

UNIVERSITI PUTRA MALAYSIA

CHARACTERIZATION AND ANTIOXIDANT ACTIVITY OF PHENOLIC EXTRACTS FROM OIL PALM (*ELAEIS GUINEENSIS*) FRUITS

NEO YUN PING

FSTM 2009 1

CHARACTERIZATION AND ANTIOXIDANT ACTIVITY OF PHENOLIC EXTRACTS FROM OIL PALM (*ELAEIS GUINEENSIS*) FRUITS

By

NEO YUN PING

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

JANUARY 2009

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

CHARACTERIZATION AND ANTIOXIDANT ACTIVITY OF PHENOLIC EXTRACTS FROM OIL PALM (*ELAEIS GUINEENSIS*) FRUITS

By

NEO YUN PING

JANUARY 2009

Chair: Azis Ariffin, PhD

Faculty: Faculty of Food Science and Technology

The extracted oil palm fruit phenolics were analysed using spectrophotometry methods to obtain information on the different types of oil palm phenolics and their antioxidative activities. Different methods were used to extract soluble free (SFP), insoluble-bound (ISBP) and esterified (EFP) phenolics for a better understanding of the types of phenolics present. TPC, TFC, ODPI and DPPH of oil palm phenolics were also monitored to investigate the possible relationships between these variables and the degree of maturity/ripeness of the oil palm fruit from 16 to 24 weeks. The antioxidant activities of oil palm phenolic extracts were analysed using different antioxidant assays, namely the 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay, 2,2-diphenyl-2-picrylhydrazyl (DPPH) assay, the ferric-reducing ability (FRAP) assay, β -carotene bleaching assay (BCB) and the oxidative stability index (OSI). Results showed that oil palm phenolic extracts contained high

antioxidant activities in the order of ISBP > EFP > SFP. Eight different phenolic acids were identified and quantified using a simple reversed-phase high performance liquid chromatography (HPLC) with a diode array detector (DAD) and liquid chromatography/ tandem mass spectrometry (LC/MS/MS). Gallic, protocatechuic, *p*hydroxybenzoic, vanillic, caffeic, syringic, *p*-coumaric and ferulic acids were detected in oil palm phenolic extracts. Ferulic, *p*-hydroxybenzoic and *p*-coumaric acid were the dominant phenolic acids found in oil palm fruit extracts and ranged from 55 - 376 µg/g of DW. The results suggested the potent antioxidant activities of oil palm phenolic extracts and the presence of phenolic acids in palm fruits.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENCIRIAN DAN AKTIVITI ANTI-PENGOKSIDAAN EKSTRAK FENOLIK DARI BUAH KELAPA SAWIT (*ELAEIS GUINEENSIS*)

Oleh

NEO YUN PING

JANUARI 2009

Pengerusi: Azis Ariffin, PhD

Fakulti: Fakulti Sains dan Teknologi Makanan

Fenolik yang diekstrak dari buah kelapa sawit telah dianalisis dengan menggunakan kaedah spektrofotometer untuk mengenalpasti jenis sebatian fenolik dan aktiviti antipengoksidaannya. Pengekstrakkan fenolik buah kelapa sawit telah dijalani dengan menggunakan dua kaedah yang berbeza. Pembolehubah seperti TPC, TFC, ODPI dan DPPH telah dikaji bagi ekstrak fenolik buah kelapa sawit dari 16 ke 24 minggu untuk mengenalpasti hubungan di antara pembolehubah tersebut dengan kematangan buah kelapa sawit. Keputusannya menunjukkan bahawa tiada gaya tertentu yang dapat dikenalpasti antara pelbagai pembolehubah dan kematangan buah kelapa sawit. Aktiviti antipengoksidaan ekstrak buah kelapa sawit telah dijalankan dengan menggunakan beberapa kaedah seperti 2,2-azino-bis-3-etilbenzotiazolin-6-sulfonik (ABTS), 2,2-difenil-2-pikrahidrazil (DPPH), kemampuan penurunan ferric (FRAP), kemampuan pelunturan β-karotena (BCB) dan indeks kestabilan pengoksidaan (OSI).

Keputusan menunjukkan bahawa ekstrak fenolik bagi buah kelapa sawit mengandungi keupayaan antioksida yang tinggi dalam susunan ISBP >EFP > SFP. Lapan jenis asid fenolik yang berlainan telah dikenalpasti dengan menggunakan kromatografi cecair berprestasi tinggi jenis fasa terbalik yang ringkas dengan pengesan "diode array" (DAD) dan kromatografi cecair /spektrometri jisim (LC/MS/MS). Asid galik, protokatechuik, *p*-hidrosibenzoik, vanilik, kafeik, syringik, *p*-koumarik dan ferulik telah dikenalpasti dalam ekstrak buah kelapa sawit. Asid ferulik, *p*-hidrosibenzoik dan *p*-koumarik merupakan asid fenolik dominan dalam ekstrak buah kelapa sawit bernilai dari 55 - 376 μ g/g DW. Keputusan yang diperolehi mencadangkan aktiviti-aktiviti antipengoksidaan yang tinggi di dalam ekstrak buah kelapa sawit dan kehadiran asid fenolik di dalam buah kelapa sawit.

ACKNOWLEDGEMENTS

This study was funded under the Graduate Students' Assistantship Scheme (GSAS) program of Malaysian Palm Oil Board. All the experiments and analyses were carried out in the Chromatography Laboratory, Chemistry and Technology Building, Product Development and Advisory Services Department.

I am thoroughly grateful to Dr Tan Yew Ai from the Malaysian Palm Oil Board, supervisor of this thesis work, for her advice, assistance, patience and great support of my everyday work and for leading me into the fascinating world of oil palm research. This thesis would not be completed without her help. I am also grateful to both my supervisors in Universiti Putra Malaysia, Assoc. Prof. Dr Azis Ariffin and Dr Tan Chin Ping for their constant guidance, extremely valuable advice and words of encouragement throughout this study.

A note of thanks should also go to Mr Yeoh Chee Beng from the Analytical Research Group for providing technical support and assistance. Thank you for facilitating all the technical and laboratory needs from time to time. I am grateful to our Head of Unit, Dr Chong Chiew Let for his constructive comments and opportunities provided. Dr Boo Huey Chern, thank you so much for all the statistical support.

Not forget to express my appreciation towards my all colleagues from Chromatography Lab, Malaysian Palm Oil Board, especially Mei Huey, Sofian, Kak Wan, Kak Nik, Kak Nani, Kak Liza, Kak Ilah, Kak Ainie, Farah, Noorlin, Putri, Sook Kuen, Mr Tan, Chiou Mei, En Razali and those who were accidentally left out, for great working atmosphere.

I would like to thank all my friends and seniors, especially Choon Hui, Amanda, Jeanne, Hwee Mien, Tiger, and Sung Tung for sharing with me all the pain and joy.

Last but definitely not least, a big thank you to all my family members, mum, dad, Zi and Boy. This thesis is dedicated to you. Thank you for being so supportive, I LOVE YOU!

Yun Ping a.k.a Neo

I certify that an Examination Committee has met on 23 JANUARY 2009 to conduct the final examination of NEO YUN PING on her MASTER OF SCIENCE thesis entitled "CHARACTERIZATION AND ANTIOXIDANT ACTIVITY OF PHENOLIC EXTRACTS FROM OIL PALM (ELAEIS GUINEENSIS) FRUITS " in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the (Name of relevant degree).

Members of the Examination Committee were as follows:

Abdulkarim Sabo Mohammed, PhD

Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Azizah Abdul Hamid, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal examiner)

Faridah Abas, PhD

Faculty of Food Science and Technology Universiti Putra Malaysia (Internal examiner)

Mustafa Ali Mohd, PhD

Professor Faculty of Medicine University of Malaya (External examiner)

HASANAH MOHD. GHAZALI. PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Azis Ariffin, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Tan Chin Ping, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

Tan Yew Ai, PhD

Principal Research Officer Analytical and Quality Development Unit Malaysian Palm Oil Board (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NEO YUN PING

Date: 23rd January 2009

TABLE OF CONTENTS

ABSTRACT ABSTRAK ACKNOWLEDGEMENTS APPROVAL DECLARATION LIST OF TABLES LIST OF FIGURES LIST OF APPENDICES LIST OF ABBREVIATIONS LIST OF SYMBOLS			ii iv vi viii x xiv xvi xvi xvi xviii xix xxii
	PTER	DODUCTION	1
1	LITI	ERATURE REVIEW	4
	2.1	Palm fruit nutrition and chemistry	4
	2.2	Chemistry of phenolic compounds	5
		2.2.1 Phenolic acids	8
		2.2.2 Flavonoids	10
		2.2.3 Tannins	11
		2.2.4 Tocols	13
	2.3	Phenolic compounds in oilseeds	14
		2.3.1 Coconut	14
		2.3.2 Rapeseed	14
		2.3.3 Soybeans	16
		2.3.4 Olive	17
		2.3.5 Flaxseed	19
		2.3.6 Evening primrose 2.3.7 Other oilseeds	19 20
	2 /	Dhanalia compounds at different stages of	
	∠.4	maturity	20

	2.5	Antioxidant activity of food phenolics	22
		2.5.1 In vitro antioxidant capacity assays	24
		2.5.2 Phenolic acids, flavonoids and their	
		antioxidant activities	27
	2.6	Analysis and quantification of phenolic	
		compounds	30
		2.6.1 Extraction procedures	30
		2.6.2 Spectrophotometric assays	33
		2.6.3 Liquid Chromatography techniques	36
3	МАТ	'ERIALS AND METHODS	39
			0,2
	3.1	Chemicals and apparatus	39
	3.2	Sample preparation	40
	3.3	Isolation of soluble free (SFP) phenolic	
		compounds	40
	3.4	Isolation of esterified (EFP) phenolic compounds	42
	3.5	Isolation of insoluble - bound (ISBP) phenolic	
		compounds	43
	3.6	Extraction of total phenolic compounds (TPE)	
		from oil palm fruit	44
	3.7	UV measurement of phenolic compounds	44
		3.7.1 Determination of phenol index (PI)	44
		3.7.2 Determination of flavonol index (FI)	45
		3.7.3 Determination of hydroxycinnamic acid	
		index (HCAI)	45
		3.7.4 Determination of <i>o</i> -diphenol index (ODPI)	45
	3.8	Determination of total phenolic content (TPC)	46
	3.9	Determination of total flavonoid content (TFC)	46
	3.10	Sampling for fresh fruit bunches of different	
		maturity	46
	3.11	Determination of antioxidant capacities of palm	
		phenolic compounds	47
		3.11.1 β –carotene -linoleic acid bleaching assay	
		(BCB)	47
		3.11.2 Oxidative stability index (OSI)	48
		3.11.3 Radical scavenging activities	49
	3.12	Purification of phenolic acids	51
	3.13	Liquid chromatography analysis of phenolic acids	52
	3.14	Statistical analysis	53

4	RESU	ULTS AND DISCUSSION	54
	4.1	Extraction of oil palm phenolics	54
	4.2	Indices for determining oil palm phenolics	55
	4.3	TPC, TFC and DPPH values of oil palm phenolics	59
	4.4	Differences between SFP, ISBP, EFP and TPE	62
	4.5	TPC at different stages of maturity	63
	4.6	DPPH values at different stages of maturity	65
	4.7	TFC at different stages of maturity	65
	4.8	ODPI at different stages of maturity	67
	4.9	BCB and OSI values of oil palm fruit extracts	68
	4.10	Radical scavenging values of oil palm fruit extracts	71
	4.11	Antioxidant activities of oil palm fruit extracts	74
	4.12	Liquid chromatography analysis of phenolic acids	75
	4.13	Oil palm phenolic acids content	83
	4.14	LC-MSMS data of oil palm phenolic acids	88
5	SUM	MARY, CONCLUSION AND RECOMMENDATION	91
RE	FERENC	CES / BIBLIOGRAPHY	94
AP	PENDIC	ES	104

APPENDICES	104
BIODATA OF STUDENT	123
LIST OF PUBLICATIONS	124

LIST OF TABLES

Table		Page
1	Main classes of phenolic compounds	7
2	Total phenolic acids in some oilseed flours	15
3	The main phenolic compounds of olive fruit	18
4	Common in vitro antioxidant capacity assays	25
5	Choices of solvents in the extraction of polyphenolics	31
6	UV absorption patterns of various phenolic compounds	35
7	Summary of some HPLC procedures for the determination of phenolic compounds in foods	38
8	Total phenolic content, total flavonoid content and anti -oxidant activities of the soluble free (SFP), insoluble-bound (ISBP), esterified (EFP) and total phenolic extracts (TPE) of ripe palm fruit	61
9	Antioxidant activities of the oil palm fruit extracts using oxidative stability index (OSI) method	70
10	TPC, DPPH, ABTS and FRAP assays of soluble free (SFP), insoluble-bound (ISBP), and esterified fraction (EFP) of ripe palm fruit	72
11	Retention time for the identified phenolic acids	77
12	Linear regression equations of calibration graphs for the eight phenolic acids	78
13	Detection limits (LODs) and quantitation limits (LOQs) of the eight phenolic acids	79
14	Intraday repeatability of quantitative data for the eight phenolic acids	80
15	Interday reproducibility of quantitative data for the eight phenolic acids	81

16	Recovery of the eight phenolic acids after purification using solid phase extraction (SPE)	82
17	Content of phenolic acids in oil palm fruit extracts determined by HPLC analysis	86
18	ESI MS/MS data for phenolic acids in oil palm fruit extracts	90

LIST OF FIGURES

Figur	2	Page
1	Chemical structure of phenolic acids	9
2	Basic structure of a flavonoid molecule	10
3	Structure of condensed tannin	11
4	Structure of hydrolyzable tannin	12
5	Structure of tocopherols and tocotrienols	13
6	Structure of quercetin ,rutin, luteolin and cyanidin	29
7	Isolation of soluble free (SFP) phenolic compounds	41
8	Isolation of esterified (EFP) phenolic compounds	42
9	Isolation of insoluble bound (ISBP) phenolic compounds	43
10	UV/Vis spectra of soluble free, insoluble-bound, esterified and phenolic extracts of ripe palm fruit	55
11	Phenol indices of soluble free (SFP), insoluble-bound (ISBP), esterified (EFP) and total phenolic extracts (TPE) of ripe palm fruit	57
12	Flavonol indices of soluble free (SFP), insoluble-bound (ISBP), esterified (EFP) and total phenolic extracts (TPE) of ripe palm fruit	57
13	Hydroxycinnamic acid indices of soluble free (SFP), insoluble - bound (ISBP), esterified (EFP) and total phenolic extracts (TPE) of the ripe palm fruit	58
14	<i>o</i> -diphenol indices of soluble free (SFP), insoluble-bound (ISBP), esterified (EFP) and total phenolic extracts (TPE) of ripe palm fruit	58
15	Total phenolic content of soluble free (SFP), insoluble-bound (ISBP), esterified (EFP) extracts of oil palm fruit at different stages of maturity	64
16	Total flavonoid content of soluble free (SFP), insoluble-bound	

	(ISBP), esterified (EFP) extracts of oil palm fruit at different stages of maturity	66
17	<i>o</i> -diphenol indices of soluble free (SFP), insoluble-bound (ISBP), esterified (EFP) extracts of oil palm fruit at different stages of maturity	66
18	Antioxidant activities of soluble free (SFP), insoluble - bound (ISBP), esterified (EFP) extracts of oil palm fruit at different stages of maturity as measured by DPPH	67
19	Antioxidant activities of soluble free (SFP), insoluble - bound (ISBP), esterified (EFP) extracts of oil palm fruit using β -carotene-linoleic acid bleaching assay	69
20	The overlay view of HPLC representative HPLC separations of a mixture of phenolic acids standards	76
21	Representative HPLC separations of phenolic acids from oil palm fruit extracts	83

LIST OF APPENDICES

Apper	Appendix	
A	Representative UPLC separations of a mixture of phenolic standards and phenolic extracts from oil palm fruit mesocarp	105
В	LC ESI /MS/MS of phenolic acids standards (200 mg/L)	107
C	Single ion monitoring (SIM) of phenolic acid standards	108
D	LC ESI /MS/MS of soluble free phenolics (SFP) in oil palm fruit extracts	111
Ε	Single ion monitoring (SIM) of soluble free phenolics (SFP) in oil palm fruit extracts	112
F	LC ESI /MS/MS of insoluble bound phenolics (ISBP) in oil palm fruit extracts	115
G	Single ion monitoring (SIM) of insoluble bound phenolics (ISBP) in oil palm fruit extracts	116
Н	LC ESI /MS/MS of esterified phenolics (EFP) in oil palm fruit extracts	119
Ι	Single ion monitoring (SIM) of esterified phenolics (EFP) in oil palm fruit extracts	120

LIST OF ABBREVIATIONS

Α	absorbance
ABTS	2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid
ANOVA	analysis of variance
BCB	β -carotene-linoleic acid bleaching assay
BHA	butylated hydroxyanisole
CE	(+)-Catechin Equivalents
СРО	crude palm oil
DAD	photodiode array detector
DE-EA	diethyl ether: ethyl acetate
DPPH	2,2-diphenyl-2-picrylhydrazyl
DW	dry weight
EC	end-capped
EFP	esterified phenolics
ESI	electrospray ionization
ET	electron transfer
FAE	Ferulic Acid Equivalent
FI	flavonol index
FRAP	ferric ion reducing antioxidant parameter
GAE	Gallic Acid Equivalent
GC	gas chromatography
НАТ	hydrogen atom transfer

HCAI	hydroxycinnamic acid index
HPLC	high performance liquid chromatography
ISBP	insoluble-bound phenolics
LC	liquid chromatography
LOD	detection limit
LOQ	quantitation limit
MS	mass spectra
NBDPO	neutralized bleached deodorized palm oil
OIV	Office International de la Vigne et du Vine
ODPI	o-diphenol index
ORAC	oxygen radical absorbance capacity
OSI	oxidative stability index
PI	phenol index
POME	palm oil mill effluent
RBDPO	refined bleached deodorized palm oil
RE	Rutin Equivalents
RSD	relative standard deviation
SAR	structure-activity relationships
SD	standard deviation
SFP	soluble free phenolics
SPE	solid phase extraction
TEAC	Trolox Equivalent Antioxidant Capacity
TFC	total flavonoid content

- TPC total phenolic content
- TPE total phenolic extracts
- TPTZ 2,4,6-tris-2,4,6-tripyridyl-2-triazine
- TRAP total radical trapping antioxidant parameter
- Trolox 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid

LIST OF SYMBOLS

AH	primary antioxidant
AlCl ₃ .6H ₂ O	aluminium chloride
cm	centimetre
e	electron
Fe ²⁺	ferrous cation
Fe ³⁺	ferric cation
FeCl ₃ .6H ₂ O	ferric chloride
Fe ²⁺ -TPTZ	ferrous tripyridyltriazine
Fe ³⁺ -TPTZ	ferric tripyridyltriazine
g	gram
hr	hour
H·	hydroxyl radical
HC1	hydrochloric acid
i.d.	internal diameter
L	litre
kg	kilogram
Μ	molar
mg	milligram
min	minute
mL	milliliter
mM	millimolar

Ν	normality
NaOH	sodium hydroxide
NaNO ₂	sodium nitrite
nm	nanometre
O ₂	oxygen
R∙	alkyl radical
RH	unsaturated fatty acid
ROO [.]	peroxyl radical
ROOH	lipid hydroperoxide
rpm	rotations per minute
PP·	phenoxyl radical
РРН	phenolic antioxidants
ppm	parts per million
v/v	volume/volume (ratio)
°C	degree Celsius
μg	microgram
μL	microlitre
μΜ	micromolar

1 INTRODUCTION

Oil palm belongs to the genus *Elaeis*. It is a monocotyledon perennial tree crop of the order Spodiciflorae, Palmae family grouped under the Cocoineae tribe. The genus consists of two species, namely *Elaeis guineensis* and *Elaeis oleifera*. *Elaeis guineensis* originated from West Africa whilst *Elaeis oleifera* is from South America. For some 5000 years oil palm has been an important crop for mankind. *Elaeis guineensis* being almost non-existent in the 1950s, has now become the largest cultivated crop in Malaysia and plays a significant role in the socio-economic well being of the country. Currently, South-East Asia, particularly Malaysia and Indonesia are the world's largest producers of palm oil (Malaysian Palm Oil Council, 2009). In 1960 the total planted area of oil palm in Malaysia was 54.700 hectares but by 2007, this has increased to 4.3 million hectares. Prices of all oil palm products registered significant gains and export earnings and increased 41.8% to a record RM 45.1 billion (Malaysian Palm Oil Board, 2008).

Climatic conditions in Malaysia, with a tropical humid climate with temperatures ranging from 24- 32 °C throughout the year, are ideally suited for the cultivation of oil palm. The cross between *Dura* and *Pisifera* known as *Tenera* is the most common planted oil palm cultivar. The oil palm is unique because it produces two types of oil. Palm oil is produced from the pulp (mesocarp) of the fruit and the kernel of the fruit produces palm kernel oil. The mesocarp is fibrous and the kernel has a slight cavity in the center. The oil palm fruit is a drupe varying in shape (from spherical to ovoid

