DEVELOPMENT OF A RICE COMBINE HARVESTER INSTRUMENTATION SYSTEM FOR MAPPING OF CROP YIELD AND FIELD PERFORMANCE

By

YAP YOKE KIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

December 2006

DEDICATED TO

My parents, husband, brothers and sisters

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Master of Science

DEVELOPMENT OF A RICE COMBINE HARVESTER INSTRUMENTATION SYSTEM FOR MAPPING OF CROP YIELD AND FIELD PERFORMANCE

By

YAP YOKE KIN

December 2006

Chairman : Professor Sudhanshu Shekhar Jamuar, PhD

Faculty : Engineering

Yield variations within a paddy field indicate the loss of potential of valuable cultivated land in Malaysia. By integrating the location in the field of a combine harvester with accurate yield measurement, it is possible to produce a map with detailed, site-specific variations. When this yield map is used in conjunction with soil maps, topographic maps and weed maps, it is possible to understand the reasons for yield variations. From these maps, treatment plans can be made to control inputs specific to a desired location, using variable rate controllers to optimize the use of land in order to achieve maximum yield. Thus, this research was initiated to develop a dedicated and complete instrumentation system on-board a New Holland TC-56 rice combine harvester to monitor the grain losses, harvested crop yield and combine operating parameters during harvesting operation with the ultimate goal of generating grain loss map, crop yield map and combine field performance parameter maps. The developed instrumentation system has been installed with ultrasonic displacement sensor for measurement of combine actual cutting width and the header position sensor for measurement of header cutting height position. Grain flow, grain moisture and grain loss sensors have been installed and calibrated for measurements of grain flow in kg/m², percentage of grain moisture contents and grain losses in grams during harvesting, respectively. Radar velocity sensor and theoretical ground speed sensor have been used to measure the actual ground speed, theoretical ground speed of the combine in the field during operation, respectively. The tilt sensor has been used to measure the pitch and roll angles of the combine in the field during operation. In order to measure the combine engine fuel consumption, fuel flow sensor has been used. Resistance strain gauge and a slip ring have been used to measure the combine drive axle shaft torque during operation. The data acquisition system is used for conditioning, amplifying, collecting, processing, displaying and storing all the measured parameters from the sensors and differential global positioning system receiver. The differential global positioning system is used for identifying the geo-position of combine in the field. Laboratory Virtual Instrument Engineering Workbench (LabVIEW) software is used to control and process the outputs from different sensors in the data acquisition system. The LabVIEW has also been used for data logging, monitoring, processing and storing of the performance signals from sensors and collected differential global positioning system signal. The functionality and reliability of the developed instrumentation system has been tested in a harvesting operation with the combine harvester at a paddy field plot located in Sawah Sempadan Block C, Kuala Selangor under the North West Selangor Agricultural Development Project authority. Point data with specific location collected continuously with an interval of one second over the field area were down loaded into computer and presented into a spatial map using ArcGis 8.3 software.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

MEMBINA SISTEM INSTRUMENTASI PADA JENTERA PENUAI PADI UNTUK PEMETAAN HASIL PENGELUARAN DAN PRESTASI JENTERA PENUAI

Oleh

YAP YOKE KIN

Disember 2006

Pengerusi : Profesor Sudhanshu Shekhar Jamuar, PhD

Fakulti : Kejuruteraan

Variasi hasil pengeluaran tanaman sawah padi menunujukkan berkemampuan hilang dari pelbagai tanah penanaman di Malaysia. Sistem bersepadu pemetaan hasil pengeluaran padi yang sedang dibangun untuk jentera penuai dengan ukuran hasil yang tetap ini berkemampuan menghasilkan peta hasil padi yang terkumpul, peta kehilangan hasil padi semasa kerja penuaian dan peta prestasi jentera penuai. Sebabsebab untuk variasi hasil dapat diketahui apabila peta ini digunakan bersama dengan peta tanah, peta topografi dan peta rumpai. Daripada peta ini, perancangan rawatan dapat dilaksanakan untuk mengawal spesifik input untuk sesuatu kawasan dan menggunakan pelbagai kawalan supaya mencapai hasil maksima dengan penggunaan kawasan penanaman yang optima. Kajian ini melibatkan kerja-kerja merekabentuk dan membina sistem instrumentasi pemetaan hasil pengeluaran padi untuk jentera penuai New Holland TC56. Ia telah dilengkapkan dengan penderia lebar pemotongan untuk mengukur kelebaran pemotongan padi oleh pengepala jentera penuai dan penderia pengepala untuk mengukur ketinggian pemotongan padi oleh pengepala jentera penuai. Penderia aliran bijirin, penderia lembapan bijirin dan penderia kehilangan bijirin telah dipasang dan diujitentu untuk mengukur kadar alir

bijirin bersih ke tangki, peratus kelembapan bijirin ke tangki dan kadar alir bijirin yang terkeluar dari belakang pengayak pembersih dan pelantar jerami jentuai masing-masing semasa kerja dilakukan. Penderia radar kelajuan dan pengekod laju digunakan untuk mengukur laju sebenar jentera penuai dan laju teori jentera penuai. Penderia miring telah digunakan untuk mengukur darjah miring sisi dan darjah miring membujur jentera penuai ketika beroperasi di kawasan sawah padi. Penderia aliran bahan api digunakan untuk mengukur kadar penggunaan bahan api diesel enjin jentera penuai manakala penderia daya kilas digunakan untuk mengukur daya kilas pada aci pemacu bagi gegancu trek jentera penuai. Sistem global penentu dudukan memberi kedudukan geografi jentera penuai ketika beroperasi di kawasan sawah padi melalui satelit. Sistem perolehan data digunakan untuk mengawal dan merekod isyarat dari penderia-penderia dan isyarat sistem global penentu dudukan yang terdapat pada jentera penuai. Perisian LabVIEW digunakan untuk mengawal dan memproses data keluaran daripada isyarat penderia-penderia dan isyarat sistem global penentu dudukan. Kajian perladangan telah dilaksanakan di Sawah Sempadan Blok C, Kuala Selangor untuk menguji fungsi fungsi penderia yang telah dilengkapkan pada jentera penuai. Hasil padi direkodkan dalam sela masa 1 saat dan semua data kemudian dianalisa dan peta ruang dihasilkan dengan menggunakan ArcGis 8.3.

ACKNOWLEDGEMENTS

This research study was carried out to contribute towards the expansion of the knowledge on precision farming. The completion of this thesis would have been impossible if not for the assistance and direct involvement of many kind-hearted individuals. Much appreciation to all my mentors and I have no way of repaying such a debt except to express my sincerest gratitude.

First and foremost, I am very grateful to my supervisor, Professor Sudhanshu Shekhar Jamuar, for his valuable comments, patience, guidance, and strong support for the very enriching and though-provoking discussions which helped to shape the thesis. He was always there to help whenever needed throughout the project. Next, I would also like to thank the other member in my supervisory committee; Assoc. Prof. Ir. Dr. Azmi Dato' Yahya for the kindly contributions, feedback, and comment during the running of my project.

Acknowledgement is also extended to MACRES for my granting the financial support for my master degree study. For all the lecturers and staffs of the Department of Electrical and Electronic Engineering and Department of Biological and Agricultural Engineering, Universiti Putra Malaysia, thanks for giving me full commitment and co-operation during the process of doing my Masters Degree project.

I am also indebted to Prof. Simon Blackmore who has given various suggestions that contributed a lot towards the sensors calibration of the experiments. My heartfelt thanks also go to Roshdi Zamri, Ng Eng Boon, Darius, and Rashidah Ruslan and all my fellow friends for their sacrifices, encouragement, and generous co-operation throughout my project.

Thanks are extended to Department of Agriculture for granting us the permission to conduct the field test in Sawah Sempadan, Kuala Selangor.

I am forever indebted to my beloved family members for their understanding and everlasting love and care during the course of my study.

Samsul Bahari Mohd. Noor, PhD Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohammad Hamiruce Marhaban, PhD Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Norhisam Misran, PhD Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Rosbi Mamal, PhD Associate Professor Faculty of Electric Engineering Universiti Teknologi Malaysia (External Examiner)

HASANAH MOHD GHAZALI, PhD Professor/Deputy Dean School of Graduate Studies

School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Sudhanshu Shekhar Jamuar, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Azmi Hj Yahya, PhD, M.I.E.M

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

> AINI IDERIS, PhD Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 8 MARCH 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

YAP YOKE KIN

Date: 25 JANUARY 2007

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xiv
LIST OF FIGURES	XV

CHAPTER

1	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Problem Statement	5
	1.3	Objectives	7
		Thesis Layout	8
2	LIT	ERATURE REVIEW	9
	2.1	Precision Farming Technology	11
	2.2		14
		2.2.1 Yield Monitoring System	15
		2.2.2 Yield Mapping System	18
	2.3	System for Field Performance Mapping	19
	2.4	Rice Yield Mapping	22
3	ME	THODLOGY	25
	3.1	System Basic Features	27
	3.2	Data Acquisition System	30
	3.3	Differential Global Positioning System	42
	3.4	Sensors	45
		3.4.1 Ultrasonic Displacement Sensor	45
		3.4.2 Header Position Sensor	48
		3.4.3 Grain Flow Sensor	50
		3.4.4 Grain moisture Sensor	52
		3.4.5 Grain Loss Sensor	55
		3.4.6 Radar Velocity Sensor	57
		3.4.7 Theoretical Ground Speed Sensor	60
		3.4.8 Tilt Sensor	61
		3.4.9 Fuel Flow Sensor	64
		3.4.10 Drive Axle Shaft Torque Transducer	67
	3.5		69
	3.6	Field Demonstration Test	80
	3.7	Summary	84

4	RES	SULTS AND DISCUSSIONS	85
	4.1	System Calibration	85
	4.2	Field Demonstration Test	91
	4.3	Delay and Offset Times for Yields, Grain Moisture	
		Content, Grain Losses Measurement	95
	4.4	Crop Harvested Yield, Grain Losses, and Field	
		Performance Maps	101
5	CO	NCLUSIONS	114
-	5.1	Conclusions	114
	5.2	Suggestion for Future Study	116
BIBL	IOGI	RAPHY	117
APPH	ENDI	CES	123
BIOD	АТА	OF THE AUTHOR	169
LIST	LIST OF PUBLICATIONS		

LIST OF TABLES

Table		Page
1.1	Rice production for selected countries in year 2005	2
1.2	Rice productions, imports and exports for Malaysia from year 2004 3	1994-
2.1	Field operation and adoption of precision farming applied	12
2.2	Summary for the development of grain yield sensor	17
3.1	Surveyed GPS control points	43
3.2	Dewe-2010 PC module input and filter range for sensors	73
4.1	Differential global positioning system verification at 3 control points	91
4.2	Field test results	93
4.3	Average of combine actual ground speed	99
4.4	Offset time for yields	100
4.5	Offset time for grain moisture content	100
4.6	Offset time for grain losses	100
E.1	Calibration data of the ultrasonic displacement sensor for (a) Left Gui and (b) Right Guide	de 158
E.2	Calibration data of the header position sensor	158
E.3	Calibration data of the grain flow sensor	158
E.4	Calibration data of the grain moisture sensor	159
E.5	Calibration data of the grain loss sensor	160
E.6	Calibration data of the radar velocity sensor	161
E.7	Calibration data of the tilt sensor	162
E.8	Calibration data of the fuel flow sensor	162
E.9	Calibration data of the drive axle shaft torque transducer	163

LIST OF FIGURES

Figure		Page
1.1	The Precision Farming Model (Mark Moore, 1997)	4
2.1	Different Functional Processes in a Conventional Combine (Missotten, 1998)	10
2.2	Different Methods for the Measurement of Grain Yield (Kutzhbach and Schneider (1997)	16
2.3	Yield Monitoring Combine with GPS and Dual Yield Monitoring System	23
2.4	Yield Monitoring with a Two-Row Head-Feeding Jidatsu Combine	24
3.1	Flow Chart for the Overall Research Activities	26
3.2	Block Schematic of Combine Harvester Data Acquisition System and Differential Global Positioning System	27
3.3	A Simplified Block Diagram of a Typical General Purpose Instrumentation System	28
3.4	Complete Make-up the Developed Instrumentation System	29
3.5	Data Acquisition System Location inside the Combine Cab	31
3.6	Overall Hardware System Connectivity	32
3.7	Sensor Connection to DAQP-V Module	33
3.8	Sensor Connection to DAQP-FREQ A Module	34
3.9	Sensor Connection to DAQP-BRIDGE B Module	35
3.10	Differential Global Positioning System Connection to COM 1	35
3.11	Front Panel Display of Complete System	36
3.12	General Overall Block Diagram of Complete System	37
3.13	Block Diagram of Complete System	38
3.14	Block Schematic of Read NMEA GPS_GGA subVI.vi Program	n 39
3.15	Block Schematic of ConsumeBefore.vi Program	39

3.16	Block Schematic of US.vi, HS.vi, RVS.vi, MS.vi, TS.vi, FFS.vi, GLS.vi, PS.vi, GFS.vi and SG.vi Subsystem Programs	40
3.17	AI Sample Channel.vi	41
3.18	Formula Node Function	41
3.19	Scaling and Mapping Function	41
3.20	Differential Global Positioning System Antenna and Receiver Locations	43
3.21	Block Diagram for DGPS Calibration Setup	44
3.22	Calibration Setup for DGPS at Station B	44
3.23	Calibration Setup for DGPS at Station C	44
3.24	Calibration Setup for DGPS at Station E	45
3.25	Header Cutting Width Measurement	47
3.26	Ultrasonic Displacement Sensors Locations	48
3.27	Calibration Setup for the Ultrasonic Displacement Sensor	48
3.28	Header Cutting Height Measurement	49
3.29	Header Position Sensor Location	49
3.30	Calibration Setup for the Header Position Sensor	50
3.31	Grain Flow Measurement	51
3.32	Grain Flow Sensor Location	52
3.33	Calibration Setup for Grain Flow Sensor	52
3.34	Grain Moisture Content Measurement	54
3.35	Grain Moisture Sensor Location	54
3.36	Calibration Setup for Grain Moisture Sensor	54
3.37	Grain Loss Measurement	56
3.38	Grain Loss Sensor Location	57
3.39	Calibration Setup for Grain Loss Sensor	57

3.40	Actual Ground Speed Measurement	59
3.41	Radar Velocity Sensor Location	59
3.42	Calibration Setup for Radar Velocity Sensor	59
3.43	Theoretical Ground Speed Measurement	60
3.44	Theoretical Ground Speed Sensor Location	61
3.45	Pitch and Roll Angle Measurement	63
3.46	Tilt Sensor Location	63
3.47	Calibration Setup for Tilt Sensor	64
3.48	Fuel Flow Sensor Location	66
3.49	Fuel Consumption Measurement	66
3.50	Calibration Setup for Fuel Flow Sensor	66
3.51	Wheatstone Bridge Configuration of Strain Gauges	68
3.52	Drive Axle Shaft Torque Transducer Location	68
3.53	Calibration Setup for Drive Axle Shaft Torque Transducer	69
3.54	Cleaning the Grain in Elevator Mounted Moisture Sensor Unit	70
3.55	Checking the Grain Flow Sensor's Impact or Deflector Plates	71
3.56	Refilling the Fuel Tank of Generator Set	71
3.57	Securing the Interlocking Screws of the Connectors in Dewe-2010 PC Module	71
3.58	Home Screen for DGPS Receiver at Display Panel	72
3.59	Windows 2000 Main Screen for Dewe-2010 PC	73
3.60	Dewetron Configuration Setup	74
3.61	Channel Setup for Dewe-2010 PC Module Channel	74
3.62	LabVIEW Program	75
3.63	Opening the GPSGGA&sensors.vi Program	75
5.05	opening the of occuration of the tradium	

3.64	Front Panel of GPSGGA&sensors.vi Program	75
3.65	Entering the Field Test Plot Details	76
3.66	Pressing the "RUN" Button to Start the LabVIEW Program	76
3.67	Entering the File Name to Save	76
3.68	Pressing the "STOP" Button to Stop the LabVIEW Program	77
3.69	Accessing to Block Diagram of GPSGGA&sensors.vi Program	78
3.70	Tools Pallete in LabVIEW Program	78
3.71	Field Condition for Lot3168	82
3.72	Field Condition for Lot3170	82
3.73	Field Condition for Lot3172	82
3.74	Field Condition for Lot3176	83
3.75	Field Condition for Lot3221	83
3.76	The Instrumented Rice Combine Harvester	83
4.1	Calibration Graph of the Ultrasonic Displacement Sensor for Left Guide	87
4.2	Calibration Graph of the Ultrasonic Displacement Sensor for Right Guide	87
4.3	Calibration Graph of the Header Position Sensor	88
4.4	Calibration Graph of the Grain Flow Sensor	88
4.5	Calibration Graph of the Grain Moisture Sensor	88
4.6	Calibration Graph of the Grain Loss Sensor	89
4.7	Calibration Graph of the Radar Velocity Sensor	89
4.8	Calibration Graph of the Tilt Sensor for Pitch Angle	89
4.9	Calibration Graph of the Tilt Sensor for Roll Angle	90
4.10	Calibration Graph of the Fuel Flow Sensor	90
4.11	Calibration Graph of the Drive Axle Shaft Torque Transducer	90

4.12	Real Time Information Data from the Front Panel Display of the Developed Instrumentation System	92
4.13	Delay Time for Yields	98
4.14	Delay Time for Grain Moisture Contents	98
4.15	Delay Time for Grain Losses	98
4.16	Cutting Height Maps	104
4.17	Cutting Weight Maps	105
4.18	Combine Pitch Maps	106
4.19	Combine Roll Maps	107
4.20	Actual Combine Speed Maps	108
4.21	Drive Axle Shaft Torque Maps	109
4.22	Engine Fuel Consumption Rate Maps	110
4.23	Grain Moisture Content Maps	111
4.24	Grain Temperature Maps	112
4.25	Instantaneous Yield Maps	113
A.1	Read NMEA GPS_GGA subVI.vi Block Diagram	124
A.2	Input Unit for Read NMEA GPS_GGA subVI.vi Block Diagram	125
A.3	Processing Unit – P1 for Read NMEAGPS_GGA subVI.vi Block Diagram	125
A.4	Processing Unit – P2 for Read NMEAGPS_GGA subVI.vi Block Diagram	126
A.5	Close Section for Read NMEA GPS_GGA subVI.vi Block Diagram	127
A.6	US.vi Block Diagram	127
A.7	HS.vi Block Diagram	128
A.8	RVS.vi Block Diagram	128
A.9	MS.vi Block Diagram	128
A.10	TS.vi Block Diagram	129

A.11	FFS.vi Block Diagram	129
A.12	GLS.vi Block Diagram	129
A.13	PS.vi Block Diagram	130
A.14	GFS.vi Block Diagram	130
A.15	SG.vi Block Diagram	130
A.16	GPS_GGA subVI.vi Block Diagram	131

LIST OF PUBLICATIONS

Papers presented or published in conferences or journals:

- Mariamni Halid, N. Laili, S. Ibrahim, H. Zainal Abidin, Syarmy Shamsuddin and Yap Yoke Kin. 2006. Rice Precision Farming. MACRES Seminar 2005 on RMKe-8 achievements and operationalisation strategies of remote sensing towards achieving RMKe-9 objectives. April 3-7, 2006, Kuala Lumpur, Malaysia.
- 2. Yap yoke Kin, Azmi Yahya, S.S.Jamuar, Rashidah Ruslan, Laili Nordin and Mariamni Halid. 2006. Design and Development of a Rice Combine Harvester Instrumentation System for Crop Yield and Field Performance Mapping. November 9-11, 2006, AFITA 2006, Bangalore, India.