
6.11	Analyses of variance for concentration of lycopene in the flesh of fingerling (mg/kg)	220
6.12	Analyses of variance for concentration of total carotenoids in the flesh of fingerling (mg/kg)	221
7.1	Analyses of variance for length of juvenile	221
7.2	Analyses of variance for Mortality percentage of juvenile	222
7.3	Analyses of variance for survival percentage of juvenile	222
7.4	Analyses of variance for FCR of juvenile	223
7.5	Analyses of variance SGR of juvenile	223
7.6	Analyses of variance for concentration of astaxanthin in the flesh of juvenile (mg/kg)	224
7.7	Analyses of variance for concentration of canthaxanthin in the flesh of juvenile (mg/kg)	224

7.8	Analyses of variance for concentration of alpha carotene in the flesh of juvenile (mg/kg)	225
7.9	Analyses of variance for concentration of beta carotene in the flesh of juvenile (mg/kg)	225
7.10	Analyses of variance for concentration of lycopene in the flesh of juvenile (mg/kg)	226
7.11	Analyses of variance for concentration of total carotenoids in the flesh of juvenile (mg/kg)	226

LIST OF ABBREVIATIONS

α-Car	α-carotene
β-Car	β-carotene
Ast	Astaxanthin
Ave	Average
ANOVA	Analyses of variance
BW	Body weight
СР	Crude protein
CF	Crude fiber
Ca	Calcium
⁰ C	Degree Celsius
CCL	Carotenoid caring lipoprotein
Can	Canthaxanthin
DNMRT	Duncan's New Multiple Range Test
Diam	Diameter
DM	Dry Matter
DF	Degree of freedom
EE	Ether Extract
FCR	Feed Conversion Ratio
G	Gram
GLM	General Linear Model
HDL	High Density Lipoprotein
Kg	Kilogram
Kcal	Kilo calorie
L	Liter
LDL	Low Density Lipoprotein
ln	Natural Logarithm
Lyc	Lycopene

MS222	Three cain metan solfonate
mm	Millimeter
mg	Milligram
Mort	Mortality
ml	Milliliter
NFE	Nitrogen Free Extract
NO	Number
NRC	National Research Council
Oct.	October
O2	Oxygen
PE	Pellet
PPM	Parts Per Million
Р	Phosphorous
рН	Hydrogen ion concentration
RCBD	Randomized Complete Block Design
SGR	Specific Growth Rate
Se	Standard error
SD	Standard deviation
SAS	Statistical analytical system
SEM	Standard error of mean
Sep	September
SP	Shortcut Pellet
Tot.Car	Total carotenoids
UV	Ultra Violet
V	Volume
VHDL	Various High Density Lipoprotein
W	Weight
W0	Initial Weight
W1	Final Weight