

UNIVERSITI PUTRA MALAYSIA

PHOTOELECTROCATALYTIC DEGRADATION OF DYES BY TITANIUM DIOXIDE THIN FILMS PREPARED VIA THERMAL OXIDATION AND ELECTRODEPOSITION

ALVIN CHONG JING KAI

FS 2009 17

PHOTOELECTROCATALYTIC DEGRADATION OF DYES BY TITANIUM DIOXIDE THIN FILMS PREPARED VIA THERMAL OXIDATION AND ELECTRODEPOSITION

ALVIN CHONG JING KAI

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2009

PHOTOELECTROCATALYTIC DEGRADATION OF DYES BY TITANIUM DIOXIDE THIN FILMS PREPARED VIA THERMAL OXIDATION AND ELECTRODEPOSITION

ALVIN CHONG JING KAI

MASTER OF SCIENCE

2009

PHOTOELECTROCATALYTIC DEGRADATION OF DYES BY TITANIUM DIOXIDE THIN FILMS PREPARED VIA THERMAL OXIDATION AND ELECTRODEPOSITION

By

ALVIN CHONG JING KAI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the degree of Master of Science

May 2009

DEDICATION

I would like to dedicate my work to my beloved parents, brother, sister and also my girlfriend for their support to carry out my Master Degree study.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

PHOTOELECTROCATALYTIC DEGRADATION OF DYES BY TITANIUM DIOXIDE THIN FILMS PREPARED VIA THERMAL OXIDATION AND ELECTRODEPOSITION

By

ALVIN CHONG JING KAI

May 2009

Chairman:Professor Zulkarnain Zainal, Ph.DFaculty:Science

Titanium dioxide (TiO₂) thin film electrodes were prepared using two techniques which were cathodic electrodeposition and thermal oxidization of titanium plates. The characteristic of TiO₂ electrodes were analysed using X-Ray Diffractometry (XRD), Field Emission Scanning Electron Microscopy (FESEM) and UV/Vis Spectroscopy. TiO₂ anatase and rutile phase structure was found in electrodeposition TiO₂ thin film after heat treatment whereas only rutile phase was observed for thermal oxidation TiO₂ thin film. Electrodeposited and thermally oxidized TiO₂ electrodes showed the highest photosensitivity after calcination at 600 °C and 700 °C respectively when analysed using Linear Sweep Photovoltammetry (LSPV) technique.

Photoelectrochemical degradation of dyes was carried out in a 3 electrode system reactor where the working electrode was TiO_2 thin film under illumination of a light source for 2 hours. The removal of dyes was investigated by monitoring dyes decolourisation rates using UV/Vis Spectroscopy. The photoelectrochemical degradation studies of Chicago Sky Blue 6B (CSB) dye was studied varying the initial

iii

dye concentrations, applied potentials and supporting electrolytes. The effect of repeated usage, light sources and changing removal methods were also examined.

Photoelectrocatalytic degradation system for both TiO_2 thin film electrodes achieved better removal of CSB dye than in photocatalytic system. Thermal oxidized TiO_2 electrode gave faster removal rate compared to electrodeposited TiO_2 electrode in photoelectrocatalytic degradation of CSB dye. The removal of CSB increased with the increased of external applied potential from 0 V to 1.5 V versus Ag/AgCl reference electrode in both TiO_2 thin film electrodes. The kinetic data at different applied potential fitted well to first-order kinetic model.

TiO₂ thin film electrodes showed its best photoelectrocatalytic degradation under illumination of UV light. The removal percentages of 5 times repeated usage for thermal oxidized TiO₂ electrode showed insignificant differences. However, the removal percentages of CSB decreased when electrodeposited TiO₂ electrode was used repeatedly for 5 times. The photoelectrocatalytic removal efficiency of CSB was compared with two different dyes which are Methyl Orange (MO) and Methylene Blue (MB). The removal of MO was higher than in CSB whereas the removal of MB was the lowest for both TiO₂ electrodes.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

DEGRADASI FOTOELEKTROMANGKINAN PEWARNA MENGGUNAKAN FILEM NIPIS TITANIUM DIOKSIDA YANG DISEDIAKAN MELALUI PENGOKSIDAAN TERMA DAN PENGELEKTROENAPAN

Oleh

ALVIN CHONG JING KAI

May 2009

Pengerusi: Profesor Zulkarnain bin Zainal, Ph.D

Fakulti: Sains

Elektrod filem nipis titanium dioksida (TiO₂) telah disediakan dengan dua teknik iaitu pengelektroenapan katod dan pengoksidaan terma kepingan titanium. Ciri-ciri elektrod TiO₂ telah dianalisis menggunakan Pembelauan Sinar-X (XRD), Mikroskop Pengimbasan Elektron Pancaran Medan (FESEM) dan Spektroskopi Ultra Lembayung Nampak (UV/Vis). Filem nipis TiO₂ daripada pengelektroenapan didapati berfasa anatase dan rutil selepas rawatan haba manakala hanya fasa rutil telah diperolehi bagi sampel yang disediakan melalui kaedah pengoksidaan terma. Elektrod TiO₂ dengan kaedah pengoksidaan terma dan pengelektroenapan masing-masing menunjukkan kefotopekaan yang tertinggi selepas masing-masing dipanaskan pada suhu 600 °C dan 700 °C apabila dianalisis menggunakan Fotovoltammetri Pengimbasan Linear.

Penyingkiran fotoelektrokimia pewarna telah dijalankan dengan sistem reaktor 3 elektrod di mana elektrod kerja adalah filem nipis TiO₂ yang disinari dengan satu punca cahaya selama 2 jam. Penyingkiran pewarna telah diselidik melalui penilaian pelunturan warna menggunakan Spektroskopi Ultra Lembayung Cahaya Nampak. Kajian telah dijalankan terhadap Chicago Sky Blue 6B (CSB) dengan mengubah

kepekatan awal pewarna, keupayaan elektrik dan elektrolit penyokong. Kesan ulangan penggunaan, sumber cahaya dan sistem penyinkiran juga telah diselidik.

Sistem fotoelektromangkinan bagi kedua-dua jenis elektrod filem nipis TiO₂ memberi penyingkiran pewarna CSB yang lebih baik daripada dalam sistem fotomangkinan. Elektrod TiO₂ pengoksida terma memberi kadar penyingkiran yang lebih cepat berbanding dengan elektrod TiO₂ elektroenapan. Penyingkiran CSB bertambah dengan bertambahnya keupayaan luar yang diaplikasi dari 0 V ke 1.5 V dibanding dengan elektrod rujukan Ag/AgCl bagi kedua-dua jenis elektrod filem nipis TiO₂. Data kinetik pada keupayaan luar yang berbeza mematuhi model kinetik pertama.

Elektrod filem nipis TiO₂ menunjukkan penyingkiran fotoelektromangkinan terbaik dibawah sinaran cahaya ultra lembayung. Peratus penyingkiran bagi elektrod TiO₂ pengoksida terma dengan penggunaan 5 kali berturut-turut tidak menunjukkan perbezaan penyingkiran yang ketara. Bagaimanapun, peratus penyingkiran CSB berkurangan apabila TiO₂ yang dielektroenapan digunakan 5 kali berturut-turut. Kecekapan penyingkiran fotoelektromangkinan CSB dibandingkan dengan dua pewarna yang berlainan iaitu Metil Jingga (MO) dan Metilena Biru (MB). Penyingkiran MO lebih tinggi berbanding dengan CSB manakala penyingkiran MB adalah yang terendah pada kedua-dua elektrod TiO₂.

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere gratitude and heartfelt thanks to my project supervisor, Professor Dr. Zulkarnain Zainal for his extraordinary patience, kindness, invaluable guidance, constructive criticisms, advice, continuous supervision and suggestion throughout the duration of the study. My appreciation also goes to my co-supervisor, Associate Professor Dr. Abdul Halim Abdullah for the advice and consistent support throughout the completion of this thesis. I wish to thanks to all my lab mates especially Chee Siong, Sook Keng and Sook Liang who help me a lot in my Master research.

I would like to thank my family members for their unconditional support, patience and help in ensuring me to have a comfortable atmosphere to write my thesis. Thanks to my mother again for the delicious and healthy food that you cook for your son.

Lastly, to my beloved girlfriend, Guat Eng who always been a source of inspiration and strength throughout my study. Thank you for your love, support and understanding whenever I need it.

I certify that an Examination Committee met on 12th May 2009 to conduct the final examination of Alvin Chong Jing Kai on his Master of Science thesis entitled "Photoelectrocatalytic degradation of dyes by titanium dioxide thin films prepared via thermal oxidation and electrodeposition" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination are as follows:

Anuar Kassim, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Mohd Zobir Hussein, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

Tan Wee Tee, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

Musa Ahmad, PhD

Professor Faculty of Science and Technology Universiti Kebangsaan Malaysia (External Examiner)

BUJANG KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Zulkarnain Zainal, PhD

Professor Department of Chemistry Faculty of Science Universiti Putra Malaysia (Chairman)

Abdul Halim Abdullah, PhD

Associate Professor Department of Chemistry Faculty of Science Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 17 July 2009

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

ALVIN CHONG JING KAI

Date:

Х

TABLE OF CONTENTS

PageDEDICATIONiiiABSTRACTiiiABSTRAKvACKNOWLEDGEMENTSvACKNOWLEDGEMENTSvDECLARATIONvDECLARATIONxLIST OF TABLESxLIST OF FIGURESxLIST OF ABBREVIATIONS AND SYMBOLSx			Page ii vv vii viii x xiii xiv xxi
CHAI	PTER		
1	INTR	ODUCTION	1
	1.1	Objectives	4
2	LITE	RATURE REVIEW	5
	2.1	Theory of Semiconductor	5
	2.2	The Semiconductor-Electrolyte Interface	8
	2.3	Properties of Titanium Dioxide	13
		2.3.1 Structural Properties	14
		2.3.2 Optical Properties	16
	2.4	Titanium as Supporting Materials	17
	2.5	Preparation of Titanium Dioxide Thin Films	18
		2.5.1 Preparation of Titanium Dioxide by Thermal Oxidation	19
		2.5.2 Preparation of Titanium Dioxide by Electrodeposition	20
	2.6	Photodegradation Process on Titanium Dioxide	21
	2.7	Photoelectrocatalysis of TiO ₂ Semiconductor	22
	2.8	Effect of Various Removal Conditions using TiO ₂ Electrode	24
	2.9	Electrochemical Studies	25
		2.9.1 Voltammetry	25
		2.9.2 Chronoamperometry	27
	2.10	Properties of Dyes	27
	2.11	Kinetic Study	28
3	MET	HODOLOGY	30
	3.1	Preparation of Titanium Dioxide by Thermal Oxidation	30
	3.2	Preparation of Electrodeposition Bath	30
	3.3	Preparation of Titanium Dioxide by Electrodeposition	31
	3.4	Preparation of Dyes Solution	32
	3.5	Determination of Wavelength at Maximum Absorption	32
		(λ_{max}) and Construction of Standard Calibration Curve of Dye	
	3.6	Characterization of Titanium Dioxide Thin Films	33
		3.6.1 Field Emission Scanning Electron Microscopy (FESEM)	33
		3.6.2 X-Ray Diffractometry (XRD) Analysis	33

		3.6.3 Diffuse Reflectance Study	33
		3.6.4 Voltammetry Studies	34
	3.7	Photoelectrocatalytic Removal of Chicago Sky Blue 6B	35
		3.7.1 Effect of Calcination Temperature	36
		3.7.2 Effect of Various Removal Method	36
		3.7.3 Effect of Applied Voltage	37
		3.7.4 Effect of Initial Concentration	37
		3.7.5 Effect of Supporting Electrolyte	37
		3.7.6 Effect of Different Light Source	37
		3.7.7 Effect of Repeated Usage	38
	3.8	Photoelectrocatalytic removal of Methyl Orange and Methylene Blue	38
4	RESU	JLTS AND DISCUSSION	39
	4.1	Preparation of Titanium Dioxide Thin Film Electrodes	39
	4.2	Surface Morphology of Titanium Dioxide Thin Film Electrodes	42
	4.3	EDX Analysis	46
	4.4	X-Ray Diffractometry Studies	49
	4.5	Optical Study	53
	4.6	Electrochemical Characteristic	55
	4.7	Effect of Calcination Temperature	58
	4.8	Effect of Various Removal Method	61
	4.9	Effect of Applied Voltage	68
		4.9.1 Kinetic Order of Photoelectrocatalytic Removal of CSB	72
	4.10	Effect of Initial Concentration	77
	4.11	Effect of Supporting Electrolyte	84
		4.11.1 Effect of Anions	84
		4.11.2 Effect of Cations	92
	4.12	Effect of Light Source	97
	4.13	Effect of Repeated Usage	103
	4.14	Photoelectrocatalytic Removal of Methyl Orange and Methylene Blue	108
5	CONCL	USION AND RECOMMENDATIONS	114
	5.10	Conclusion	114
	5.11	Recommendations	116
RF	FERENC	ES	119
AP	PENDIC	ES	127
BIODATA OF THE STUDENT 13			138

LIST OF TABLES

Table		Page
2.1	Crystallographic properties of rutile and anatase.	15
4.1	Atomic percent of Ti and O element in TiO ₂ thin films.	49
4.2	Comparison of d (Å) values for TO-TiO ₂ and ETiO ₂ C with standard JCPDS.	52
4.3	Percentage of rutile phase and crystallite size of each phase in $TO-TiO_2$ and $ETiO_2C$ electrodes.	52
4.4	The Langmuir-Hishelwood first order kinetic parameters for the effect of applied potential in TO7-TiO ₂ and ETIO ₂ C6 electrodes.	75
4.5	The Langmuir-Hishelwood first order kinetic parameters for the effect of initial dye concentration by TO7-TiO ₂ and ETIO ₂ C6 electrodes.	79
4.6	The Langmuir-Hishelwood first order kinetic parameters for the repeated usage for $TO7-TiO_2$ and $ETIO_2C6$ electrodes.	107

LIST OF FIGURES

Figure		Page
2.1	Change in the electronic structure of a semiconductor compound as the number N of monomeric units present increases from unity to clusters of more than 2000.	5
2.2	Band structure of a dielectric, semiconductor and metal. The shaded regions represent energy level filled with electrons.	6
2.3	Energy band of n-type (a) and p-type (b) semiconductor lattices.	7
2.4	Relative dispositions of various semiconductor band edge positions shown both on the vacuum scale and with respect to the SHE reference in aqueous medium of $pH \sim 1$.	8
2.5	Energy levels in a semiconductor (left-hand side) and a redox electrolyte (right-hand side) shown on a common vacuum reference scale. χ and \emptyset are the semiconductor electron affinity and work function, respectively.	9
2.6	The formation of a junction between an n-type semiconductor and a solution containing a redox couple O/R (a) before contact in the dark, (b) after contact in the dark and electrostatic equilibration and (c) junction under irradiation.	10
2.7	A schematic representation of different types of PEC cells; (a) photovoltaic cell, (b) photoelectrolytic cell and (c) photocatalytic cell.	11
2.8	Typical correlations between electronic energy states in semiconductors and redox electrolytes.	12
2.9	Energy diagram for the semiconductor-electrolyte interface at equilibrium for different concentrations.	13
2.10	Structure of rutile TiO ₂ .	14
2.11	Structure of anatase TiO ₂ .	14
2.12	View of hydroxylation of the (001) surface of anatase TiO2 via dissociation of water on surface adsorption. Note the two distinct OH surface groups.	16
2.13	Direct and indirect energy band transition in semiconductor.	17
2.14	Illustration of the major processes occurring on a semiconductor particle following electronic excitation.	22

2.15	Energy scheme depicting a photoelectrochemical cell containing a photoanode and a metal counter electrode during the process of energy conversion.	23
2.16	Potential-time excitation signal in linear sweep voltammetry and cyclic voltammetry experiment.	26
2.17	Typical (a) linear sweep voltammetry and (b) cyclic voltammogram for a reversible single electron transfer reaction.	26
2.18	Current versus time response in chronoamperometric experiment.	27
3.1	The three electrode system for electrodeposition process.	31
3.2	Experiment set up for the photoelectrochemical cell.	35
4.1	Cyclic voltammogram of Ti plate in 50 mL of 0.02 M hydrolyzed TiCl ₄ , 0.03 M H_2O_2 and 0.10 M KNO ₃ solution.	40
4.2	Current-time curve for electrodeposition of peroxotitanium hydrate onto Ti plate in 50 mL of 0.02 M hydrolyzed TiCl ₄ , 0.03 M H_2O_2 and 0.10 M KNO ₃ solution. Inset shows the amplified image of the curve for the first 40 s.	41
4.3	FESEM micrographs of Ti plate with 15000 x magnification.	42
4.4	FESEM micrographs of TO7-TiO ₂ with (a) 15000 x magnification and (b)100000 x magnification.	43
4.5	FESEM micrographs of ETiOP thin film with 15000 x magnification.	44
4.6	FESEM micrographs of $ETiO_2C6$ with (a) 15000 x magnification and (b) 100000 x magnification.	45
4.7	EDX analysis for (a) Ti plate, (b) TO7-TiO ₂ , (c) ETiOP and (d) ETiO ₂ C6.	47
4.8	XRD patterns of TO-TiO ₂ thin film electrodes at various calcination temperatures.	50
4.9	XRD patterns of $ETiO_2C$ thin film electrodes at various calcination temperatures.	51
4.10	UV-Vis absorbance spectra of $TO-TiO_2$ thin film electrodes at various calcination temperatures.	53
4.11	UV-Vis absorbance spectra of $ETiO_2C$ thin film electrodes at various calcination temperatures.	54

4.12	Current-potential curves for TO-TiO ₂ thin film electrodes at various calcination temperatures in CSB under illumination. [Conditions: 300 W halogen lamp and 124 mL of 10 ppm CSB containing 0.1 M KCl]	56
4.13	Current-potential curves for ETiO ₂ C thin film electrodes at various calcination temperatures in CSB under illumination. [Conditions: 300 W halogen lamp and 124 mL of 10 ppm CSB containing 0.1 M KCl]	56
4.14	Photocurrent-potential curve obtained for TO7-TiO ₂ and ETiO ₂ C6 thin film electrodes in CSB under intermittent illumination. [Conditions: 300 W halogen lamp and 124 mL of 10 ppm CSB containing 0.1 M KCl]	57
4.15	Effect of photoelectrocatalytic degradation of CSB by TO-TiO ₂ at various calcination temperatures under illumination of light. [Conditions: 300 W halogen lamp, 1 V and 124 mL of 10 ppm CSB containing 0.1 M KCl]	59
4.16	Effect of photoelectrocatalytic degradation of CSB by ETiO ₂ C at various calcination temperatures under illumination of light. [Conditions: 300 W halogen lamp, 1 V and 124 mL of 10 ppm CSB containing 0.1 M KCl]	60
4.17	Effect of different removal method in CSB by TO7-TiO ₂ electrode. [Conditions: 124 mL of 10 ppm CSB containing 0.1 M KCl]	62
4.18	Effect of different removal method in CSB by ETiO ₂ C6 electrode. [Conditions: 124 mL of 10 ppm CSB containing 0.1 M KCl]	63
4.19	Removal percentage of 10 ppm CSB in various method by $TO7-TiO_2$ and $ETiO_2C6$ electrodes.	65
4.20	Effect of applied potential in CSB removal by TO7-TiO ₂ electrode under illumination of light. [Conditions: 300 W halogen lamp and 124 mL of 10 ppm CSB containing 0.1 M KCl]	69
4.21	Graph of the photocurrent versus time at various applied potentials by TO7-TiO ₂ electrode in CSB under illumination of light. [Conditions: 300 W halogen lamp and 124 mL of 10 ppm CSB containing 0.1 M KCl]	70
4.22	Effect of applied potential in CSB removal by ETiO ₂ C6 electrode under illumination of light. [Conditions: 300 W halogen lamp and 124 mL of 10 ppm CSB containing 0.1 M KCl]	71

4.23	Graph of the photocurrent versus time at various applied potentials by ETiO ₂ C6 electrode in CSB under illumination of light. [Conditions: 300 W halogen lamp and 124 mL of 10 ppm CSB containing 0.1 M KCl]	72
4.24	Graph ln C/C ₀ versus time for the effect of applied potential by TO7-TiO ₂ electrode in CSB under illumination of light.	73
4.25	Graph ln C/C ₀ versus time for the effect of applied potential by $ETiO_2C6$ electrode in CSB under illumination of light.	74
4.26	The first order kinetic constant versus applied potential in TO7-TiO ₂ and $ETiO_2C6$.	76
4.27	Effect of initial concentration on CSB removal by TO7-TiO ₂ electrode under illumination of light. [Conditions: 300 W halogen lamp, 1 V and 124 mL of CSB containing 0.1 M KCl]	77
4.28	Effect of initial concentration on CSB removal by ETiO ₂ C6 electrode under illumination of light. [Conditions: 300 W halogen lamp, 1 V and 124 mL of CSB containing 0.1 M KCl]	78
4.29	UV-Vis adsorption spectra of CSB at various concentrations with 0.1 M KCl.	80
4.30	Graph of photocurrent versus time in various initial concentrations of CSB by TO7-TiO ₂ electrode under illumination of light. [Conditions: 300 W halogen lamp, 1 V and 124 mL of CSB containing 0.1 M KCl]	80
4.31	Graph of photocurrent versus time in various initial concentrations of CSB by ETiO ₂ C6 electrode under illumination of light. [Conditions: 300 W halogen lamp, 1 V and 124 mL of CSB containing 0.1 M KCl]	81
4.32	Amount of CSB removal at different initial concentrations by $TO7-TiO_2$ electrode.	82
4.33	Amount of CSB removal at different initial concentrations by $ETiO_2C6$ electrode.	83
4.34	Effect of anion in CSB removal by TO7-TiO ₂ electrode under illumination of light. [Conditions: 300 W halogen lamp, 1 V and 124 mL of 10 ppm CSB containing 0.1 M supporting electrolyte]	85

4.35	Effect of anion in CSB removal by ETiO ₂ C6 electrode under illumination of light. [Conditions: 300 W halogen lamp, 1 V and 124 mL of 10 ppm CSB containing 0.1 M supporting electrolyte]	86
4.36	Removal percentage of CSB at different anions by $TO7-TiO_2$ and $ETiO_2C6$ electrodes.	88
4.37	UV-Vis adsorption spectra of 10 ppm CSB containing 0.1 M of supporting electrolyte.	89
4.38	Current-potential curves for TO7-TiO ₂ electrodes in CSB with various anions under illumination of light. [Conditions: 300 W halogen lamp and 124 mL of 10 ppm CSB containing 0.1 M supporting electrolyte]	91
4.39	Current-potential curves for ETiO ₂ C6 electrodes in CSB with various anions under illumination of light. [Conditions: 300 W halogen lamp and 124 mL of 10 ppm CSB containing 0.1 M supporting electrolyte]	92
4.40	Effect of cation in CSB removal by TO7-TIO ₂ electrode under illumination of light. [Conditions: 300 W halogen lamp, 1 V and 124 mL of 10 ppm CSB containing 0.1 M supporting electrolyte]	93
4.41	Effect of cation in CSB removal by ETIO ₂ C6 electrode under illumination of light. [Conditions: 300 W halogen lamp, 1 V and 124 mL of 10 ppm CSB containing 0.1 M supporting electrolyte]	94
4.42	Removal percentage of CSB at different cations by $TO7-TiO_2$ and $ETiO_2C6$ electrodes.	95
4.43	Current-potential curves for TO7-TiO ₂ electrodes in CSB with various cations under illumination of light. [Conditions: 300 W halogen lamp and 124 mL of 10 ppm CSB containing 0.1 M supporting electrolyte]	96
4.44	Current-potential curves for ETiO ₂ C6 electrodes in CSB with various cations under illumination of light. [Conditions: 300 W halogen lamp and 124 mL of 10 ppm CSB containing 0.1 M supporting electrolyte]	97
4.45	Effect of different light sources in CSB removal by TO7-TiO ₂ electrode. [Conditions: 1 V and 124 mL of 10 ppm CSB containing 0.1 M KCl]	98
4.46	Effect of different light sources in CSB removal by ETiO ₂ C6 electrode. [Conditions: 1 V and 124 mL of 10 ppm CSB containing 0.1 M KCl]	99

4.47	Removal percentage of 10 ppm CSB under different illumination light sources by $TO7-TiO_2$ and $ETiO_2C6$ electrodes.	100
4.48	Graph photocurrent versus time of CSB removal under various illumination light sources by TO7-TiO ₂ electrodes. [Conditions: 1 V and 124 mL of 10 ppm CSB containing 0.1 M KCl]	102
4.49	Graph photocurrent versus time of CSB removal under various illumination light sources by ETiO ₂ C6 electrodes. [Conditions: 1 V and 124 mL of 10 ppm CSB containing 0.1 M KCl]	102
4.50	Repeated usage of TO7-TIO ₂ electrode in CSB removal under illumination of light. [Conditions: 300 W halogen lamp, 1 V and 124 mL of 10 ppm CSB containing 0.1 M KCl]	103
4.51	Repeated usage of ETIO ₂ C6 electrode in CSB removal under illumination of light. [Conditions: 300 W halogen lamp, 1 V and 124 mL of 10 ppm CSB containing 0.1 M KCl]	104
4.52	Graph $\ln C/C_0$ versus time for the repeated usage of TO7-TiO ₂ electrode in CSB removal.	105
4.53	Graph $\ln C/C_0$ versus time for repeated usage of $ETiO_2C6$ electrode in CSB removal.	106
4.54	A plot of kinetic constant versus number of times for TO7-TiO ₂ and ETiO ₂ C6 electrodes used.	107
4.55	Removal of various dyes by TO7-TiO ₂ and ETiO ₂ C6 electrodes respectively under illumination of light. [Conditions: 300 W halogen lamp, 1 V and 124 mL of 10 ppm dye containing 0.1 M KCl]	109
4.56	Current-potential curves for TO7-TiO ₂ and ETiO ₂ C6 electrodes in various dyes removal under illumination of light. [Conditions: 300 W halogen lamp and 124 mL of 10 ppm CSB containing 0.1 M KCl]	110
4.57	UV-Vis absorption spectra of the removal of 10 ppm CSB containing 0.1 M KCl by TO7-TiO ₂ at different time intervals.	111
4.58	UV-Vis absorption spectra of the removal of 10 ppm CSB containing 0.1 M KCl by ETiO ₂ C6 at different time intervals.	111
4.59	UV-Vis absorption spectra of the removal of 10 ppm MO containing 0.1 M KCl by TO7-TiO ₂ at different time intervals.	112

4.60	UV-Vis absorption spectra of the removal of 10 ppm MO containing 0.1 M KCl by ETiO ₂ C6 at different time intervals.	112
4.61	UV-Vis absorption spectra of the removal of 10 ppm MB containing 0.1 M KCl by TO7-TiO ₂ at different time intervals.	113
4.62	UV-Vis absorption spectra of the removal of 10 ppm MB containing 0.1 M KCl by ETiO ₂ C6 at different time intervals.	113

LIST OF ABBREVIATIONS AND SYMBOLS

CSB	Chicago Sky Blue 6B
CV	Cyclic Voltammetry
E _C	Conduction band
EDX	Energy Dispersion X-ray
E_F	Fermi energy level
Eg	Band gap energy
E_V	Valence band
ETiO ₂ C	Titanium Dioxide Prepared by Electrodeposition
ETiO ₂ C4	Electrodeposited Titanium Dioxide Calcined at 400°C
ETiO ₂ C5	Electrodeposited Titanium Dioxide Calcined at 500°C
ETiO ₂ C6	Electrodeposited Titanium Dioxide Calcined at 600°C
ETiO ₂ C7	Electrodeposited Titanium Dioxide Calcined at 700°C
ETiOP	Electrodeposition of Peroxotitanium Hydrate
FESEM	Field Emission Scanning Electron Microscopy
НОМО	Highest Occupied Molecular Orbital
JCPDS	Joint Committee of Powder Diffraction Standard
LUMO	Lowest Unoccupied Molecular Orbital
LSV	Linear Sweep Voltammetry
LSPV	Linear Sweep Photovoltammetry
MB	Methylene Blue
MO	Methyl Orange
TiO ₂	Titanium Dioxide
TO-TiO ₂	Titanium Dioxide Prepared by Thermal Oxidation

TO7-TiO₂ Titanium Dioxide Prepared by Thermal Oxidation at 700°C

XRD X-ray Diffractometer

