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This thesis deals with the derivation of diagonally implicit Runge-Kutta (DIRK) 

methods which are specially designed for the integration of linear ordinary 

differential equations (LODEs). The restriction to LODEs with constant 

coefficients reduces the number of order equations which the coefficients of 

Runge-Kutta (RK) methods must satisfy. This freedom is used to construct new 

methods which are more efficient compared to the conventional RK methods.  

 

Having achieved a particular order of accuracy, the best strategy for practical 

purposes would be to choose the coefficients of the RK methods such that the 

error norm is minimized. The free parameters chosen are obtained from the 
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minimized error norm. This resulted in methods which are almost one order 

higher than the actual order. In this thesis we construct a fourth order DIRK 

method without taking into account the error norm. We also construct fourth and 

fifth order DIRK methods using the minimized error norm.  

  

The stability aspects of the methods are investigated by finding the stability 

polynomials of the methods, which are then solved to obtain the stability regions 

using MATHEMATICA package. The methods are found to have bigger regions 

of stability compared to the explicit Runge-Kutta (ERK) methods of the same type 

(designed for the integration of LODEs). Later, we built codes using C++ 

programming based on the methods. Sets of test problems on linear ordinary 

differential equations are used to validate the methods and numerical results show 

that the new methods produce smaller global error compared to ERK methods. 

From the stability regions and numerical results obtained, we can conclude that 

the new DIRK methods are more stable and more accurate compared to the 

explicit one. Higher order methods also gives better result compared to lower 

order methods. 

 

 

 

 

 

 

iii 
 



Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Master Sains 

 

KAEDAH RUNGE-KUTTA PEPENJURU TERSIRAT UNTUK 
MENYELESAIKAN PERSAMAAN PEMBEZAAN PERINGKAT BIASA 

YANG LINEAR 

 

Oleh 

NUR IZZATI BINTI CHE JAWIAS 

Julai 2009 

 

Pengerusi : Fudziah Binti Ismail, PhD 

Fakulti : Fakulti Sains 

 

Tesis ini membincang tentang penerbitan kaedah Runge-Kutta pepenjuru tersirat 

yang diterbitkan khas untuk menyelesaikan persamaan perbezaan peringkat biasa 

(PPB) yang linear. Pembatasan kepada PPB yang linear sahaja dengan pekali-

pekali tetap mengurangkan jumlah persamaan peringkat yang perlu dipenuhi oleh 

kaedah Runge-Kutta (RK). Kelonggaran ini digunakan untuk menerbitkan kaedah 

baru yang lebih efisien berbanding kaedah RK yang biasa.  

 

Dengan mencapai peringkat kejituan yang khusus, strategi terbaik untuk tujuan 

praktikal adalah pemilihan pekali-pekali bagi kaedah RK contohnya dengan 

meminimumkan ralat norma. Parameter bebas dipilih hasil daripada kaedah 
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meminimumkan ralat norma ini. Ini menghasilkan kaedah yang hampir 

mempunyai satu peringkat lebih tinggi daripada peringkat yang sebenarnya. 

Dalam tesis ini, kami telah menerbitkan kaedah RK pepenjuru tersirat peringkat 

keempat tanpa mengambil kira ralat normanya. Kami juga telah menerbitkan 

kaedah RK pepenjuru tersirat peringkat keempat dan kelima dengan 

meminimumkan ralat normanya terlebih dahulu. 

 

Aspek kestabilan untuk setiap kaedah diselidik dengan mencari polinomial 

kestabilan dan menyelesaikannya untuk mendapatkan rantau kestabilan dengan 

menggunakan pakej MATHEMATICA. Kaedah yang baru diterbitkan ini didapati 

mempunyai rantau kestabilan yang lebih besar berbanding kaedah RK tak tersirat 

dalam jenis yang sama (digunakan untuk menyelesaikan PPB yang linear). 

Kemudian, kod-kod berasaskan kaedah ini dibina menggunakan pengaturcaraan 

C++. Beberapa set masalah persamaan pembezaan biasa yang linear digunakan 

untuk menentusahkan kaedah-kaedah dan keputusan berangka menunjukkan 

kaedah baru ini menghasilkan ralat global yang lebih kecil berbanding kaedah RK 

tak tersirat. Daripada rantau kestabilan dan keputusan berangka yang diperolehi 

tersebut, kita dapat membuat kesimpulan bahawa kaedah RK pepenjuru tersirat 

yang baru ini lebih stabil dan lebih jitu berbanding kaedah RK tak tersirat. Kaedah 

peringkat lebih tinggi juga memberikan keputusan yang lebih baik berbanding 

kaedah peringkat rendah. 
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CHAPTER 1 

INTRODUCTION AND OBJECTIVES 

 

1.1 Introduction 

Many problems of science and engineering are reduced to quantifiable form 

through the process of mathematical modeling. The equations arising often are 

expressed in terms of the unknown quantities and their derivatives. Such 

equations are called differential equations. The solutions of these equations have 

exercised the ingenuity of great mathematicians since the time of Newton, 

resulting in many powerful analytical techniques are available to the modern 

scientist. However, prior to the development of sophisticated computing 

machinery, only a small fraction of the differential equations of applied 

mathematics were accurately solved. Although a model equations based on 

established physical laws may be constructed, analytical tools frequently are 

inadequate for its solutions. Such a restriction makes impossible any long term 

predictions which might be sought. In order to achieve any solution it was 

necessary to simplify the differential equations, thus compromising the validity of 

the mathematical modeling which had been applied. 

 

Differential equation is an equation involving an unknown function and one or 

more of its derivatives. Differential equations can be classified either as ordinary 

or as partial. An ordinary differential equation (ODE) is a differential equation in 



which the function in question is a function of only one variable. A partial 

differential equation (PDE) is a differential equation in which the function of 

interest depends on two or more variables. Differential equations also are 

classified by their order. The order of a differential equation is simply the order of 

the highest order derivative explicitly appearing in the equation. 

 

Some mathematical problems are very difficult or impossible to solve 

analytically, therefore numerical methods are the only way to deal with these 

kinds of problems. Nearly every area of modern industry, science and engineering 

relies heavily on numerical methods to solve its problems.  

 

1.2 Numerical methods 

Since analytical methods are not adequate for finding accurate solutions to most 

differential equations, numerical methods are required. The ideal objective, in 

employing a numerical method, is to compute a solution of specified accuracy to 

the differential equation. Sometimes this is achieved by computing several 

solutions using a method which has known error characteristics. Rather than a 

mathematical formula, the numerical method yields a sequence of points close to 

the solution curve for the problem. Classical techniques sample the solution at 

equally spaced (in the independent variable) points but modern processes 

generally yield solutions at intervals depending on the control of truncation error. 

Of course, it is expected that these processes will be implemented on computers 

rather than being dependent on hand calculation. 
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Numerical methods for the solution of ordinary differential equations (ODEs) of 

initial value type are usually categorized as single step or multistep processes. The 

first method used information provided about the solution at a single initial point 

to yield an approximation to the solution at a new one. In contrast, multistep 

processes are based on a sequence of previous solution and derivative values. 

Each of these schemes has its advantages and disadvantages, and many 

practitioners prefer one or the other technique. Such a preference may arise from 

the requirements of the problem being solved. The general view is that different 

types of numerical processes should be matched to the user’s objectives. 

 

These is a common tendency for engineers and scientists employing numerical 

procedures to select an easy looking method on the grounds that it is 

mathematically consistent, and that raw computing power will deliver the 

appropriate results. This attitude is somewhat contradictory since the methods 

usually found in text books were developed many years ago when the most 

advanced computing machine available was dependent literally on manual power. 

The assumption that such processes can be efficient in modern circumstances is 

dangerously flawed and quite often it leads to hopelessly inaccurate solutions. A 

major aim of the present thesis is to present powerful, up-to-date, numerical 

methods for differential equations in a form which is accessible to non-specialists. 
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1.3 Runge-Kutta Methods 

In numerical analysis, the Runge–Kutta (RK) methods are an important family of 

implicit and explicit iterative methods for the approximation of solutions of 

ordinary differential equations. These techniques were developed around 1900 by 

the German mathematicians C. Runge and M.W. Kutta. The idea of generalizing 

the Euler method, by allowing for a number of evaluations of the derivative to 

take place in a step, is generally attributed to Runge (1895).  

 

Further contributions were made by Huen (1900), and by Kutta (1901). The latter 

completely characterized the set of RK methods of order 4, and proposed the first 

methods of order 5. Special methods for second-order differential equations were 

proposed by Nystrom (1925), who also contributed to the development of 

methods for first-order equations. It was not until the work of Huta (1957) that 

sixth-order methods were introduced. 

 

Then, Butcher (1963) did the advances in the development and simplification of 

RK error coefficients. It is very hard to find the error coefficients and local 

truncation error for higher order. So, Butcher introduced the convenient way to 

display the coefficients, known as Butcher array using Butcher’s order conditions. 

 

Since the advent of digital computers, fresh interest has been focused on RK 

methods, and a large number of research workers have contributed to recent 
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extensions to the theory, and to the development of particular methods. Although 

early studies were devoted entirely in explicit Runge-Kutta (ERK) methods, 

interest has now moved to include implicit methods, which have become 

recognized as appropriate for the solution of stiff differential equations. 

 

The general s-stage RK method for any initial value problems            

ሻݔᇱሺݕ                (1.1)                  ൌ  ݂൫ݕሺݔሻ൯,          ݕሺݔ଴ሻ ൌ ݂          ,଴ݕ  ׷  Թே  ื  Թே

௡ାଵ ൌ ௡ݕ  ൅  ݄ ∑ ܾ௜݇௜
௦
௜ୀଵ

௜ ൌ ݂൫ݔ௡ ൅ ܿ௜݄, ௡ݕ ൅ ݄ ∑ ܽ௜௝ ௝݇
௦
௝ୀଵ ൯,          ݅ ൌ 1,2, … , ݏ

௜ ൌ  ∑ ܽ௜௝
௦
௝ୀଵ  ,          ݅ ൌ 1,2, … , ݏ

ଵ ଵଵ          ܽଵଶ ଵ௦ܽ          ڮ          

ܿଶ ଶଵ          ܽଶଶ  ଶ௦ܽ          ڮ          

    ڭ                            ڭ               ڭ              ڭ                                          

ଵ           ܾଶ  ௦ܾ           ڮ            

is defined by 

ݕ                                                   (1.2) 

where  

   ݇ .  

We shall always assume that the row-sum condition holds; 

   ܿ .         (1.3) 

It is convenient to display the coefficients occurring in the general RK form, 

known as Butcher tableau; 

   ܿ            ܽ

          ܽ

               ܾ
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       ܣ               ܿ                                                            

        ்ܾ 

ݏ

ܿ ൌ  ሾܿଵ, ܿଶ, … , ܿ௦ሿ்,          ܾ ൌ  ሾܾଵ, ܾଶ, … , ܾ௦ሿ்,          ܣ ൌ  ൣܽ௜௝൧

If in (1.2) we have that ܽ௜௝ ൌ 0 for  ݆ ൒ ݅, ݅ ൌ 1,2, …  then each of  ݇௜ is given ,ݏ

explicitly in term of previously computed  ௝݇ , ݆ ൌ 1,2, … ݅ െ 1, and the method is 

then an explicit or classical RK method. If this is not the case then the method is 

implicit, and in general, it is necessary to solve at each step of the computation an 

implicit system for ݇௜. Summarizing, we have; 

Explicit method: 

            ܽ௜௝ ൌ 0,      ݆ ൒ ݅,      ݆ ൌ 1,2, … , ฻      ݏ  .strictly lower triangular ܣ

Semi-implicit method: 

            ܽ௜௝ ൌ 0,      ݆ ൐ ݅,      ݆ ൌ 1,2, … , ฻      ݏ  .lower triangular ܣ

Implicit method: 

            ܽ௜௝ ് 0 for some ݆ ൐ ݅       ฻  .not lower triangular ܣ

Diagonally implicit method: 

            ܽ௜௝ ൌ ݅ ݎ݋݂       ,ߛ  ൌ ݆,         ݅, ݆ ൌ 1,2, … ,  .ݏ

 

Clearly, an ݏ-stage RK method is completely specified by its Butcher’s tableau; 

 

and we define the ݏ-dimensional vectors ܿ and ܾ and the ݏ ൈ  matrix ܣ by 

 .            (1.4) 
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A remark that can be made about RK methods is that they constitute a clever and 

ேାଵ

, going to be affected by the behavior of 

neighbouring integral curves. RK methods deliberately try to gather information 

about this family of curves.  

.4 Ordinary Differential Equations 

t contains functions of only one 

independent variable, and one or more of its derivatives with respect to that 

variable. A simple example is Newton’s second law of motion, which leads to the 

differential equation 

݉
݀ଶݔሺݐሻ

ଶݐ݀

sensible idea. The unique solution of a well-posed initial value problem can be 

thought of as a single integral curve in Թ ; but, due to truncation and round-off 

error, any numerical solution is, in effect

 

1

In mathematics, an ODE is a relation tha

ൌ  ,ሻ൯ݐሺݔ൫ܨ

for the motion of a particle of mass ݉. In general, the force ܨ depends upon the 

position of the particle ݔሺݐሻ at time ݐ, and thus the unknown function ݔሺݐሻ appears 

on both sides of the differential equation, as is indicated in the notation  ܨሺݔሺݐሻሻ. 

ODEs are distinguished from partial differential equations (PDEs), which involve 

partial derivatives of several variables. ODEs arise in many different contexts 

 

including geometry, mechanics, astronomy and population modeling. Many 

famous mathematicians have studied differential equations and contributed to the 

7 
 



field, including Newton, Leibniz, the Bernoulli family, d’Alembert and Euler. 

Much study has been devoted to the solution of ODEs. In the case where the 

equation is linear, it can be solved by analytical methods. Unfortunately, most of 

the interesting differential equations are non-linear and with a few exceptions, 

cannot be solved exactly. 

 

1.4.1 Definitions 

Let ݕ be an unknown function 

ݕ ׷ Թ ื Թ 

in ݔ with ݕሺ௡ሻ the ݊௧௛ derivative of ݕ, then an equation of the form 

,ݔ൫ܨ ,ݕ ,ᇱݕ … , ሺ௡ିଵሻ൯ݕ ൌ  ሺ௡ሻݕ 

is called an ODE of order ݊; for vector valued function, 

ݕ ׷ Թ ื Թ௠ 

it is called a system of ODEs of dimension ݉. When a differential equation of 

order ݊ has the form 

ሺ௡

 differential equation whereas the form 

൫ܨ , ,ݕ ,ᇱݕ ,ᇱᇱݕ … , ሺ௡ିଵሻ൯ݕ ൌ  ሺ௡ሻݕ

,ݔ൫ܨ ,ݕ ,ᇱݕ ,ᇱᇱݕ … , ݕ ሻ൯ ൌ 0 

it is called an implicit

ݔ

is called an explicit differential equation.  
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