EXPERIMENTAL INVESTIGATION AND FINITE ELEMENT ANALYSIS OF COMPOSITE CONICAL STRUCTURES SUBJECTED TO SLIP LOADING

By

HAKIM S. SULTAN ALJIBORI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfilment of the Requirement for the Degree of Doctor of Philosophy

November 2006

DEDICATION

To my affectionate parents, my brothers, my wife and my children: *Ameer and Alzahraa*

For their love and support

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

EXPERIMENTAL INVESTIGATION AND FINITE ELEMENT ANALYSIS OF COMPOSITE CONICAL STRUCTURES SUBJECTED TO SLIP LOADING

By

HAKIM S. SULTAN ALJIBORI

November 2006

Chairman: Ahmad Samsuri Mokhtar, PhD

Faculty : Engineering

One of the main objectives of aircraft and automotive manufacturers is related to improvement of the crash behaviour of lightweight structures. The absorbed energy is an important parameter for the development of the vehicle passive security concept. An energy absorption device is a system that converts totally or partially kinetic energy into another form of energy during collision, which is required of an ideal energy absorbing material, is to have the capability of dissipating as much energy as possible per unit weight/ volume. The increasing demand of composite structures in wide range of engineering applications, structures made from composite materials offers important characteristics such as weight reduction, design flexibility and safety improvement. These composite structures provide higher or equivalent crash resistance as compared to their metallic counterparts and therefore find for its using in crashworthiness applications. Polymer composite materials have been introduced in the automotive industry primarily to reduce the overall weight of the vehicle, which results in energy economy and for better fuel cost. However, the current trend in producing lighter structures puts greater demands on the design of more efficient energy dissipating systems.

The present study is essentially motivated by the increasing use of composite conical structures in crashworthiness applications. This study focuses on experimental and finite element investigation of glass fibre/epoxy and carbon fibre/epoxy composite conical shell were carried-out during the slipping of solid cone or composite cone into composite conical shell under radial and axial loading.

This study has been divided into two main parts: Quasi-static methods and explicit integration methods (dynamic). These parts have been divided also into two sections concerning the problem solution. The first section is the finite element solution, which deals with composite conical shell in order to quantify the study and the second section is an experimental work. These methods used to improve the specific energy absorbed by crushed composite collapsible conical energy absorber devices were undertaken. LUSAS finite element analysis software was used for quasi-static method and ANSYS/LS-DYNA finite element software for dynamic explicit integration method were used to develop the models. Shell elements have been selected for the composite cones with the same wall thickness. Glass and carbon fibres have been used for the fabrication process of the specimens. The cone semi angles used were 4, 8, 12, 16 and 20 degrees.

The cone dimensions were constant for all models as 100 mm height and 76.2 mm of bottom diameter.

Load-displacement curve and deformation histories obtained from quasi-static work include the experimental and finite element results. These results obtained to calculate specific energy absorption and volumetric energy absorption. As well as others parameters, such as crush force efficiency, initial failure indicator, strain efficiency and failure modes. The results show that the cone angle, loading condition, fibre orientation and stacking sequence angle affects the load carrying capacity and energy absorption capacity of conical shell.

On the other hand, the results obtained from finite element analysis for slipping crushed woven roving glass/epoxy composite conical shell by using the explicit integration methods was presented and discussed. The effects of geometrical on energy absorption characteristics and failure modes are investigated as well as the behaviour of structure subjected to dynamic loading. The kinetic energy and energy absorption capability was calculated and failure modes for non-linear dynamic analysis of structures in three dimension was identified. The load-time history curve and deformation history obtained from dynamic work also presented and discussed. The results show that the cone angle, fibre type and loading condition affect the load carrying capacity and energy absorption capacity of composite conical shell. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

UJIKAJI DAN ANALISIS UNSUR TERHINGGA STRUKTUR KONIKAL KOMPOSIT DI BAWAH BEBAN GELINCIRAN

Oleh

HAKIM S. SULTAN ALJIBORI

November 2006

Pengerusi: Ahmad Samsuri Mokhtar, PhD

Fakulti : Kejuruteraan

Salah satu daripada objektif pengusaha industri kapal terbang dan otomotif adalah berkaitan dengan pembaikan kelakuan perlanggaren terhadap struktur ringan. Tenaga yang diserap ialah satu parameter penting bagi pembangunan konsep keselamatan pasif kenderaan. Peralatan penyerap tenaga ialah suatu sistem yang menukar tenaga kinetik secara penuh atau sebahagiannya kepada bentuk tenaga yang lain semasa perlanggaran, di mana bagi suatu bahan penyerap tenaga unggul, adalah untuk membebaskan sebanyak tenaga yang boleh bagi setiap berat/isipadunya. Peningkatan permintaan struktur komposit dalam aplikasi kejuruteran yang luas, struktur-struktur yang diperbuat daripada bahan komposit menawarkan ciri-ciri penting seperti pengurangan berat, keanjalan rekabentuk dan pembaikan keselamatan. Struktur-struktur komposit tersebut memberikan rintangan pelanggaran yang lebih tinggi atau yang sama berbanding dengan struktur setara yang diperbuat daripada bahan logam dan oleh itu bahan-bahan komposit terdapat dalam aplikasi kebolehlanggaran. Bahan-bahan komposit berpolimer telah pun diperkenalkan di dalam industri otomotif terutamanya untuk mengurangkan berat keseluruhan kenderaan, di mana memberikan ekonomi tenaga dan kos petrol yang lebih rendah. Walauagaimanapun, haluan masa kini dalam penghasilan struktur yang lebih ringan lebih memberi penekanan ke atas rekabentuk sistem pembebasan tenaga yang lebih cekap.

Kajian ini pada dasarnya adalah dimotivasikan oleh penggunaan struktur konikal komposit dalam applicasi kebolehlanggaran yang semakin meningkat. Kajian ini menumpukan kepada penyiasatan secara ujikaji dan unsur terhingga ke atas cengkerang komposit konikal di bawah gelinciran kon pejal atau kon komposit ke dalam cengkeram konikal komposit di bawah bebanan jejarian dan paksian.

Kajian ini telah dibahagikan kepada dua bahagian utama: kaedah quasi-statik dan keadah kamiran nyata (dinamik). Bahagian-bahagian ini juga dibahagikan lagi kepada dua seksyen yang berkenaan dengan penyelesaian masalah. Seksyen pertama ialah penyelesaian unsur terhingga, yang menangani cengkerang konikal komposit untuk mengesahkan kuantiti dan seksyen kedua ialah kerja-kerja ujikaji. Perisian analisis unsur terhingga LUSAS telah digunakan bagi kaedah quasi-statik dan ANSYSIS/LS-DYNA untuk kaedah kamiran nyata dinamik telah digunakan untuk membangunkan model-model. Unsur cengkerang telah dipilih bagi kon-kon komposit dengan tebal dinding yang sama. Serabut kaca dan karbon telah digunakan bagi proses penghasilan spesimen-spesimen. Sudut separuh kon yang digunakan adalah 4, 8, 12, 16 dan 20 darjah. Dimensi-dimensi kon adalah malar bagi semua model iaitu ketinggian 100 mm dan diameter tapak 76.2 mm.

Lengkungan beban-sesaran and sejarah deformasi yang diperolehi daripada kerja quasi-statik merangkumi keputusan ujikaji dan analisis unsur terhingga. Keputusan yang diperolehi ini digunakam untuk menghitung penyerapan tenaga spesifik dan penyerapan tenaga volumetrik serta juga parameter-parameter yang lain, seperti kecekapan daya remukan, petunjuk kegagalan awal, kecekapan terikan dan mod-mod kegagalan. Keputusan menunjukkan bahawa sudut kon, keadaan pembebanan, orientasi serabut dan sudut turutan timbunan mempengaruhi kapasiti pembawaan beban dan kapasiti penyerapan tenaga cengkerang konikal.

Keputusan yang diperolehi daripada analisis unsur terhingga bagi gelinciran dentuman anyaman cengkerang konikal komposit kaca/epoksi dengan menggunakan kaedah kamiran nyata telah dibentangkan dan dibincangkan. Kesan secara geometry ke atas ciri-ciri penyerapan tenaga dan mod-mod kegagalan serta juga kelakuan struktur di bawah beban dinamik telah disiasat. Tenaga kinetik dan kapasiti penyerapan tenaga telah dihitungkan dan mod-mod kegagalan bagi analisis dinamik tidak linear bagi struktur dalam tiga dimensi telah dikenalpasti. Lengkungan sejarah beban-masa dan sejarah kecacatan bentuk yang diperolehi daripada kerja dinamik juga dibentang dan dibincangkan. Keputusan menunjukkan bahawa sudat kon, jenis serabut dan keadaan pembebanan mempengaruhi kapasiti pembawaan beban dan kapasiti penyerapan tenaga cengkerang konikal komposit.

ACKNOWLEDGEMENTS

First and foremost I thank Allah the Almighty for the blessing and opportunities that he has provided for me to accomplish this study.

I would like to express my sincere thanks to my advisor and committee chairman Dr. Ahmad S. Mokhtar, who was a constant source of advice, encouragement and support throughout this study. You made the work easier with your caring words, advices and suggestions.

I am deeply indebted and grateful to Dr. El-Sadig Mahdi Ahmed, I wish to thanks for your immense contribution to my academic advancement and your tremendous patience during many challenging moments. A man of limitless patience, I am glad to have been associated with you. Thanks for your friendship and concern.

I wish to express my thanks to Professor Dr. A. M. S. Hammouda, for his assistance, advice and encouragement during the stages of this study. I wish to extend my thanks to the staff of the Aerospace Department and Department of Mechanical Engineering for their friendly dealing and moral support.

Thanks must also go to my family members, my wife and my children for their patience as well as the wonderful environment they provided for the successful completion of this work.

I certify that an Examination Committee has met on 30 November 2006 to conduct the final examination of Hakim S. Sultan Aljibori on his Doctor of Philosophy thesis entitled "Finite Element and Experimental Analysis of Composite Conical Structures Subjected to Slipping Loading" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Megat Mohamad Hamdan, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd Sapuan B. Salit, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Rizal Bin Zahari, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Ahmad Kamal Ariffin Mohd., PhD

Associate Professor Faculty of Engineering Universiti Kebangsaan Malaysia (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor/ Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Ahmad Samsuri Mokhtar, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

Elsadig Mahdi Ahmed, PhD Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Abdel Magid S. Hamouda, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date: 8 FEBRUARY 2007

DECLARATION

I herby declare that the thesis is based on my original work except for quotation and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

HAKIM S. SULTAN ALJIBORI

Date: 15 DECEMBER 2006

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	 111
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	Х
DECLARATION	xii
TABLE OF CONTENTS	xiii
LIST OF TABLES	xvii
LIST OF FIGURES	xix
LIST OF ABBREVIATIONS	xxiv
CHAPTER	
1 INTRODUCTION	1

1.1	Problem Statement	5
1.2	Research Objectives	6
1.3	Significance of the Study	7
1.4	Thesis Layout	7

2	LITE	RATUR	E REVIEW	8
	2.1	Constit	uent of Composite Structures	9
		2.1.1	Reinforcements (Fibers)	9
		2.1.2	Matrix	10
	2.2	Types of	of Fibres	12
		2.2.1	Glass Fibre	12
		2.2.2	Carbon Fibres	14
	2.3	Compo	site Shells	15
		2.3.1	Fabrication Process of Composites Shells	16
	2.4	Crashw	orthiness Parameters	19
		2.4.1	Load-Displacement of Axially Crushed Composite Shells	20
		2.4.2	Crush Force Efficiency (CFE)	21
		2.4.3	Stroke Efficiency (SE)	21
		2.4.4	Energy Absorption Capability	22
	2.5	Crushin	g Behaviour of Metallic Tubes	24
	2.6	Crushin	g Behaviour of Composite Tubes	27
		2.6.1	Composite Circular Tubes	27
		2.6.2	Composite Square Tubes	33
		2.6.3	Composite Conical Tubes	33
	2.7	Compre	essive Failure Mechanisms of Fibre Reinforced Plastic (FRP)	
		Tubes		36
		2.7.1	Euler Buckling	36
		2.7.2	Progressive Folding	37
		2.7.3	Brittle Fracture	38

	2.8	Types of Crush Tests	41
		2.8.1 Quasi- Static Test	41
		2.8.2 Dynamic Test	42
	2.9	Factors Affecting the Energy Absorption Capability of Composite	
		Tubes	43
		2.9.1 Effect of Fibre Reinforcement Types	45
		2.9.2 Effect of Matrix Types	48
		2.9.3 Effect of Fibre Orientation	49
		2.9.4 Specimen Geometry	53
		2.9.5 Effect of Processing Conditions	57
		2.9.6 Effect of Fibre Volume Fraction	58
		2.9.7 Effect of Crushing Speed	58
	2.10	Finite Element Analysis	59
		2.10.1 Stages of Finite Element Analysis	61
	2.11	Summary	67
			60
3	MEI	HODOLOGY	68
	3.1	Introduction	68 70
	3.2	Finite Element Simulation	/0
	2.2	3.2.1 Quasi-Static Method	
	3.3	Define a Composite Layers	80
	3.4	Nonlinear Analysis	8/
	2.5	3.4.1 Nonlinear Solution Procedures	88
	3.5	Dynamic Method	90
	20	5.5.1 Verification of Dynamic Simulation	90
	3.0	Experimental work	92
		3.6.1 Mandrel Preparation	92
		2.6.2 Composite Constituents	95
		2.4.6 Crushing Process	94 07
	27	S.4.0 Crushing Flocess	97
	5.7	Summary	90
4	QUA	SI-STATIC ANALYSIS	99
	4.1	Design Parameters	100
		4.1.1 Crush Force Efficiency (CFE)	100
		4.1.2 Stroke Efficiency (SE)	101
		4.1.3 Initial Failure Indicator (IFI)	102
		4.1.4 Energy Absorption Capability	102
	4.2	Effect of Semi-vertex Angle	104
		4.2.1 Load-Displacement Relationships	105
		4.2.2 Comparison of Load-displacement Curves	113
		4.2.2.3 Energy Absorption Capability	116
		122 Croshwarthin and Darran stars	110

4.2.3Crashworthiness Parameters1194.2.4Failure Modes1214.2.5Comparison Between Experimental and Finite Element
Simulation127

	4.2.6	Conclusion	129
4.3	Effect o	f Fibre Orientation (θ)	130
	4.3.1	Load-Displacement Relationships	131
	4.3.2	Initial Load (Pi) and Mean Crushing Load (Pm)	135
	4.3.3	Crashworthiness Parameters	136
	4.3.4	Energy Absorption Capabilities	138
	4.3.5	Failure Mode	142
4.4	Effect o	f Stacking Sequence Laminates	144
	4.4.1	Load-Displacement Relations	145
	4.4.2	Initial Load (Pi) and Mean Crushing Load (Pm)	147
	4.4.3	Crashworthiness Parameters	149
	4.4.4	Energy Absorption Capabilities	150
	4.4.5	Failure Modes	153
	4.4.6	Conclusions	156
4.5	Experin	nental Results and Discussion	157
	4.5.1	Load-displacement Results	158
4.6	Microsc	copic Failure Mechanisms	162
	4.6.1	Matrix Cracking	163
	4.6.2	Fibre Debonding	163
	4.6.3	Fibre Breakage	164
	4.6.4	Delamination	164
	4.6.5	Fibre Micro Buckling	165
4.7	Summar	ry	170
DVN	NAMIC A	NALVER	171
51	Introduc	ntal 1515	171
5.2	Fynlicit	Integration Methods	171
53	Verifica	ation of ANSYS/I S-DVNA	172
54	Slipping	A Solid Steel Cone into Composite Conical Shell	175
0.1	5 4 1	Finite Element Model	176
	542	Material Properties	178
	543	Initial and Boundary Conditions	179
	544	Contact	179
	545	Crush Time	181
	5.4.6	Contact Duration	181
	5.4.7	Energy Absorption Capabilities	182
	5.4.8	Failure Modes	187
	5.4.9	Effect of Cone Vertex Angle	188
5.5	Slipping	g Composite Cone into Composite Conical Shell	195
	551	Finite Flement Model	106

5.5.1	Finite Element Model	196
5.5.2	Initial and Boundary Conditions	197
5.5.3	Material Properties	199
5.5.4	Contact	200
5.5.5	Energy Absorption Capabilities	202
5.5.6	Failure Modes	206
Conclus	ion	211

5.6 Conclusion

6	Con	clusions and Recommendations	213
	6.1	Effect of Cone Angles	114
	6.2	Effect of Fibre Orientation Angles	217
	6.3	Effect of Stacking Sequence Laminates	220
	6.4	Effect of dynamic loading (Solid Steel Cone-Composite Cone)	222
	6.5	Effect of dynamic loading (Composite -Composite System)	224
	6.6	Recommendations for Future Work	226
рг	TEDI		220

REFERENCES	228
APPENDICES	237
BIODATA OF THE AUTHOR	258
LIST OF PUBLICATIONS	259

LIST OF TABLES

Table		Page
2.1	Typical Mechanical Properties of Some of Epoxy Resins	11
2.2	Typical Mechanical properties of Glass Fibre	13
2.3	Example of Measured Specific Energy Absorption for Compressed FRP and Metallic Tubes	52
3.1	The Elements Types for Structural Meshing By Type and By Name	79
3.2	Material Properties of Glass Fibre/Epoxy	82
3.3	Characteristics of Conical Shell Dimensions	84
3.4	Constituent Materials	93
4.1	Summarised Results of the Crashworthiness Parameters and Energy Absorption Capabilities of Composite Conical Shells with various of Semi-Vertex Angles	118
4.2	Summarised Results of Energy Absorption Capabilities of Composite Conical Shells with various of Semi-Vertex Angles	129
4.3	Summarised Results of the Crashworthiness Parameters of Composite Conical Shells with various of Fibre Orientation Angles	134
4.4	Summarised Results of Energy Absorption Capabilities of Composite Conical Shells with Fibre Orientation Angles	140
4.5	Summarised of Stacking Sequence Composite Conical Shells	145
4.6	Summarised Results of the Crashworthiness Parameters of Composite Conical Shells with Different Stacking Sequence	150
4.7	Summarised Results of Energy Absorption Capabilities of Composite Conical Shells with Different Stacking Sequence	152
4.8	Summarised Results of Experimental and FE Simulation of Energy Absorption Capabilities and Failure Loads of Composite Conical Shells with Stacking Sequence of 90/45/- 45/90	162

5.1	Material Properties of the Composite Conical Shell	178
5.2	Crashworthiness Parameters, Specific Energy Absorption and Volumetric Energy Absorption of Conical Shell System	189
5.3	Material Properties of the Composite-Composite Conical Shell	200
5.4	Summarized Results of the Crushing Loads and Energy	
	Absorption Capabilities for Composite-Composite Conical	205
		205

LIST OF FIGURES

Figure		Page
1.1	Use of Energy Absorption Devices in Automobiles	2
2.1	Schematic Presentation of The Load-Displacement Curve of Composite Tube Subjected to Axial Crushing	20
2.2	Schematic Diagram of Conical Shell	24
2.3	Axial Collapse of Metallic Tubes	26
2.4	Variation of Specific Energy With t/D Ratio	30
2.5	Variation of Specific Energy with Tube Wall Thickness	30
2.6	Typical Geometry of a Conical Frustum	35
2.7	General Failure Mechanisms and Load-Displacement Characteristic of a Progressive Folding	38
2.8	Schematic Representation of Load-Displacement	39
2.9	Schematic Representation of the Formation of the Splaying / Lamina Bending Mode Crush Zone Based on Microscope Examination of Polished Section	40
2.10	Schematic Representation of the Formation of Fragmentation/ Transverse Shearing Mode Crush Zone Based on Microscopic Examination of Polished Sections.	41
2.11	Terminal Views Of Hybrid Square Sandwich Composite under Axial Collapse	63
2.12	Progressive Collapse Simulation of Composite Tube by Finite Element Method	64
2.13	Experimental and FEM of Specific Energy with Inner Radius of Composite Tube	65
2.14	Finite Element of Composite Square Tube with Failure Modes	66
3.1	Flow Chart Describes the Plan to Carry Out the Work	68
3.2	Flow Chart Describes the Finite Element Simulation Work of Effect of Semi-vertex Angle (β)	72

3.3	Flow Chart Describes the Finite Element Simulation Work of Effect of Fibre Orientation (θ)	73
3.4	Flow Chart Describes the Finite Element Simulation Work of Effect of Stacking Sequence	74
3.5	Flow Chart Describes the FEM of Cone Semi-vertex angles Using LS-DYNA Software	75
3.6	Flow Chart Describes the FEM of composite-composite system Using LS-DYNA Software	76
3.7	Typical Mesh Generation of WRL Conical Shell	78
3.8	Quadratic Brick Element HX16L	80
3.9	Typical Sketch of Conical Shell	84
3.10	Model of Conical Shells with Various Semi-vertex Angles	85
3.11	Definition of Principle Material Axes	86
3.12	Typical sketch of Stacking Sequence Laminate	87
3.13	The Incrimination in Non-linear Analysis	89
3.14	Mesh and Dynamic Boundary Conditions of composite Conical Shells	91
3.15	Typical Photographic Sample of the Mandrel	92
3.16	Flow Chart Describes the Fabrication Process of the Specimens	94
3.17	Schematic Diagram for Woven Roving Winding Process	95
3.18	Schematic Representation of the Wet Filament Winding Process	96
3.19	Photographs of Specimen of Glass Fibre/epoxy and solid steel Cone	97
3.20	Slipping of Solid Cone into Composite Cone	98
4.1	Load-Displacement Curve of Semi Cone Angle β of 4 Degrees	107
4.2	Load-Displacement Curve of semi Cone Angle β of 8 Degrees	108
4.3	Load-Displacement Curve of semi Cone Angle β of 12 Degrees	110

4.4	Load-Displacement Curve of semi Cone Angle β of 16 Degrees	111
4.5	Load-Displacement Curve of semi Cone Angle β of 20 Degrees	112
4.6	Load-displacement Relations of Composite Conical Shells with Semi-vertex Cone Angles of 4, 8, 16 and 20 Degrees	114
4.7	Total Energy-displacement Relations of Composite Conical Shells	114
4.8	Initial Failure Load Vs semi-vertex Angles of Conical Shells	115
4.9	Mean Crushing Load Vs semi-vertex Angles of Conical Shells	115
4.10	Energy Absorption Capabilities as Function of Semi-vertex Angles of Composite Conical Shells	116
4.11	Crashworthiness Parameters as Function of Semi-vertex Angle of Composite Conical Shell	120
4.12	Deformed Shape of Semi-Vertex Angle of Conical Shell with $\beta = 4^{\circ}$ Subjected to the Slipping System	122
4.13	Deformed Shape of Semi-Vertex Angle of Conical Shell with $\beta=8^{\circ}$ Subjected to the Slipping System	123
4.14	Deformed Shape of Semi-Vertex Angle of Conical Shell with β = 12 ^o Subjected to the Slipping System	124
4.15	Deformed Shape of Semi-Vertex Angle of Conical Shell with $\beta = 16^{\circ}$ Subjected to the Slipping System	125
4.16	Deformed Shape of Semi-Vertex Angle of Conical Shell with $\beta = 20^{\circ}$ Subjected to the Slipping System	126
4.17	Experimental and Finite Element Load-displacement Curves for Semi-vertex Angle 8 Degrees	128
4.18	Experimental and Finite Element Specific Energy Absorption as Function of Semi-vertex Angles	128
4.19	Definition of Principle Material Axes	131
4.20	Load-displacement Relations of Composite Conical Shells with Fiber Orientation Angles	135
4.21	Initial Failure Load and Mean Crushing Load vs. Fiber Orientation Angles of Conical Shells	136

4.22	Crashworthiness Parameters as Function of Fiber Orientation Angle of Composite Conical Shell	137
4.23	Energy Absorption Capabilities as Function of Fiber Orientation Angle	140
4.24	Specific Energy Absorption-Displacement Relations of Composite Conical Shells with Several of Fiber Orientating Angles	141
4.25	Deformed Shape of Conical Shell with Fibre Orientation $\theta=90^{\circ}$ Subjected to the Slipping System	143
4.26	Schematic Diagrams of Stacking Sequence Laminates	144
4.27	Load-displacement Relations of Composite Conical Shells with Stacking Sequence of Fibres	147
4.28	Initial and Mean Crushing Loads of Composite Conical Shells with Stacking Sequence of Fibres	148
4.29	Crashworthiness Parameters as function of Stacking Sequence of Composite Conical Shell	149
4.30	Specific Energy Absorption-Displacement Relations of Composite Conical Shells with different of the stacking Sequence	152
4.31	Specific and Volumetric Energy Absorption Capabilities as Function of Stacking Sequence of Composite Conical Shell	153
4.32 4.33	Deformed Shape of Conical Shell with Stacking Sequence of (90/+45/-45/90) Subjected to the Slipping System Typical Sketch of Conical Shell Model and Composite Conical Shell under Slipping Test	155
4.34	Experimental Load-Displacement Curve and Deformation History of Composite Conical Shell Subjected into Solid Steel Cone	159
4.35	Experimental and Finite Element Load-displacement Curves for Filaments Wound Composite Conical Shell System with Stacking Sequence of 90/45/-45/90	161
4.36	Experimental and Finite Element Specific Energy absorption for Filaments Wound Composite Conical Shell System with Stacking Sequence of 90/45/-45/90	161
4.37	Optical Micrographs (100µ) of Conical Shells with Woven Roving Glass fibre/Epoxy	166

4.38	Optical Micrograph (100 μ) of Composite Conical Shells with Filament Wound Glass Fibre/Epoxy (a)	167
4.39	Optical Micrograph (100µ) of Composite Conical Shells with Filament Wound Glass Fibre/Epoxy (b)	168
5.1	Initial Geometry and Typical Meshes Generated of the Solid Steel Cone and Composite Conical Shell	177
5.2	The Specimen Geometry and Necessary Dimensions of the	177
5.3	Kinetic Energy-Time Curve of solid Steel Cone	177
5.4	Velocity-Time Curve of solid Steel Cone	
5.5	Load-Time Curve of Conical System	185
5.6	Specific Energy Absorption-Time Curve of Conical System	186
5.7	Time-history and Deformation Modes of Semi-vertex Angle β of 4 Degrees	190
5.8	Time-history and Deformation Modes of Semi-vertex Angle β of 8 Degrees	191
5.9	Time-history and Deformation Modes of Semi-vertex Angle β of 12 Degrees	192
5.10	Time-history and Deformation Modes of Semi-vertex Angle β of 16 Degrees	193
5.11	Deformation Modes of Semi-vertex Angle β of 20 Degrees	194
5.12	The Initial Geometry and Necessary Dimensions of the Composite- Composite Conical Shells System	198
5.13	Typical Meshes Generated of the Composite-Composite Conical Shells System	199
5.14	Kinetic Energy-Time Curve of Composite-Composite System	203
5.15	Velocity-Time Curve of Composite-Composite System	203
5.16	Load Time-Time Curve of Composite-Composite System	205
5.17	Time-history and Deformation Modes of Composite-Composite Conical Shell System (a-i)	208

LIST OF ABBREVIATIONS

FRP	Fibre Reinforced Plastic
Н	Total Height of Cone (mm)
Pi	Initial Crush Failure Load (kN)
P _m	Mean Crush Failure Load (kN)
P _{pH}	High peak Crush Failure Loads (kN)
IFI	Initial Failure Indicator
CFE	Crush Force Efficiency
SE	Stoke Efficiency
u	Crushed Distance (mm)
t	Thickness of the Cone Wall (mm)
S	Instantaneous Displacement (mm)
D	Big Diameter of Cone (mm)
d	Small Diameter of Cone (mm)
М	Mass of the Cone (kg)
A	Cross-Sectional Area (m ²)
W _T	The Total Work Done (kJ)
W _p	Work Done at Post Crush Stage
KE	Kinetic Energy
E	Total Energy Absorption (J)
Es	Specific Energy Absorption (kJ/kg)
Ev	Energy Absorption per Unit Volume (kJ/m ³)

V_{con}	The Volume Occupied Conical Shells Before Crushing
V _m	Volume of Material (m ³)
ρ	Mass Density of Structure (kg/m ³)
Vs	Volume of Structure (m ³)
WRL	Woven Roving Laminate
FWL	Filament Wound Laminate
FEA	Finite Element Analysis
$E_{\mathbf{x}}$	Young's Modulus in x-direction
E_y	Young's Modulus in y-direction
Ez	Young's Modulus in z-direction
G _{xy}	Shear modulus in xy-direction
G_{yz}	Shear modulus in xy-direction
G _{xz}	Shear modulus in xy-direction
v ₁₂	Poison's Ratio
θ	Fibre Orientation Angle (Degree)
β	Semi-Vertex angle of Cone (Degree
K	Stiffness Matrix
Δt	Time Step Size (s)
ASTS	Automatic Surface-to-Surface Contact
E _f .	The Energy Lost in Frictional Sliding (J)
V_i	Initial Velocity (m/s)

V _r	residual velocity (m/s)
ΔE_k	Energy Transfer Between The Solid Steel Cone and The Composite Shell (J)