INFLUENCE OF INULIN ON GUT MICROFLORA AND MINERAL EXCRETION AMONG FORMULA-FED INFANTS

By

YAP KENG WAI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Food Science and Biotechnology, Universiti Putra Malaysia

January 2005

Specially dedicated to my parent, Mr. & Mrs Yap Khim, my sister, Keng Lai, my fiancé, Mr. Loh Zhi Ming and last but not least to all my lecturers and friends.... Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

INFLUENCE OF INULIN ON GUT MICROFLORA AND MINERAL EXCRETION AMONG FORMULA-FED INFANTS

By

YAP KENG WAI

January 2005

Chairman : Professor Suhaila Mohamed, Ph.D.

Faculty : Food Science and Biotechnology

Inulin, also known as fructooligosaccharide is increasingly used in human food preparations. *In vitro* they have been shown to selectively stimulate the growth of *Bifidobacterium* as well as mineral absorption. Hence, the present study was designed to investigate the effects of three different concentrations of inulin in 36 healthy formula-fed infants aged between 6 and 12 months. A complete randomised design was used to investigate the bifidogenic effect of inulin in enhancing mineral absorption, namely, calcium, iron, magnesium, zinc and copper. The formula-fed infants were grouped into three groups where they received 0.75 g/d, 1.00 g/d and 1.25g/d, while another group of infants acted as control. All the bifidobacteria faecal isolates were tested and characterised using biochemical test and API20, a genus level test kit. The balance method was opted for mineral balance study. Total blood cholesterol levels were determined to investigate the correlation between inulin intake and total cholesterol level in healthy infants. All the three concentrations of inulin studied were found to

significantly (P < 0.05) promote *Bifidobacterium* growth by inhibiting potential pathogenic microorganisms. With 1.25 g/d of inulin, a significant (P < 0.05) decline in Gram-positive cocci and coliform counts and a significant (P < 0.05) increase in *Bifidobacterium* count were observed. The increase in inulin consumption also exhibited a greater significant (P < 0.05) difference in pH value. Higher production of short-chain fatty acids as a result of colonic fermentation was observed and therefore, contributing to the reduction of colonic pH. The inulin supplementation has significantly (P < 0.05) improvement of the absorption of Fe and Mg while no significant (P > 0.05) improvement of the absorption of calcium, copper and zinc were observed. The total cholesterol level was not affected by the three levels of inulin supplementation.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN PENAMBAHAN INULIN DALAM PEMAKANAN BAYI KE ATAS MIKROFLORA USUS DAN PENYINGKIRAN MINERAL DIKALANGAN BAYI YANG MEMINUM SUSU FORMULA

Oleh

YAP KENG WAI

Januari 2005

Pengerusi: Professor Suhaila Mohamed, Ph.D.

Fakulti: Sains Makanan dan Bioteknologi

Inulin atau dikenali dengan frukto-oligosakarida kini digunakan secara meluas dalam penyediaan makanan manusia. Secara *in vitro*, ianya digunakan untuk menggiatkan peningkatan spesis *Bifidobakterium* dan penyerapan mineral secara terpilih. Maka, kajian ini direkabentuk untuk mengkaji kesan 3 dos inulin yang berlainan terhadap microflora usus dan penyerapan mineral dalam 36 bayi berumur dalam lingkungan 6-12 bulan. Rekabentuk eksperimen secara rawak lengkap telah dipilih untuk mengkaji kesan bifidogenik inulin dalam meningkatkan penyerapan kalsium, zat besi, magnesium, zink dan kuprum. Subjek bayi yang terlibat dibahagikan kepada tiga kumpulan di mana mereka diberi dos inulin sebanyak 0.75g/hari, 1.00g/hari dan 1.25g/hari bersama sekumpulan bayi yang lain bertindak sebagai kawalan. Kesemua bifidobakteria yang dipencilkan diuji dan dicirikan menggunakan ujian biokimia dan peralatan ujian AP120 A sehingga peringkat genus. Kaedah pembelajaran nutrisi secara klasik - kaedah yang seimbang dipilih untuk pengkajian keseimbangan mineral. Jumlah kolestrol darah

diambil daripada kajian terkini untuk menyiasat kesan pengambilan inulin ke atas jumlah tahap kolestrol bagi bayi sihat. Kesemua ketiga-tiga tahap inulin yang dikaji adalah untuk pertumbuhan Bifidobakterium dengan potensi menggalakkan pengurangan mikroorganisma patogenik seperti jumlah bakteria anaerobik dan klostridia secara signifikasi (P < 0.05). Semasa pemakanan inulin 1.25g/hari terdapat pengurangan dalam gram positif kokki dan kolifom secara signifikasi (P < 0.05). Peningkatan penggunaan inulin juga mempamerkan perbezaan signifikasi yang lebih besar (P < 0.05) bagi nilai pH. Peningkatan yang lebih tinggi dalam pengeluaran asid rangkaian pendek daripada fermentasi kolon mungkin sebab utama pH kolon mempamerkan perbezaan signifikasi (P < 0.05) dengan peningkatan penggunaan inulin. Peningkatan penyerapan ferum dan magnesium secara signifikasi (P < 0.05) juga diperolehi manakala tiada peningkatan ketara pada penyerapan kalsium, kuprum dan zink. Tiada pengurangan kolesterol jumlah secara signifikasi (P < 0.05) diperolehi.

ACKNOWLEDGEMENTS

As I switched on my laptop today in preparation to pen down my appreciation to various parties that had supported me through the ups and downs of my research, all the sweet memories came back like flashes of an interesting movie. Till now, I can still remember how I had landed with an opportunity of a lifetime to further my master degree under a full scholarship offered by a foreign and established company, Sensus.

Back then, I was just an ordinary girl with one year plus working experience, a girl that had no idea that she would get a chance to further her study by carrying out a clinical trial, where she has to collect stools and urine samples from cute little babies! But nevertheless, I was scare or worry as I told myself: 'Wendy, you can do it as long as you want to, when there is a will, there is a way!', as the old saying used to say. Thus, to Mr. Tan Boon Leng (Gulf Chemicals), Mr. Alberts and Dr. Diederick Meyer (Sensus), thank you so much for entrusting me with the responsibility to carry out this interesting project.

It may not seems so encouraging at first, as I always ran into dead ends and obstacles, but I did not give up easily, thanks to both of my supervisors, Prof. Dr. Suhaila Mohamed, Department of Food Science, and Assoc. Prof. Dr. Yazid Manap, Department of Food Technology, Faculty of Food Science and Biotechnology, Universiti Putra Malaysia, for their continuously patience in giving me invaluable advices, suggestions, constructive criticisms and most important guidance to complete this interesting research.

Besides, I was fortunate enough to gain the supports from the rest of the supervisory team, Assoc. Prof. Dr. Maznah Ismail, Department of Health Sciences and Nutrition, Faculty of Medicine and Health Sciences, Dr. Husni, Dr. Tengku, both from Klinik Husni, Tengku dan Rakan-rakan and Dr. Nur Atiqah, pediatrician, Hospital Pantai, Kuala Lumpur, for their patience in guiding me throughout the clinical trial. I am grateful for their kindness in allowing me to use their facilities and for their positive suggestions and guidance during the research.

For the past two years, I own my deepest gratitude to all the staffs both in Faculty of Food Science and Biotechnology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia for their patience and helps in letting me to use their facilities. I would like to express my thanks to the staffs in Klinik Kesihatan Seri Kembangan for their continuous supports in helping me to recruit volunteers for the project. My sincere appreciation extends to Ms. Norean Sayer, Nestle (M) Sdn Bhd, for their kind contribution of infants' requirement throughout the research. Last but not least my grateful acknowledge is dedicated to my family members, my father, my mother, my younger sister, Keng Lai and my fiancé, Loh Zhi Ming, for their patience and supports through the good and bad times. I know it's been hard on them to give me all the supports through the ups and downs that I faced throughout the project. I would also like to thank my entire colleague in Probiotic Laboratory and friends, especially, Lim Long Chang, Stephenie, Kong Ching, Lo Seong Koon, Lim Leng Chu, Kong Wai Leng, Barka, Ruzaina and many more for their kindness and knowledge in making my study here knowledgeable and memorable ones. Thanks so much for accompanying through the late nights in labs, buying lunches for me as I was too busy in the lab, isolating my precious stool samples.

To all the parents that had put their most precious trust in me by participated in the research; I would like to express my deepest appreciation. Without your participation, I would not have completed the research successfully. Thank you so much! I certify that an Examination Committee met on 12 January 2005 to conduct the final examination of YAP KENG WAI on her Master Science Degree of Food Microbiology & Food Safety thesis entitled "INFLUENCE OF INULIN ON GUT MICROFLORA AND MINERAL EXCRETION AMONG FORMULA-FED INFANTS" in accordance with Universiti Putra Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Dr Gulam Rusul Rahmat Ali, Phd Professor Faculty of Graduate Studies Universiti Putra Malaysia (Chairman)

Dr Zaiton Hassan, Phd

Professor Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

Dr Son Radu, Phd

Professor Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

Dr Jamaludin Hj Mohamed, Phd

Professor Fakulti Sains Kesihatan Bersekutu Universiti Kebangsaan Malaysia (Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Suhaila Mohamed, Ph.D.

Professor Faculty Food Science and Biotechnology Universiti Putra Malaysia (Chairman)

Yazid Abdul Manap, Ph.D.

Professor Faculty Food Science and Biotechnology Universiti Putra Malaysia (Member)

Maznah Ismail, Ph.D.

Associate Professor Faculty Medicine and Community Health Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

YAP KENG WAI

Date:

TABLE OF CONTENTS

Page

DEDICATION	ii
	11
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	х
DECLARATION	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xvii
LIST OF PLATES	xix
LIST OF ABBREVIATIONS	XX

CHAPTER

Ι	INTRODUCTION	1
Π	LITERATURE REVIEW	8
	Infant Nutrition	8
	Nutritional Status in Infants	10
	Micronutrient Deficiencies	14
	Iron	14
	Zinc	17
	Calcium	18
	Copper	20
	Prevention of Micronutrient Deficiencies	21
	Gut Maturation and Function	22
	Infant Nutrition and Bifidobacteria	24
	Growth Substrates for the Gut Microflora	27
	Prebiotics	31
	Short-chain Fatty Acids	40
	Modulation of Cholesterol Homeostasis by FOS	45

III INULIN-DEPENDENT MICROBIAL DISTRIBUTION AND CHARACTERISATION OF BIFIDOBACTERIA IN FORMULA-FED INFANT STOOLS

Introduction	48
Materials and Methods	53
Subjects	53
Experimental Design	53

48

	Sample Collection	54
	Bacteriological Analysis	55
	Preparation of Stock Cultures of Bifidobacteria	56
	Identification of Bifidobacteria	56
	Assessment of Dietary Intake and Stool Condition	57
	Statistical Analysis	57
	Results	58
	Faecal Flora of Formula-fed Infant	58
	Bifidogenic Effect of Inulin Supplementations	61
	Effect of Inulin Ingestion on pH	75
	Phenotypic Characteristic and Biochemical Test	77
	Carbohydrate Fermentation Profile	80
	Identification Analysis by APILAB Identification	
	Software	80
	Assessment of Stool Frequency and Condition	83
	Discussion	91
IV	INFLUENCE OF INULIN ON FAECAL SHORT-CHAIN FATTY ACID AND URINARY MINERAL OF	
	FORMULA-FED INFANT	95
	Introduction	95
	Materials and Methods	99
	Experimental Design	99
	Sample Collection	99
	Short-chain Fatty Acid Analysis	100
	Mineral Analysis	101
	Calculation of Minerals Indices	102
	Results	103
	Distribution of Short-chain Fatty Acids	103
	Mineral Status in Infants	108
	Mineral Status during Inulin Supplementation	110
	Calcium	110
	Iron	112
	Copper	115
	Magnesium	117
	Zinc	120
	Discussion	120
V	CORRELATION BETWEEN INULIN CONSUMPTION	
	AND TOTAL BLOOD CHOLESTEROL LEVEL IN	
	FORMULA-FED INFANTS	128
	Introduction	128
	Materials and Methods	131
	Experimental Design	131

	Total Cholesterol Determination Results Discussion	131 132 134
VI	GENERAL CONCLUSION	138
APP	LIOGRAPHY PENDIX DATA OF THE AUTHOR	141 164 167