CELLULASE PRODUCTION BY A LOCALLY ISOLATED FUNGAL STRAIN GROWN ON OIL PALM EMPTY FRUIT BUNCH

By

AZHARI BIN SAMSU BAHARUDDIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

December 2006

Dedicated to:

My Loving and Caring Wife:

Nor Asma Ab. Razak

My Sweet Child:

Muhammad Akmal Azhari

My Loving and Supporting Parents:

In memory of my dad, Samsu Baharuddin Daud, who nurtured and gave me strong spirit

and

my mom, Jamaliah Adnan, who cares and understand

My Beloved Sister and Brother:

Suzana Samsu Baharuddin Muhammad Hafiz Samsu Baharuddin Abstract of thesis presented to the Senate of Universiti Putra Malaysia in the fulfilment of the requirement for the degree of Master of Science

CELLULASE PRODUCTION BY A LOCALLY ISOLATED FUNGAL STRAIN GROWN ON OIL PALM EMPTY FRUIT BUNCH

By

AZHARI BIN SAMSU BAHARUDDIN

December 2006

Chairman : Professor Mohd Ali Hassan, PhD

Faculty : Engineering

The bioconversion of a local lignocellulosic material, i.e, oil palm empty fruit bunch (OPEFB) was studied in 250 ml Erlenmeyer flasks and locally designed rotary drum and tray cabinet bioreactors. The aim of this study is to utilize the OPEFB for the production of cellulolytic enzymes and sugars, as it offers an enormous economic potential for the bioconversion of agro-industrial residues generally regarded as waste. Bioconversion profiles suggest that the cellulolytic enzymes production from OPEFB in solid substrate fermentation (SSF) was better when using mono culture than co-culture condition with locally isolated fungal strains (*Aspergillus niger* EB4 and *Trichoderma sp* EB5). *A. niger* EB4 produced the highest cellulolytic enzymes activity (FPase 4.3 U/g, CMCase 8.2 U/g, β -glucosidase 19.1 U/g) at day 7 fermentation with carboxymethylcellulose (CMC) as pre-culture cellulase inducer. Soluble protein and reducing sugars were determined to evaluate fungal growth and substrate uptake in the SSF by the fungal strains. Scanning electron microscopy (SEM) showed the capability of these local fungal strains in mono and co-culture

conditions for OPEFB degradation. The bioconversion of pre-treated OPEFB for cellulolytic enzymes production by A. niger EB4 was successfully achieved in tray cabinet bioreactor (static condition, without forced aeration) which mimicked SSF conditions in flasks experiment. It is possible to obtain 3.2 ± 0.26 , 6.3 ± 0.38 , $19.0 \pm$ 0.85 U/g enzyme activity of FPase, CMCase, and β -glucosidase respectively after 6 days fermentation. The extracted crude enzyme from tray cabinet bioreactor experiment was partially purified using ammonium sulphate precipitation. The results showed that protein fraction at 80% ammonium sulphate saturation had managed to precipitate the cellulolytic enzymes with recoveries of 8.1% (2.1 fold). 7.7% (2.0 fold) and 5.8% (1.5 fold) for β -glucosidase, CMCase and FPase respectively. The molecular weights of precipitated cellulolytic enzymes were estimated to be 67 and 120 kDa using SDS-PAGE analysis. The results of saccharification for 5% (w/v) pre-treated OPEFB using enzymatic hydrolysis suggest that the reducing sugars production was significantly affected by the concentration of enzymes and its purity. The use of precipitated cellullases at 3% (v/v) enzyme concentration (6 ml/g substrate) of A.niger EB4 successfully hydrolyze pre-treated OPEFB to produce 7.7 g/l of reducing sugars which corresponds to 27.8% conversion (55.3% cellulose fraction). Due to its rich organic nature, OPEFB can serve as a potential and feasible substrate for microbial process in the production of value added products such as cellulolytic enzymes and sugars.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGHASILAN SELULASE OLEH KULAT PENCILAN TEMPATAN DARI TANDAN KOSONG KELAPA SAWIT

Oleh

AZHARI BIN SAMSU BAHARUDDIN

Disember 2006

Pengerusi: Professor Mohd Ali Hassan, PhD

Fakulti : Kejuruteraan

Biopenukaran bahan lignoselulosa tempatan seperti tandan kosong kelapa sawit (TKKS) dikaji di dalam 250 ml kelalang Erlenmayer dan bioreaktor yang direkabentuk tempatan seperti drum berputar dan kabinet dulang. Matlamat kajian ini ialah untuk memanfaatkan penggunaan TKKS bagi penghasilan enzim selulase dan gula, dimana ia menawarkan potensi ekonomi yang besar dalam biopenukaran hasil sampingan agro-industri yang sering dikenalpasti sebagai sisa bahan buangan. Profil biopenukaran mencadangkan bahawa penghasilan enzim selulolitik daripada TKKS di dalam fermentasi substrat pepejal adalah lebih baik menggunakan kultur tunggal berbanding dalam keadaan kultur bersama oleh kulat tempatan terpencil (*Aspergillus niger* EB4 dan *Trichoderma sp* EB5). Kulat *A.niger* EB4 didapati menghasilkan aktiviti enzim selulase yang tertinggi (FPase 4.3 U/g, CMCase 8.2 U/g, β-glukosidase 19.1 U/g) pada hari ke 7 fermentasi dengan CMC sebagai penggalak penghasilan selulase semasa pra-kultur. Protein boleh larut dan gula penurun diukur untuk menilai pertumbuhan kulat dan pengambilan substrat oleh kulat di dalam

fermentasi substrat pepejal. Imbasan mikroskopi elektron menunjukkan kebolehan kulat-kulat tempatan ini bagi degradasi TKKS. Biopenukaran pra-rawatan TKKS untuk penghasilan enzim selulase oleh A.niger EB4 telah berjaya dihasilkan di dalam bioreaktor kabinet dulang (keadaan statik, tanpa pengudaraan paksa) yang menyerupai keadaan fermentasi di dalam ujikaji kelalang. Penghasilan sebanyak 3.2 \pm 0.26, 6.3 \pm 0.38, 19.0 \pm 0.85 U/g aktiviti enzim bagi FPase, CMCase, dan β glukosidase masing-masing boleh diperolehi selepas 6 hari fermentasi. Enzim kasar yang diekstrak daripada bioreaktor kabinet dulang telah ditulenkan sebahagiannya menggunakan pemendakan ammonium sulphate. Pecahan protein pada 80% ketepuan ammonium suphate dapat menulenkan enzim selulotik dengan perolehan sebanyak 8.1% (2.1 fold), 7.7% (2.0 fold) dan 5.8% (1.5 fold) bagi β -glukosidase, CMCase dan FPase. Berat molekul selulase termendak dianggarkan pada 67 dan 120 kDa menggunakan analisis SDS-PAGE. Keputusan ujikaji sakarifikasi bagi 5% (w/v) pra-rawatan TKKS menggunakan hidrolisis enzim mencadangkan bahawa proses ini dipengaruhi secara signifikan oleh kepekatan enzim dan ketulenannya. Penggunaan selulase termendak pada 3% (v/v) kepekatan enzim (6 ml/gram substrat) dari *A.niger* EB4 berjaya menghidrolisis pra-rawatan TKKS untuk menghasilkan 7.7 g/l gula penurun bersamaan dengan 27.8% penukaran (55.3% pecahan selulosa). Berdasarkan kekayaan organik semulajadi, TKKS boleh digunakan sebagai substrat yang berpotensi dan boleh dimanfaatkan bagi proses mikrobial di dalam penghasilan produk bernilai tambahan seperti selulase dan gula.

ACKNOWLEDGEMENTS

Alhamdullillah. Thanks to Almighty God for the opportunity and grace to have accomplished this study which entitled, "Cellulases from oil palm empty fruit bunch by local *Aspergillus* and *Trichoderma* strains in solid substrate fermentation". Although there were many things that made it difficult, I succeeded and managed it in the best way with the help of others.

My sincere thanks and appreciation to the chairman of my supervisory committee, Professor Dr. Hj Mohd Ali Hassan who has introduced and guided me through the fascinating world of fungi, enzymes and fermentation process. His patience, knowledge, kindness, support, encouragement, inspiring attitude and enthusiasm were impressive. I also wish to extend my gratitude to Prof. Dr. Yoshihito Shirai and Dr. Budiatman Satiawihardja for pleasant collaboration, useful discussions, helps, advice and technical support throughout the study period.

During the two years at the Laboratory Bioprocess, Faculty Biotechnology and Biomolecule Science, Universiti Putra Malaysia many people have contributed in the lab and have been supportive throughout the work. I would especially like to thank my colleagues of "Environmental Biotechnology Group"; Dr Baharuddin, Dr Shahrakbah, Dr Noraini, Dr Nazlin, Dr Phang Lai Yee, Wong kok Mun, Cheong, Firwance, Rafein, Munir, Zainuri, Huzairi, Amra, Cyril, Sabri, Sharman, Ooi, Voon, Zaizuhana, Hidayah, Asma', kak Tengku, Ily, Mei Ling, Farah, Soplah, Majd, Zuraidah, Zulkarami, Farah Ishak, Fadly, Teoh Lay Sin, for their help and warm friendship, Atikah, Fazli and Azlina, for their most pleasant collaboration and encouragement, and advice from Mr. Rosli Aslim, and all staff at Bioprocess Laboratory, Faculty Biotechnology and BioMolecule Science for the skilled and flexible technical assistance. My special thanks to Mr. Azman and Mr Halim at the Instrumentations Laboratory, Faculty of Food Studies and Food Technology. My appreciation also goes to Mr. Idris Sharif and all staff at Unit Elektron Mikroskop, Universiti Kebangsaan Malaysia (UKM) and others for help and opinion to accomplish this project.

My thanks are due to my dearest ones, family and friends for giving me so much joy and happiness outside the lab. My mother Jamaliah Adnan, my wife Nor Asma Ab. Razak, my child Muhammad Akmal who have given me enormous support, love and understanding in all my life throughout these years. Without their patience this work would never have been realized. Thanks to all and only almighty Allah S.W.T will return all the kindness.

I acknowledge the department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia for the premises and facilities used in this study.

I certify that an Examination Committee met on 8th December 2006 conduct the final examination of Azhari bin Samsu Baharuddin on his Master of Science thesis entitled "Cellulases from oil palm empty fruit bunch by local *Aspergillus* and *Trichoderma* strains in solid substrate fermentation" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Ir. Johari Endan, Ph.D

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd Arif Syed, Ph.D.

Professor Faculty of Biotechnology and Science Biomolecule Universiti Putra Malaysia (Member)

Norhafizah Abdullah, Ph.D. Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Mohamad Roji Sarmidi, Ph.D.

Professor Faculty of Chemical Engineering Universiti Teknologi Malaysia (Independant Examiner)

HASANAH MOHD GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree Master of Science. The members of the Supervisory Committee are as follows:

Mohd Ali Hassan, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Yoshihito Shirai, PhD Professor Faculty of Engineering Kyushu Institute of Technology (KIT), Japan (Member)

AINI IDERIS, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 8 FEBRUARY 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

AZHARI BIN SAMSU BAHARUDDIN

DATE: 8 JANUARY 2007

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
DECLARATIONS	xi
LIST OF TABLES	XV
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	xix

CHAPTER

1	INTRODUCTION	1
	Objective	3
2	LITERATURE REVIEW	
	2.1 Oil Palm	4
	2.1.1 Palm oil by-products	6
	2.1.20il palm empty fruit bunch	7
	2.2 Chemical and structural features of lignocellulose	9
	2.2.1 Chemical characteristics of OPEFB	9
	2.3 Fermentation	15
	2.3.1 International scenario of SSF	16
	2.3.2 Advantege factors of SSF in Malaysia	17
	2.3.3 Solid substrate bioreactor	19
	2.3.4 Environmental factors affecting microbial growth	23
	and product synthesis in SSF	
	2.4 Pre-treatment of substrate for use in SSF and enzymatic	27
	saccharification	
	2.4.1 Physical pre-treatment	28
	2.4.2 Chemical pre-treatment	28
	2.4.3 Biological pre-treatment	29
	2.5 Importance of inoculum	31
	2.5.1 Selection of the microorganism	33
	2.5.2 Cultures type	36
	2.6 Separation and purification of enzymes	39
	2.6.1 Extraction and purification	39
	2.6.2 Precipitation	40
	2.7 Commercial potential	41
	2.7.1 Factors influence on enzymatic saccharification of	43
	Lignocellulosic materials	

Page

3	GENERAL MATERIALS AND METHODS	
	3.1 Chemical reagent	46
	3.2 Substrate preparation	48
	3.2.10il palm empty fruit bunch	48
	3.3 Microorganism and maintenance	49
	3.3.1 Fungal strains	49
	3.3.2 Growth and culture conditions	49
	3.3.3 Inoculum preparations	50
	3.4 Proximate analysis of OPEFB	52
	3.5 Sampling and extraction method	52
	3.6 Enzyme assays	53
	3.6.1 β -glucosidase	53
	3.6.2 CMCase	54
	3.6.3 FPase	54
	3.7 Other assays	55
	3.7.1 Monitoring pH and temperature	55
	3.7.2 Reducing sugar	55
	3.7.3 Glucose	56
	3.7.4 Soluble protein3.7.5 Determination of moisture content	57 58
	5.7.5 Determination of moisture content	30
4	CELLULOLYTIC ENZYMES PRODUCTION FROM OPEFB	BY
	ASPERGILLUS SP EB4 AND TRICHODERMA SP EB5 IN SOI	LID
	SUBSTRATE FERMENTATION	
	4.1 Introduction	59
	4.2 Materials and Methods	60
	4.2.1 Substrate	61
	4.2.2 Fermentation conditions	62
	4.2.3 Sampling and extraction procedures	62
	4.2.4 Enzyme activity and other assays	62
	4.2.5 Experimental design and treatments	63
	4.2.6 Data analysis	63
	4.2.7 Scanning electron microscopy (SEM)	63
	4.2.8 Identification of <i>Aspergillus sp</i> EB4	64
	4.3 Results and Discussion	65
	4.3.1 Fermentation profiles of OPEFB using different	65
	pre-culture cellulase inducer	05
	4.3.2 Scanning electron microscopy (SEM)	85
	4.3.3 Identification of <i>Aspergillus sp</i> EB4	90 92
	4.4 Conclusions	92
5	BIOCONVERSION OF OIL PALM EMPTY FRUIT BUNCH I	
	SOLID SUBSTRATE BIOREACTOR AND SACCHARIFICAT 5.1 Introduction	
	5.1 Introduction 5.2 Materials and Methods	94 95
	5.2 Materials and Methods 5.2.1 Substrate	95 96
	5.2.1 Substrate 5.2.2 Condition of bioreactor	96 97
	5.2.3 Fermentation conditions	97 98
	5.2.4 Purification using ammonium sulphate precipitation	102
	5.2. FI unneation using annionium surpliate precipitation	102

	5.2.5 SDS-PAGE	103
	5.2.6 Saccharification of OPEFB	105
	5.3 Results and Discussion	107
	5.3.1 Cellulase production and other assays	107
	5.3.2 Partial purification of cellulase	119
	5.3.3 Saccharification of OPEFB	125
	5.4 Conclusions	134
6	CONCLUSION AND RECOMMENDATIONS	137
RE	FERENCES	140
APPENDICES		151
BIODATA OF THE AUTHOR		170

LIST OF TABLES

Table		Page
2.1 :	World mature areas of oil palm ('000 ha)	5
2.2 :	World production, yield and area of oil crops	5
2.3 :	Source of oil palm biomass in palm oil operation	7
2.4 :	Proximate chemical analysis of OPEFB, hardwood and softwood (%)	10
2.5 :	Comparison between liquid and SSF	16
2.6 :	List of raw materials, possible products and their uses	19
2.7 :	Action of cellulose on different substrate	31
2.8 :	Example of industrially important enzyme inducers	33
4.1 :	The maximum cellulase activity by different culture condition using different pre-culture inducers.	82
4.2 :	The optimal cellulases activity from literature	84
5.1 :	Results of cellulases activity obtained at day 7 fermentation in tray cabinet bioreactor using OPEFB as substrate	113
5.2 :	Results of cellulases activity obtained at day 7 fermentation in 250 ml Erlenmeyer flasks using OPEFB as substrate	114
5.3 :	The optimal cellulases activity from literature in solid substrate bioreactor experiment.	115
5.4 :	Partial purification of cellulolytic enzymes from <i>A. niger</i> EB4 using 80% ammonium sulphate saturation	122
5.5 :	Proximate analysis of untreated and treated OPEFB	125
5.6 :	Cellulases activities in crude and partial purified enzymes from <i>A. niger</i> EB4	127
5.7 :	The highest sugars composition from enzymatic saccharification by <i>A. niger</i> EB4 using 5% (w/v) of pre-treated OPEFB	130
5.8 :	Reducing sugars production from lignocellulosic waste by previous researcher using commercial enzyme	132

LIST OF FIGURES

Figure	Pa	age
2.1 :	Oil palm with fruits and cross section of the palm oil fruits	4
2.2 :	Approximate amounts of principals products and by-products from the oil palm at maturity	6
2.3 :	Sterilization of harvested FFB (a) and (b) OPEFB coming out of the palm oil mill	8
2.4 :	Schematic flow diagram of crude palm oil extraction processes and sources of OPEFB	9
2.5 :	Generalized view of plant cell wall composition	10
2.6 :	Linear chains of glucose comprise cellulose	11
2.7 :	Schematic illustration of sugar units of hemicellose	13
2.8 :	Schematic illustration of building units of lignin	14
2.9 :	Bioreactor types for SSF	20
2.10 :	Schematic representation of sequential stages in cellulolysis	30
2.11 :	An integrated scheme for conversison of lignocellulosic into chemicals	42
3.1 :	Experimental procedures during SSF	47
3.2 :	Substrate preparation; (a) shredded OPEFB and (b) ~2mm OPEFB	49
3.3 :	Fungal strains of a) <i>Aspergillus sp</i> EB4 and b) <i>Trichoderma sp</i> EB5 after 7 days grown on PDA	50
3.4 :	Spore suspension of (a) <i>Aspergillus sp</i> EB4 and (b) <i>Trichoderma sp</i> EB5	52
4.1 :	Experimental flowsheet of SSF in 250 ml Erlenmeyer flask	61
4.2 :	SEM procedures (a) dehydration of wet sample; (b) critical point dryer (CPD); (c) sputter-coated with a gold layer and (d) SEM machine	64
4.3 :	Growth profile (a) and pH (b) for ■ EB4; ◆ EB5 and ▲ co-culture (1:1 inoculum ratio) using CMC as pre-culture cellulase inducer.	66

4.4 : Growth profile (a) and pH (b) for EB4; ◆ I	EB5 and \blacktriangle co-culture 67 e-culture cellulase inducer.
(1.1 moculum ratio) using filter paper as pro	
 4.5 : Growth profile (a) and pH (b) for ■ EB4; ◆ (1:1 inoculum ratio) using EFB powder as p inducer. 	
 4.6 : SSF of pre-treated OPEFB using (a) Asperg (b) Trichoderma sp EB5; (c) Co-culture and days fermentation in 250 ml Erlenmeyer flas 	d (d) Control; after 6
 4.7 : Cellulolytic enzymes activity profiles for ■ ▲ co-culture (1:1 inoculum ratio) using CM cellulase inducer. 	-
 4.8 : Cellulolytic enzymes activity profiles for ■ ▲ co-culture (1:1 inoculum ratio) using filt cellulase inducer. 	
 4.9 : Cellulolytic enzymes activity profiles for ■ ▲ co-culture (1:1 inoculum ratio) using EFF cellulase inducer. 	
4.10 : OPEFB (a) and (b) view under SEM at 150	0X magnification 85
4.11 : Colonization of <i>Aspergillus sp</i> EB4 on OPE SEM at magnifications (a) 126X, (b) 600X	
4.12 : Colonization of <i>Trichoderma</i> sp EB5 on OF SEM at magnifications (a) 100X, (b) 80X	PEFB view under 88
4.13 : Colonization of co-culture on OPEFB view and (b) at magnifications 300X	under SEM (a) 88
4.14 : Pure isolated <i>Aspergillus sp</i> EB4 were gro(a) front side (b) reverse side	wn on PDA at day 7 91
4.15 : Morphology of <i>A. niger</i> EB4 in methylene l at magnification (a) 10X and (b) 40X and i at magnification 40X (c) and (d)	e
5.1 : Experimental flowsheet for bioreactor expe	riment 96
5.2 : Rotary drum bioreactor (a) Side view and (b)	b) front view 97
5.3 : Tray cabinet bioreactor	98
5.4 : The dried and clumped fermented substrate fermentation in rotary drum bioreactor (a) a	2

5.5	:	Fermented OPEFB at day 7 SSF	113
5.6	:	Temperature in tray cabinet bioreactor for 7 days of SSF	117
5.7	:	Evaporative cooling inside the bioreactor	117
5.8	:	Ammonium sulphate (a) stirred on ices (b) partial purified cellulase	120
5.9	:	Profile of saturation ammonium sulphate for cellulolytic <i>A. niger</i> EB4 (\blacksquare FPase, \blacktriangle CMCase, \blacklozenge β -glucosidase, - soluble protein)	121
5.10	:	Profile of reducing sugars production using crude cellulase from <i>A. niger</i> EB4 at different enzyme concentration (\blacksquare :1%, x:: 2%, \bullet :	
5.11	:	Profile of reducing sugars production using partial cellulase from <i>A. niger</i> EB4 at different enzyme concentration (\bullet :1%, \blacksquare : 2%, \blacktriangle :	
5.12	:	Saccharification process (a) and (b) sample of crude sugars obtained from OPEFB using cellulase enzymes by <i>A. niger</i> EB4	133

LIST OF ABBREVIATIONS

ADF	acid detergent fiber
A. niger	Aspergillus niger
a_{w}	water activity
BSA	bovine serum albumin
Ca ²⁺	calcium ion
dH ₂ O	distilled water
DNS	Dinitrosalicyclic acid
EtOH	ethanol
FPLC	Fast Performance Liquid Chromatography
LSF	Liquid-state fermentation
MARDI	Malaysia Agriculture Research and Development Institute
ME	metabolism energy
Mg^{2+}	magnesium ion
MW	molecular weight
NaOH	sodium hydroxide
NDF	neutral detergent fiber
OPB	Oil palm biomass
OPEFB	Oil palm empty fruit bunch
PAGE	Polyacrylamide Gel Electrophoresis
PDA	potato dextrose agar
PFF	press fruit fiber
РК	palm kernel
РКС	palm kernel cake
РКО	palm kernel oil
POME	Palm Oil Mill Effluent
rpm	rotations per minute
SEM	scanning electron microscopy
SSF	solid substrate fermentation
SDS	Sodium dodecyl sulfate
TEMED	N,N,N',N'- Tetramethyl Ethylenediamine

Tris-Cl	Tris chloride
U/ml	Unit per ml
UKM	Universiti Kebangsaan Malaysia
UPM	Universiti Putra Malaysia
v/v	volume per volume
w/v	weight per volume
μmole	micromole