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Local scour around bridge piers has been recognised as one of the 
major causes of bridge failure. Since the 1950s numerous studies on 
local scour around bridge foundations have been conducted, however 
the problems of scour prediction have still not been totally overcome 
due to the difficulties in understanding the mechanism of scour and 
the complexity of flow around bridge piers. The aim of this study is to 
investigate the temporal development, effect of sediment coarseness, 
and pier geometry around wide and long skewed piers with multiple 
sizes and shapes in a bed formed with the use of two different sizes of 
sediments. In this study and for wide pier analysis, ten piers with 
circular and rectangular shapes were tested. Furthermore, one 
rectangular pier was chosen for inclusion in an experiment on skewed 

piers at various angles of attack, . Scour development was monitored 
during the initial stage, main erosion stage, and equilibrium stage 
around wide and skewed piers. A new relationship of scour prediction 
based on laboratory and field data is proposed for the purpose of 
improving scour prediction techniques that have a tendency to over-
predict local scour depths for wide piers. Validation of the proposed 
scour prediction formula was conducted using a wide range of 
laboratory and field data. Statistical tests revealed that application of 
the proposed scour prediction formula produced the smallest 
discrepancy ratio and root mean square error value among the tested 
models and showed good agreement with existing scour prediction 
formulae. The effects of wide piers and long skewed piers on the 
geometry of scour holes and sediment ridges (sediment deposited at 
downstream near the scour holes) were also explored. The tests were 
performed with the pier Reynolds number (Rep) within the range of 
2.2x104 ≤ Rep ≤ 2.1x105. The present experimental evidence shows that 
the geometric characteristics of scour holes and sediment ridges (length 
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and width) were decreases as pier Reynolds number Rep increases. The 
trend of empirical relations demonstrates the effects of the studied 
variables, including angle of attack, on scouring and deposition 
volumes at different sediment sizes. It also shows that the scouring 
volume is much higher than the sediment ridge volume that give 
indication that suspended sediment transport becomes more significant 
as the skewness of a long pier increases. A new relationship for 

estimating the angle of attack factor, K, for shallow-water conditions is 
presented. The new method of estimating Kwas compared with HEC-
18 and Laursen’s and Toch’s curves and the superiority of the new 
method was verified using statistical analyses. 
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Kerokan tempatan di sekitar tiang sambut jambatan telah diketahui 
sebagai salah satu penyebab utama kegagalan jambatan. Sejak 1950, 
terdapat pelbagai kajian kerokan jambatan di sekitar asas jambatan 
telah dijalankan, walaubagaimanapun masalah dalam ramalan 
kerokan masih belum sepenuhnya diatasi kerana kesukaran dalam 
memahami mekanisma kerokan dan kerumitan aliran di sekitar tiang 
sambut jambatan. Matlamat kajian ini adalah untuk menyelidik 
perkembangan terhadap masa, kesan kekasaran sedimen dan geometri 
tiang sambut di sekitar tiang sambut lebar dan serong panjang dengan 
pelbagai saiz dan bentuk dalam dasar yang terbentuk dengan 
menggunakan saiz sedimen yang berbeza. Dalam kajian ini dan untuk 
analisis tiang sambut lebar, sepuluh tiang sambut dengan bentuk 
bulat dan segiempat tepat telah diuji. Juga, satu tiang sambut 
segiempat tepat telah dipilih untuk melaksanakan ujikaji terhadap 

tiang sambut serong di pelbagai sudut serangan, . Perkembangan 
kerokan diawasi bermula dari peringkat awal, peringkat hakisan 
utama dan peringkat keseimbangaan di sekitar tiang sambut lebar dan 
serong panjang. Satu hubungan baru terhadap ramalan kerokan 
berdasarkan data di makmal dan lapangan telah dicadangkan bagi 
tujuan memperbaiki teknik ramalan kerokan yang mana cenderung 
untuk terlebih meramal kedalaman kerokan tempatan di tiang sambut 
lebar. Pengesahan kepada formula ramalan kerokan yang telah 
dicadangkan telah dijalankan menggunakan pelbagai data dari 
makmal dan lapangan. Ujian statistik mendedahkan bahawa 
penggunaan formula ramalan kerokan menghasilkan nisbah 
percanggahan yang paling kecil dan nilai RMSE telah menunjukkan 
persetujuan yang baik dengan formula-formula ramalan kerokan yang 
sedia ada. Kesan-kesan tiang sambut lebar dan serong panjang 
terhadap geometri lubang kerokan dan rabung sedimen (sedimen yang 
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terenap di bahagian hilir kawasan kerukan) juga diterokai. Ujian-ujian 
tersebut telah dijalankan dengan halangan nombor Reynolds, Rep 
dalam ukuran 2.2 x 104 ≤ Rep ≤ 2.1 x 105. Bukti ekperimen pada masa 
sekarang menunjukkan ciri-ciri geometri lubang kerokan dan rabung 
sediment (panjang dan lebar) berkurang apabila halangan nombor 
Reynolds, Rep meningkat. Hala hubungan empirikal menunjukkan 
kesan-kesan pembolehubah yang dikaji termasuk sudut serangan 
pada isipadu mengeruk dan pemendapan pada saiz sedimen yang 
berbeza. Ia juga menunjukkan isipadu kerokan lebih tinggi dari 
isipadu endapan, menunjukkan pengangkutan sedimen terampai 
menjadi lebih penting apabila keserongan tiang sambut panjang 
meningkat. Satu hubungan untuk menganggar faktor sudut serangan, 

K telah dibentangkan dan ia telah dibangunkan untuk keadaan air 
yang cetek. Kaedah baru untuk menganggar K telah dibandingkan 
dengan HEC 18 dan lengkung-lengkung Laursen dan Toch dan 
keunggulan kaedah baru telah disahkan menggunakan analisis-
analisis statistik. 
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CHAPTER I 
 
 

INTRODUCTION 
 
 

1.1 Background 
 
 
Scour is a natural process induced by the erosive activity of a flowing 
stream on alluvial beds. Rivers are active agents of erosion, transport 
and deposition which adjust their boundaries throughout the course of 
their development, in the duration of which the greatest adjustments 
occur in times of flood. Thus it is important for the designers to have 
reliable methods for estimating and controlling local scour. In the 
United States, bridge scour is one of the three main causes of bridge 
failure (the others being collision and overloading). It has been 
estimated that 60% of all bridge failures result from scour and other 
hydraulic-related causes (Marks, 1992).It is the most common cause of 
highway bridge failure in the United States, where 46 of 86 major 
bridge failures resulted from scour near piers from 1961 to 1976 
(USGS, 2010)). 
 
Currently, although the scientific basis for the structural design of 
bridges is well established, the design of bridge foundations in alluvial 
rivers remains a challenge due to the need for solutions to 
unpredictable problems. The complexities of the flow and sediment 
transport processes attendant to a pier’s presence seem to be enduring 
barriers to progress in developing a reliable analytical design 
procedure. In wide pier aspects, over-prediction of scour depths is a 
problem that engineers have long been aware of. Several studies 
(Melville and Sutherland 1988; Melville and Coleman, 2000) have found 
that the relation between the depth of local scour around a bridge pier 
depends on three dimensionless elements: (i) flow intensity (average 
flow velocity divided by the critical flow velocity for initiation of 
sediment motion, U/Uc); (ii) flow shallowness (flow depth divided by 
pier width, y/b); and (iii) sediment coarseness (pier width divided by 
the median diameter of the sediment particles, b/d50). Most of the 
dimensionless parameters from (i) and (ii) can be kept constant 
between field and laboratory results, however large differences in the 
values of sediment coarseness are found in most field situations and 
laboratory models. This phenomenon greatly impacts the predictions of 
scour depth for prototype-scale structures, especially when the 
structures are located in fine sand. In fact, if the sediment coarseness 
is not correctly calculated in the predictive equations, problems will 
appear as the equations are implemented in situations different from 
the laboratory conditions in which they were developed. 
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The main cause of bridge failure is stream channel instability resulting 
in river erosion and changing angles-of-attack can contribute to bridge 
scour. Debris can also have a substantial impact on bridge scour in 
several ways. On the other hand, scour-induced bridge failure usually 
occurs in flood flows, which are inherently unsteady and may also 
produce changes in approach channel bathymetry as channel thalweg 
and morphology change. This makes river flow interact with varied 
mixtures of sediments, ranging from alluvial sands to stiff clays, and 
weathered rocks, which may erode at different rates. These situations 
often lead to shifts in channel alignment. Nowadays, bridge designers 
have overcome their design problems by using a large variety of pier 
and abutment shapes, which are not always aligned with the 
predominant flow direction or with the flow direction during a flood. 
The latter situation becomes more complicated due to the fact that it 
introduces the complication of skewness. Skewness can cause 
maximum scour depth to increase dramatically. The scour depth 
around a rectangular pier with an aspect ratio of 10 at a skewness of 

30 may increase scour depth several times compared with that 
occurring around the same pier when it is aligned with the flow 
direction (Mostafa, 1994). In terms of design aspects, skewness effects 
can determine the foundation design depth, thereby emphasising the 
importance of an accurate determination of likely flow pier alignment. 
The scour mechanism at skewed piers is complex not only because the 
scour depth increases but also because the width of scour holes 
increases and the lateral extent of the scour may become so large that 
the adjacency of the pier can be affected, thus depicting prediction of 
local scour depths complicated. 
 
Ideally, a bridge should be designed so that its piers are aligned with 
the flow direction. However, external constraints may necessitate 
skewed piers, such as in the replacement of a bridge with an existing 
road alignment. In addition, lateral shifting of the main flow channel 
can cause skewness at a previously aligned bridge pier, meaning that 
alignment changes may happen at different river stages and may be un 
avoidable. This situation can also be called thalweg movement. The 
Bulls Road Bridge failure in New Zealand is an example of bridge 
failure caused by thalweg movement. The local scour was aggravated 
by the obliqueness of the flow on the pier, while debris accumulated 
immediately downstream of the bridge pier and thus led to flow 
constriction. The maximum scour depth measured below the armoured 
bed level was about 12.2 m (Coleman and Melville, 2001). 
 
The most common cause of bridge failure is attributed to scouring 
around foundations during floods. The reasons for bridge collapse were 
evaluated in Columbia based on the study of 63 real cases of reported 
bridge failures since 1986(Diaz et al., 2009). According to the analysis 
of each failure event, 64% of the cases studied corresponded to 
concrete bridges that mainly collapsed due to scour effect and overload; 
the remaining 36% corresponded to steel structures that failed due to 
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structural deficiencies. Elsewhere, a study of 503 bridge structural 
failures in the United States from 1989 to 2000 indicated that the main 
reasons for the failure or damage of the examined bridges were 
interconnected with scouring around the piers and abutments of the 
bridges (Whardana and Hadipriono, 2003). Extensive local scour 
around a pier was found during the Great Flood of 1993 in Missouri, 
where a more than 20-m-deep scour hole formed around the piers. 
Another bridge failure caused by flood flow is the Tangiwai Rail Bridge, 
New Zealand, where a 6-m flood rose at the bridge travelling with a 
velocity of 6 m/s (Melville, 2014). 
 
In Malaysia, while bridge failure due to structural damage is very rare, 
bridge failures are very often caused by scouring of the footing 
structure during major floods (Ng and Razak, 1998). Since the 1920s, 
Malaysia has experienced major floods during seasonal monsoons, 
causing a large concentration of surface-water runoff that exceeds the 
capacities of most rivers. States located on the east coast of Peninsular 
Malaysia such as Kelantan, Terengganu, Pahang, and Johor are 
affected significantly by massive, seasonal floods (Akib et al, 2011). The 
government agency that is responsible for bridge construction and 
maintenance is the Public Works Department (Jabatan Kerja Raya, 
JKR). Table 1.1 shows the statistics on bridges in Malaysia, while 
Figure 1.1 presents the number of bridges constructed along federal 
roads under the responsibility of JKR based on construction material 
(Heng and Hamid, 2009; Nazri, 2011). 
 
 

Table 1.1. Statistics on bridges in Malaysia (Source: Heng, 2008) 
Department Bridges 

JKR Federal 7,133 

JKR State 7,000 

JKR Sabah 1,730 

JKR Sarawak 1,540 

Toll Concession Roads 560 

Malaysian Railways Department  920 
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Figure 1.1. Types of Bridge in Malaysia by construction material 
(Sources: Heng and Hamid, 2009; Nazri, 2011) 
 
Malaysia is located in the equatorial zone and has an average monthly 
temperature ranging from 23C to 34C throughout the year and 
relative humidity as high as 90%. Malaysia experiences very high 
rainfall intensity, especially during the monsoon seasons. The annual 
rainfall varies between 2,000 mm and 2,500 mm and the mean 
monthly rainfall between 133 mm and 259 mm. A number of bridges 
are currently affected by scouring problems. Over the last few years, 
some bridges in Selangor, Sabah, Perak, Pahang Kelantan, and Kedah 
have experienced scouring of their bridge piers and structural damage. 
A lot of remedial action and maintenance has been carried out to 
protect and solve this problem. Chiew et al. (2000) presented their 
experience of facing hydraulic problems in Malaysia. Revetment of the 
Pukin River bridge, the Plentong River bridge, and the Keratong River 
bridge were cited as case studies. It was later learned that the Pukin 
River bridge was badly scoured around both abutments and piers 
during heavy flooding in December 2006. The most scour hazards to 
the piers of bridges in Malaysia are shown in Table 1.2. 
 
Recent floods in Kelantan, Malaysia, have caused serious damage and 
bridge failures. The National Security Council (NSC) confirmed that the 
massive flood that hit Kelantan was the worst in the history of the 
state. Heavy rain from the 26th to the 30th December 2014 caused the 
river to rise above Sultan Yahya Petra Bridge. According to the 
council’s report, the water level of Kelantan River at Tambatan DiRaja, 
which has a danger level of 25 meters, reached 34.17 meters 

 
Table 1.2. Malaysian experiences: Failure due to scour hazards 

(Source: Heng, 2008) 
 

No. Bridge location Date of failure Problems 

1 
A bridge over the 
Buloh River, 
Selangor 

1989 

Collapsed due to 
local scour around 
the upstream pier 
after a large flood 

Steel, 
632

Concrete
, 6322

Masonry, 
172

Timber
, 7

Steel

Concrete

Masonry

Timber
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2 
The Larut River 
Bridge, Matang, 
Perak 

1993 

Collapsed due to 
local scour around 
the upstream pier 
after a large flood 

3 
A bridge over the 
Labong River, 
Johor 

1993 

Collapsed due to 
local scour around 
the upstream pier 
after a large flood 

4 
A bridge over the 
Salor River, 
Kelantan 

1996 
Local scour 
occurred around an 
exposed pile 

5 
A bridge over the 
Salor River, 
Kelantan 

2008 
Local scour 
occurred around an 
exposed pile 

 
 
on 27th December 2014, compared with29.70 meters in 2004 and 33.61 
meters in 1967. Figures1.2 to 1.4 show the aerial view of the flooded 
area in Kota Bharu and some bridge damage at Kelantan River and 
Stelu River in Gua Musang, Kelantan. 
 

 
 
Figure 1.2. This aerial view shows houses and plantations 
submerged in floodwaters in Pengkalan Chepa, near Kota Baru, 
Kelantan, on 28th December 2014. (Source: Malay Mail, 2015) 
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Fig. 1.3. Flooding at Sultan Yahya Petra Bridge, Kota Bharu, 
Kelantan caused some part of the structure to crack 
(Source: Bernama, 2014) 
 
 

 
 
Fig.1.4: Stelu River Bridge at Gua Musang, Kelantan, collapsed due 
to scouring during floods 
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1.2 Problem statement 
 
Many researchers have already investigated the phenomenon of local 
scour around bridge piers. As a consequence of these studies, a large 
number of design relationships have been published for bridge 
designers. However, many bridges still suffer damage caused by scour. 
A conclusion that can be drawn is that the phenomenon of local scour 
of the bed sediment around a pier is still not adequately understood. 
This is not surprising, as local scour involves the complexities of the 
two and three-dimensional turbulent flow fields around a pier together 
with the mechanics of sediment transport. 
 
The literature search conducted for this thesis revealed that there is 
very little information on predictive equations or data on scour around 
wide and long skewed piers. Most of the predictive equations in the 
literature are intended to apply equally well to large and small piers. 
Hence, this leads to a situation in which design is prioritised over 
prediction, which thus proves costly and economically inefficient. 
Additionally, equilibrium scour time data for wide and long skewed 
piers is still lacking, while available laboratory data is not sufficient 
and is limited to a circular pier shape only. The studies presented by 
Ettema (1980) and Melville and Chiew (1999) are examples of those 
conducted on time equilibrium fora circular pier. Comparison of scour 
development around a circular and a noncircular pier at different 
stages of time (initial stage, main erosion stage, and equilibrium stage) 
is thus necessitated and can give a better understanding of scour 
processes. 
 
Pier size and shape represent important parameters that exert 
significant influences on the depth of local scour. The diameter of 
circular piers is perhaps the main factor affecting the scour depth 
around such piers. However, when the pier is noncircular in shape, 
pier shape should be taken into consideration. There are very limited 
findings on local scour depth for wide piers, particularly piers with a 
noncircular shape. The nose of the noncircular pier shape will 
influence scour depth. The more streamlined the nose of a pier, the less 
the maximum scour depth produced by the pier is. This advantage of 
streamlining quickly decreases once a noncircular pier is skewed in 
relation to the flow direction. Hence, the comparison of local scour 
around different pier shapes is important because it will help engineers 
to reasonably estimate local scour. 
 
Investigations related to the formation of scour holes and sedimentary 
structures are relevant to a variety of scientific disciplines, including 
hydraulic engineering, fluid mechanics, oceanography, and 
geomorphology. Engineering research up to now has concentrated on 
flow fields around bridge piers (e.g. Ettema et al., 2006; Kirkil et al., 
2008), but none of these were aimed at investigating the formation and 
geometry of frontal scour holes and downstream deposition, especially 
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for wide and long skewed piers. Field observation reveals that the width 
of a scour hole may be several times the projected width of the skewed 
pier (Laursen and Toch, 1956). Furthermore, the height of the sand 
deposited downstream of a skewed pier can be a big problem for the 
navigation through the bridge. As the angle of attack increases, the 
height of the sand deposited downstream of the pier increases. 
Therefore, understanding the characteristics of scour morphometry and 
the volume of erosion in the scour hole and deposition in the sediment 
ridge is crucial in order to estimate the ratio of scoured and deposited 
material around such a pier, which would enable the result to be used 
for scour countermeasures. 
 
Next, regarding scour prediction for skewed piers, most predictive 
methods for the effects of the flow skew angle on local scour use some 

form of projected width, B, of the pier (i.e. the horizontal dimension of 
the projection of the pier onto a plane normal to the flow) in their 
analysis (Sheppard and Renna 2005; Sheppard et al., 2011; Arneson et 
al., 2012). None of the investigators recommended a definite 

relationship for prediction of the angle of attack factor, K.The earliest 
research on how skewness effects scour depth was from Laursen and 
Toch (1956). They proposed extensive empirical family curves to 
estimate K for rectangular piers at different angles (0 90) and 
different aspect ratios (2  L/b  16). However, as Mostafa (1994) 
remarked, they never adequately explained either the theoretical or the 
experimental basis for estimating values of K. Moreover, it has been 
suggested that they may underestimate maximum scour depth at large 
angles (Mostafa (1994). 
 
Therefore, in light of the reasons discussed above and also due to the 
fact that extensive scour can reduce the stability of bridge piers and 
lead to the bridge failure, a credible prediction of maximum scour 
depth around wide and long skewed piers is crucial for their safe 
design. In addition, research is needed to assess current techniques for 
estimating local scour and their appropriateness for wide bridge piers 
and long skewed piers. This research would aid the development of 
improved methods in bridge design, maintenance, operation, and 
bridge scour countermeasures. 
 
 
1.3 Objectives of the study 
 
The main goal of this study is to improve previous laboratory-based 
scour relationships and to suggest formulae for local scour around 
wide and long skewed piers using experimental data of current study. 
This goal is achieved by addressing the following set of specific 
objectives: 
 

i) to investigate the temporal development, effect of 
sediment size, and pier geometry on local scour around 
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wide and long skewed piers with multiple sizes, shapes 

and multiple angles of attack, , using two different sizes 
of uniform cohesionless sediments; 

ii) to evaluate the existing equations for predicting 
maximum local scour depth around wide piers; 

iii) to investigate the geometry of scour (scour morphometry) 
and to determine the relationships between the scour 
hole and the sediment ridge around wide and long 
skewed piers at equilibrium conditions; and 

iv) to develop a relationship for the angle of attack factor, 

K,for skewed bridge piers that can be used to predict 
local scour depth with reasonable accuracy. 

 
 
1.4 Scope of study 
 
Local scour around wide and long skewed piers under steady clear-
water conditions were studied. The experiments were conducted in a 
rectangular flume, 50 m long, 1.5 m wide, and 2.0 m deep, located in 
the hydraulic laboratory of the National Hydraulic Research Institute of 
Malaysia (NAHRIM). Two pier shapes – rectangular and circular – with 
five different widths or diameters were tested. There were five pier 
widths, b, for each pier type, (60, 76, 102, 140, and 165 mm). The wide 
pier tests were conducted with two sediment sizes, i.e. d50 = 0.23 mm 
and d50 = 0.80 mm, giving a total of 20 experiments. For skewed pier 
analysis, the experiments were performed at nine different of angles of 

attack ( = 0, 5, 15, 25, 30, 45, 60, 75, and 90) for each 
sediment size, giving a total of 38 experiments. A rectangular pier 
model with pier width b = 60mm and pier aspect ratio L/b = 10 was 
used in order to investigate the effect of pier skewness on maximum 
local scour depth. All experiments used similar bed material sizes and 
the same flow conditions. 
 
The analyses included the influences of the applied bed sediment 
characteristics and the pier geometry on the process of local scour 
around wide and long skewed bridge piers. The scour mechanisms 
were presented in the initial stage, main erosion stage, and equilibrium 
stage for the different sediments, pier shapes, and angles of attack. 
Next, the effects of wide and long skewed piers on the morphology of 
the scour hole and the sediment ridge were analysed. The relationship 
between the geometric characteristics of the scour hole and the 
sediment ridge (width and length) at pier Reynolds number, Rep, were 
evaluated. The effect of the variation in the angle of attack on the scour 
morphometrics with different sediment sizes was also investigated. The 
empirical relations that demonstrate the effects of the study variables 
were presented. Next, a new equation for estimating the angle of attack 

factor, K, was also developed using data from experiments in addition 
to data available from the literature which covered different angles of 
attack, different pier aspect ratios (l/b), different sediment sizes (both 
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uniform and non-uniform), and different flow depths. To investigate the 
effectiveness of the new equation, a comparison was made between the 
K from the present study, the K from Laursen’s and Toch’s (1956) 
curves, and the K relationship in the current version of the US 
guidance document, HEC-18 (Arneson et al., 2012). The accuracy of 
the equations is assessed using statistical analysis. 
 
 
1.5 Significance of the study 
 
This study gives a deep understanding of the scour mechanism around 
wide and long skewed piers from the initial stage of the scouring 
process until an equilibrium time is achieved. In addition, this research 
also intends to provide new insights into sediment transport at bridges, 
exploring the features of migrating sediment particles at the bedform, 
especially in the scour hole and deposition area which are generated 
immediately around piers by local scour processes. The new 

relationship of the angle of attack factor, K, proposed in this study aim 
to give an accurate estimation of skewness effects on maximum scour 
depth, ds, around skewed bridge piers. 
 
 
1.6 Thesis outline 
 
The thesis is divided into five chapters. A review of the conducted 
literature study is presented in Chapter II. The review is divided into 
subtopics that cover the mechanism of local scour around bridge piers, 
the components of scour, the types of scour, the parameters affecting 
maximum scour depth around wide and long skewed piers, and the 
literature on scour holes and sediment ridges. Furthermore, in Chapter 
II the available equations previously proposed by different researchers 

for the prediction of K and ds are presented. Chapter III presents the 
methodology of the research, including the experimental work and 
procedures, carried out in the hydraulic laboratory of NAHRIM. The 
laboratory results that were obtained are discussed in Chapter IV, in 
which all the data on local scour around wide and long skewed piers 
are analysed according to the sequence of objectives in this study. 
Conclusions and recommendations for future research are presented in 
Chapter V. 
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