
 

 
 

UNIVERSITI PUTRA MALAYSIA 
 
 
 

CLASSIFICATION OF FIRST CLASS 9-DIMENSIONAL COMPLEX 
FILIFORM LEIBNIZ ALGEBRAS 

 
 
 
 
 

SOZAN J. OBAIYS 
 
 

FS 2009 6 
 
 
 
 
 



CLASSIFICATION OF FIRST CLASS 9-DIMENSIONAL

COMPLEX FILIFORM LEIBNIZ ALGEBRAS

By

SOZAN J. OBAIYS

Thesis Submitted to the School of Graduate Studies, Universiti

Putra Malaysia in Fulfilment of the Requirements for the Degree of

Master in Pure Mathematics

August 2009



DEDICATION

To

My Father (Allah bless him) and my dear mother

--- and ----

For their great patience

My husband and lovely kids

For their encouragement

and

My lovely country Iraq

ii



Abstract of thesis presented to the Senate of Universiti Putra

Malaysia in

fulfilment of the requirement for the degree of Master

CLASSIFICATION OF FIRST CLASS 9-DIMENSIONAL

COMPLEX FILIFORM LEIBNIZ ALGEBRAS

By

SOZAN J. OBAIYS

August 2009

Chair: Associate Prof. Dr. Isamiddin, PhD

Faculty: Science

Let V be a vector space of dimension n over an algebraically closed field

K (charK=0). Bilinear maps V × V → V form a vector space Hom(V ⊗
V, V ) of dimensional n3, which can be considered together with its natural

structure of an affine algebraic variety over K and denoted by Algn(K) ∼= Kn3
.

An n-dimensional algebra L over K can be considered as an element λ(L) of

Algn(K) via the bilinear mapping λ : L ⊗ L → L defining a binary algebraic

operation on L : let {e1, e2, . . . , en} be a basis of the algebra L. Then the table

of multiplication of L is represented by point (γk
ij) of this affine space as follows:

λ(ei, ej) =
n∑

k=1

γk
ijek.

Here γk
ij are called structural constants of L. The linear reductive group GLn(K)

acts on Algn(K) by (g ∗ λ)(x, y) = g(λ(g−1(x), g−1(y)))(“transport of struc-

ture”). Two algebra structures λ1 and λ2 on V are isomorphic if and only if

they belong to the same orbit under this action.
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Recall that an algebra L over a field K is called a Leibniz algebra if its binary

operation satisfies the following Leibniz identity:

[x, [y, z]] = [[x, y], z]− [[x, z], y],

Leibniz algebras were introduced by J.-L.Loday. (For this reason, they have

also been called “Loday algebras”). A skew-symmetric Leibniz algebra is a Lie

algebra. In this case the Leibniz identity is just the Jacobi identity.

This research is devoted to the classification problem of Leibn in low dimen-

sional cases. There are two sources to get such a classification. The first of

them is naturally graded non Lie filiform Leibniz algebras and another one

is naturally graded filiform Lie algebras. Here we consider Leibniz algebras

appearing from the naturally graded non Lie filiform Leibniz algebras.

It is known that this class of algebras can be split into two subclasses. How-

ever, isomorphisms within each class have not been investigated yet. Recently

U.D.Bekbaev and I.S.Rakhimov suggested an approach to the isomorphism

problem of Leibniz algebras based on algebraic invariants.

This research presents an implementation of this invariant approach in 9-

dimensional case. We give the list of all 9-dimensional non Lie filiform Leibniz

algebras arising from the naturally graded non Lie filiform Leibniz algebras.

The isomorphism criteria and the list of algebraic invariants will be given.
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Biarkan V menjadi ruang vector berdimensi n merentasi suatu medan

yang secara aljabarnya tertutup K (charK=0).. Pemetaan bilinear V × V →
V membentuk ruang vektor Hom(V ⊗ V, V ) berdimensi n3, yang mana ia

boleh dipertimbangkan bersama kepelbagaian struktur semulajadi afin algebra

merentas K dan dinyatakan sebagai Algn(K) ∼= Kn3
. Satu algebra berdimensi-

n L merentasi K boleh ditentukan sebagai satu unsur λ(L) bagi Algn(K)

melalui pemetaan λ : L ⊗ L → L menegaskan suatu operasi aljabar pendu-

aan ke atas L : biarkan {e1, e2, . . . , en} menjadi asasi untuk algebra L. Maka

jadual pendaraban bagi L diwakili oleh titik (γk
ij) bagi ruang afin ini seperti

berikut:

λ(ei, ej) =
n∑

k=1

γk
ijek.

Disini γk
ij dipanggil pemalar berstruktur bagi L . Kumpulan penu-

runan linear GLn(K) bertindak ke atas Algn(K) dengan (g ∗ λ)(x, y) =

g(λ(g−1(x), g−1(y)))(“pengangkutan bagi unsur ”). Dua struktur algebra λ1
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dan λ2 atas V adalah isomorfik jika dan hanya jika mereka terkandung dalam

orbit yang sama dibawah aksi ini.

Telah diketahui sebuah aljabar L merentasi sebuah medan K dipanggil Aljabar

Leibniz jika operasi penduaannya memuaskan identiti Leibniz yang berikut:

[x, [y, z]] = [[x, y], z]− [[x, z], y],

Aljabar Leibniz mula diperkenalkan oleh J.-L Loday. (Oleh sebab itu ia juga

dikenali sebagai ’Aljabar Loday’). Sebuah aljabar Leibniz simetri-pencong

adalah aljabar Lie. Oleh sebab itulah identiti Leibniz ialah identiti Jacobi.

Kajian ini didedikasikan untuk mengelaskan masalah Leibn kes-kes berdimensi

rendah. Ada dua punca untuk memperolehi sebarang pengelasan iaitu Aljabar

Leibniz bukan-Lie filiform bergred semulajadi dan Aljabar Lie filiform bergred

semulajadi. Disini, kita akan mempertimbangkan aljabar Leibniz yang muncul

dari aljabar Liebniz tak-filiform bergred semulajadi. Secara umumnya kelas ini

boleh dipisahkan menjadi dua sub-kelas.

Walaubagaimanapun, isomorfisma dalam setiap kelas belum lagi diketahui.

Justeru itu muktakhir ini, U.D. Bakbaev dan I.S. Rakhimov mencadangkan

satu langkah kepada masalah keisomorfisman bagi aljabar Leibniz berdasarkan

aljabar tak-terubah.

Tesis ini membentangkan perlaksanaan kaedah ketakubahan dalam kes berdi-

mensi sembilan. Kami telah menyenaraikan kesemua aljabar Leibniz bukan-Lie

filiform berdimensi sembilan yang berpunca dari aljabar Liebniz bukan-Lie fil-

iform bergred semulajadi. Kriteria isomorphisma dan senarai ketakubahan

aljabar turut diberikan.
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CHAPTER 1

INTRODUCTION

1.1 Short history

Theory of Lie algebras is one of the most developed branches of modern algebra.

It has been deeply investigated for many years by mathematicians. Active

investigation of the properties of the Lie algebras led to the introduction of

new and more general object called Leibniz algebra.

This work is concerned on studying Leibniz algebras, introduced by the French

Mathematician J.-L.Loday. (That it is also have been called “Loday algebras”),

and investigated later in [6, 22].

Leibniz algebras appear to be related in a natural way to several topics such

as differential geometry, homological algebra, classical algebraic topology, alge-

braic K-theory, loop spaces, noncommutative geometry, quantum physics etc.,

as a generalization of the corresponding applications of Lie algebras to these

topics.

Many papers concern to the study of homological problems of Leibniz algebras

[9, 21, 24]. J.-L.Loday and T.Pirashvili described the free Leibniz algebras

[20], A.A.Mikhalev and U.U.Umirbaev’s results concern to solution of the non-

commutative analogue of the Jacobian conjecture in the affirmative for free

Leibniz algebras [22], in the spirit of the corresponding result of C.Reutenauer

V.Shpilrain and U.U.Umirbaev.



The problems concerning Cartan subalgebras and solvability were studied by

Sh.A.Ayupov and B.A.Omirov [1]. The notion of simple Leibniz algebra was

suggested by A.Dzhumadil’daev [10], who obtained some results concerning

special cases of simple Leibniz algebras.

Several classes of new algebras Loday introduced also, some of them have two

generating operations and they are called dialgebras . The first motivation to

introduce such algebraic structures (related with well known Lie and associative

algebras) are problems in algebraic K -theory. The categories of these algebras

over their operads can be assembled into the commutative diagram which re-

flects the Koszul duality of them. Leibniz algebras present a non-commutative

(precisely, a non- antisymmetric ) analogue of Lie algebras introduced as alge-

bras that satisfy the following identity:

[x, [y, z]] = [[x, y], z]− [[x, z], y]

The structure theory of Leibniz algebras mostly remains unexplored and the

extension of notions like simple, semisimple Leibniz algebras, radical, etc., have

not been discussed. Some structural results concerning nilpotency, classifica-

tion of low dimensional Leibniz algebras and related problems were, however,

considered in [5], [2]. The reader may find similar results for Lie algebras in [15].

The classification, up to isomorphism, of any class of algebras is a fundamental

and very difficult problem. It is one of the first problems that encountered

when trying to understand the structure of some class of algebras.

From the geometrical point of view the classification of a class of algebras

corresponds to a fiber of this class, that being the isomorphism classes. By

”classification“we mean the algebraic classification, i.e., the determination of

the types of isomorphic algebras, whereas geometric classification is the problem

of finding generic structural constants in the sense of algebraic geometry. But

the geometrical classification presupposes the algebraical classification.
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1.2 The relation between Lie and Leibniz al-

gebras

In investigation of the properties of cyclic homologies, Loday noted that, if one

replace the external product in definition of n−th cochains, then it sufficed to

show the validity of the Leibniz identity instead of the anti-commutativity and

Jacobi equality.

To find the relation between Lie and Leibniz algebras, we begin by their defi-

nition.

Definition 1.2.1. Let L be an algebra over a field k, L is called Lie algebra if

its multiplication operation [·, ·] has the following properties:

i. skew-symmetry, [x, y] = −[y, x], ∀ x, y ∈ L

ii. Jacobi identity, [[x, y], z] + [[y, z], x] + [[z, x], y] = 0, ∀ x, y, z ∈ L.

Example 1.2.1. [15] Every vector space a with the bracket [x, y] = 0, for all

x and y in a, is a Lie algebra, called an Abelian Lie algebra.

Example 1.2.2. Let A be an associative algebra. The bracket on A define as

follows:

[a, b] = a.b− b.a a, b ∈ A,

then (A, [·, ·])− Lie algebra.

Definition 1.2.2. [14] An algebra L over a field K is called a Leibniz algebra

if it satisfies the following Leibniz identity:

[x, [y, z]] = [[x, y], z]− [[x, z], y]

where [·, ·] denotes the multiplication in L.
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Leibniz algebra is a generalization of Lie algebras, since

if a Leibniz algebra has the additional property of antisymmetry

[x, y] = −[y, x] and substituting this property in Leibniz identity we obtain

[[x, y], z]− [x, [y, z]]− [[x, z], y] = 0,

then Leibniz identity can be easily reduced to the Jacobi identity, as illustrate

in this formula

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0

1.3 Nilpotent Leibniz Algebras

Some observations on non-associative Leibniz algebra are given in this section

to assist readers less familiar with, to consider.

Let L be a complex Leibniz algebra. We put:

L1 = L, Lk+1 = [Lk, L], k ∈ N.

Definition 1.3.1. A Leibniz algebra L is said to be nilpotent if there exists

an integer s ∈ N , such that

L1 ⊃ L2 ⊃ . . . ⊃ Ls = {0}.

When studying a certain class of algebras it is important to describe at least

the algebras of lower dimensions up to an isomorphism accuracy. In Leibniz

algebras case difficulties arise even when considering nilpotent Leibniz algebras

of dimension 3. For this reason a special class of nilpotent Leibniz algebras,

called filiform algebras is considered in our work.
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Definition 1.3.2. An n-dimensional Leibniz algebra L is said to be nulfiliform

if dimLi = n− i + 1, where 2 ≤ i ≤ n + 1.

Up to isomorphism, there is only one n-dimensional non-Lie nulfiliform Leibniz

algebra. It can be given by the following table of multiplications:

[ei, e1] = ei+1, 1 ≤ i ≤ n− 1

where {e1, e2, ..., en} is a basis of L and omitted products are supposed to be

zero.

Definition 1.3.3. An n-dimensional Leibniz algebra L is said to be filiform if

dimLi = n− i, where 2 ≤ i ≤ n + 1.

Note: It is clear that a filiform Leibniz algebra is nilpotent.

Let Leibn denote the class of all n−dimensional filiform Leibniz algebras.

Given a nilpotent Leibniz algebra L with nilindex s, we put Li = Li/Li+1, 1 ≤
i ≤ s− 1, and grL = L1⊕L2⊕ ...⊕Ls−1. Since [Li, Lj] ⊆ Li+j the algebra grL

is graded. grL is called the naturally graded Leibniz algebra.

Definition 1.3.4. If a Leibniz algebra G is isomorphic to a filiform naturally

graded algebra grL, then G is said to be naturally graded filiform Leibniz

algebra.
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1.4 Research Objectives

The objectives of this research as follows:

1. To give the system of equations of 9-dimensional complex filiform non Lie

Leibniz algebras and formulate the isomorphism criterion for 9-dimensional

complex filiform Leibniz algebras, arising from naturally graded non-Lie filiform

Leibniz algebras.

2. To represent the mentioned subclass as a disjoint union of subsets.

3. To give the isomorphism criteria for each disjoint subset contains parametric

family of orbits.

4. To give the corresponding representatives for these subsets consisting of

single orbit.

5. To prove the isomorphism of the system in α with ∆.

6. To provide the list of algebras of 9-dimensional complex filiform non Lie

Leibniz algebras in adapted basis.

7. To give ideas and suggestions for future work.

1.5 Organization of thesis

In chapter 1, the history of Leibniz algebras are reviewed and the relation

between Lie and Leibniz algebras with some examples are given. Theorem 2.5.1

is used to derive an isomorphism criterion. Our main results in this thesis are

presented in chapters 3 and 4, where chapter 3, is concerned on classification

of 9-dimensional filiform Leibniz algebras, and the list of all disjoint subset

results from this classification are supported by proofs. The list of all algebras

obtained from this work are performed in chapter 4.

6



CHAPTER 2

LITERATURE REVIEW

2.1 Chapter outline

This chapter is organized as follows:

A brief background on Leibniz algebras is given in section 2.2. In section

2.2, applications and relations on Leibniz algebras are demonstrated, while in

section 2.4, the representations of the filiform Leibniz algebras via structural

constants are performed. Finally the adapted changes of basis and the isomor-

phism criterion theorem of filiform Leibniz algebras are presented in section

2.4.

2.2 Literature review

Classification of complex filiform Leibniz algebras is obtained from two sources,

the naturally graded non-Lie filiform Leibniz algebras, and the naturally graded

filiform Lie algebras. In this work we deal with the complex filiform Leibniz

algebras obtained from the naturally graded non-Lie filiform Leibniz algebras.

This sort of algebras in dimension n is denoted by Leibn.

In introducing several classes of algebras in [17], Loday’s main motivation was

the search of an “obstruction”to the periodicity of algebraic K-theory, that



does not satisfy the Bott periodicity theorems valid for its topological version.

Beside this purely algebraic motivation and development of Leibniz setting,

some relationships with classical geometry have recently been discovered, which

could lead us to investigate Leibniz homology in view of concrete applications

in non-commutative geometry and its physical interpretations.

2.3 Applications and relations on Leibniz al-

gebras

1. Structural problems

Leibniz algebra is a generalization of classical Lie algebra. It is known that a

finite dimensional complex Lie algebra can be represented as a semidirect sum

of its unique maximal solvable ideal (the radical) and semisimple subalgebra

(the factor of Levi). This decomposition is called Levi-Malcev decomposition.

Since a semisimple Lie subalgebra is a direct sum of simple Lie subalgebras

(but all simple Lie algebras have been described by Dinkin’s diagrams) thus

the classification problem of such a class of algebras is reduced to the descrip-

tion of solvable part. Apparently, the same can be done for Leibniz algebras.

The notion of simple Leibniz algebras was suggested by A.Dzhumadil’daev and

S.Abdulkassymova [10], who obtained some results concerning special cases

of simple Leibniz algebras. The problems concerning Cartan subalgebras and

solvability were studied by S. Alberverio, Sh.A.Ayupov and B.A.Omirov [1].

For the classification of complex nilpotent Leibniz algebras in dimensions at

most four see [3]. The isomorphism criteria for a subclass (called filiform) of

finite-dimensional complex nilpotent Leibniz algebras was created in [7, 8, 14,

23].
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2. Deformations and contractions

Deformation theory of Leibniz algebras and its related physical applications,

was initiated by Fialowski, A., Mandal, A., Mukherjee, G. [13]. The algebraic

variety of four-dimensional complex nilpotent Leibniz algebras was studied in

[4].

3. (Co)homological problems

In [20] J.-L.Loday and T.Pirashvili have described the free Leibniz algebras.

A.Mikhalev and U.U.Umirbaev [22] works were devoted to solution of the non-

commutative analogue of the Jacobian conjecture in the affirmative for free

Leibniz algebras, in the spirit of the corresponding result of C.Reutenauer [26],

V.Shpilrain [27] and U.U.Umirbaev [28]. Loday J.-L.[17] used the analogy be-

tween algebraic K-theory and cyclic homology to build a program aiming to

understand the algebraic K-theory of fields and the periodicity phenomena in

algebraic K-theory. In particular, he conjectured the existence of a Leibniz

K-theory which would play the role of Hochschild homology and proposed a

motivated presentation for the Leibniz K-group of a field. In [24], the authors

showed that the second Leibniz homology group HL2(S(n)) of the Steinberg

Leibniz algebra S(n) is not necessarily trivial for n = 3, 4 without any assump-

tion on the base ring and it is trivial for n ≥ 5.

Lodder J.M. [21] constructed a natural homomorphism from Leibniz to

Hochschild homology for an algebra R over a commutative ring k, and proved

that it is surjective when R = gl(A), A an algebra over a characteristic zero

field.

9



4. Quantum mechanics

A nontrivial Leibniz analog of the Virasoro algebra does not exist [20]. Also, we

can consider 2n−dimensional space, and assume that a Poisson-type bracket

for functions is given by a matrix M , so that F,G = 5F tM5. To ver-

ify the Leibniz identity, the following condition: (5F )tM t((HesH)M 5 G +

(5F )tM t((HesH)M t 5 F = 0, for all F,G, H is obtained, using the relation

5F,G = (HesF )M 5 G + (HesG)M t 5 F , where Hes denotes the Hessian.

Then it follows that M t = −M , and so the Poisson bracket comes from a closed

2−form which ensures that it is again the standard case.

5. Geometrical constructions

We would like to think of a Leibniz algebra as the tangent space at the identity,

to some manifold possessing some algebraic structure (Loday’s coquecigrue [19])

in a way similar to the relations between Lie algebras and Lie groups. There

are good reasons to believe this is possible, since as shown in [20] and [18] there

is a sort of universal enveloping algebra for a Leibniz algebra, so there is a

candidate for the space of functions on the coquecigrue. Moreover, Kinyon and

Weinstein in [16] have given a more concrete partial solution to the problem, by

considering reductive homogeneous spaces with an invariant connection, which

in a sense integrate the Leibniz algebra.

6. Mathematical Physics

It is well known that classical R−matrices in Mathematical Physics play an

important role in the study of Integrable Systems. Recently, in [12] a gener-

alization of classical R−matrices in Leibniz algebras case was discovered and

the corresponding analogues of the classical Yang-Baxter-type equations for

Leibniz algebras were studied. It can be used as a basis for a noncommutative

extension of some integrable systems, such as the Toda lattice or the discrete

Kadomtsev-Petviashvili type equations. (see [11] as well.)
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2.4 Preliminaries

In this work, we use some concepts from algebraic geometry for example Zariski

topology, therefore this brief section is devoted to Zariski topology and its

properties.

Definition 2.4.1. Let X be a set of points in some space. A topology on X

is a set τ of designated subsets of X, called the open sets of X, so that the

following axioms are satisfied:

a) The union of any collection of open sets is open.

b) The intersection of any finite collection of open sets is open.

c) X and φ are open.

The closed sets in X are the complements of the open sets.

We define below the so-called Zariski topology on algebraic varieties. If we

work over C.

After this short information about Zariski topology, we give the representations

of non-Lie filiform Leibniz algebras via structural constants.

Theorem 2.4.1. [5] Any (n+1)-dimensional complex non-Lie filiform Leibniz

algebra, is isomorphic to one of the following algebras:

FLeibn+1 =





[e0, e0] = e2 ,

[ei, e0] = ei+1 , 1 ≤ i ≤ n− 1

[e0, e1] = α3e3 + α4e4 + ... + αn−1en−1 + θen,

[ej, e1] = α3ej+2 + α4ej+3 + ... + αn+1−jen ,

1 ≤ j ≤ n− 2

α3, α4, ..., αn, θ ∈ C.
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