

UNIVERSITI PUTRA MALAYSIA

BIOHYDROGEN PRODUCTION FROM PALM OIL MILL EFFLUENT BY LOCALLY ISOLATED CLOSTRIDIUM BUTYRICUM EB6

CHONG MEI LING

FBSB 2009 19

BIOHYDROGEN PRODUCTION FROM PALM OIL MILL EFFLUENT BY LOCALLY ISOLATED *CLOSTRIDIUM BUTYRICUM* EB6

By

CHONG MEI LING

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfilment of the requirements for the Degree of Doctor of Philosophy

July 2009

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Doctor of Philosophy

BIOHYDROGEN PRODUCTION FROM PALM OIL MILL EFFLUENT BY LOCALLY ISOLATED *CLOSTRIDIUM BUTYRICUM* EB6

By

CHONG MEI LING

Name of Supervise	or:	Prof Dr Mohd Ali Hassan
Faculty	:	Faculty of Biotechnology and Biomolecular Sciences

Hydrogen is a renewable, clean source of energy which has a great potential to be an alternative fuel. Abundant biomass from various industries could be a source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Potential biomass that could be the substrates for biohydrogen generation include food and starch-based wastes, cellulosic materials, dairy wastes, palm oil mill effluent and glycerol. The objectives of this study were to isolate biohydrogen producing bacteria, to maximize the biohydrogen production in a synthetic medium and palm oil mill effluent (POME) and to improve the strain by overexpressing the hydrogenase gene in the host cell.

A biohydrogen producer was successfully isolated from anaerobic POME sludge. The strain, designated as *Clostridium butyricum* EB6, efficiently produced biohydrogen

during active cell growth. Controlled study was done on synthetic medium with 10 g/L glucose resulted in biohydrogen production at 948ml H₂/L-medium and volumetric biohydrogen production rate of 172 mL H₂/L-medium/h at initial pH 5.5. The supplementation of yeast extract at 4 g/L was found to have a significant effect with the highest biohydrogen production of 992 mL H₂/L-medium. The effect of pH on biohydrogen production from POME was investigated, with the optimum biohydrogen production ability at pH 5.5. The maximum biohydrogen production and maximum volumetric biohydrogen production rate were at 3195 mL H₂/L-medium and 1034 mL H₂/L-medium/h, respectively. The biohydrogen content in the biogas produced was in the range of 60 - 70%.

Optimization of biohydrogen production using synthetic medium was done on pH, glucose and iron concentration according to response surface methods (RSM) analysis. By central composite design (CCD) results, pH, glucose concentration and iron concentration were shown to significantly influence the biohydrogen gas production individually, interactively and quadratively (P<0.05) with some exception. The CCD results indicated that pH 5.6, 15.7 g/L glucose and 0.39 g/L FeSO₄ was the optimum condition for biohydrogen production which gave a yield of biohydrogen at 2.2 mol H₂/mol glucose. For the confirmation experiment model, *t*-test result showed that experimental data curve had a high confidence at 95% with *t* = 2.225. Based on the results of this study, optimization of the culture condition for *C. butyricum* EB6 significantly increased the biohydrogen production.

Clostridium butyricum EB6 successfully produced hydrogen gas from POME. Central composite design and response surface methodology were applied to determine the optimum conditions for biohydrogen production (P_c) and maximum biohydrogen production rate (R_{max}) from POME. Experimental results showed that the pH, temperature and chemical oxygen demand (COD) of POME affected both the biohydrogen production and production rate individually and interactively. The optimum conditions for biohydrogen production (Pc) was pH 5.69, temperature 36°C and 92 g COD/L, with an estimated value of 306 mL H₂/g carbohydrate. The optimum conditions for maximum biohydrogen production rate (R_{max}) was pH 6.52, temperature 41°C and 60 g COD/L, with an estimated value of 914 ml H₂/ h. An overlay study was carried out to get an overall model optimization. The optimized conditions for the overall model was pH 6.05, temperature 36°C and 94 g COD/L.

[Fe]-hydrogenase (*hyd*A) gene of *C. butyricum* EB6 was successfully amplified from the genomic DNA. Sequencing results of the *hyd*A gene was identified with open reading frames of 1725 bp which encodes *hyd*A of 574 amino acids with approximate size of 64 kDaltons. The *hydA* of *C. butyricum* was found 80.5% similar to *hydA* of *C. acetobutylicum* P262 and closely similar to *Clostridia* hydrogenase. A modified method of electroporation on *C. butyricum* EB6 was established for transformation of *hyd*A. A *hydA*-expressing recombinant EB6 was successfully obtained with higher biohydrogen production from 4.2 L-H₂/ L-medium to 4.8 L-H₂/ L-medium compared to the wild type.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PENGHASILAN BIOHIDROGEN DARIPADA SISA AIR PEMPROSESAN KELAPA SAWIT OLEH *CLOSTIRIDUM BUTYRICUM* EB6

Oleh

CHONG MEI LING

Nama Penyelia	:	Prof Dr Mohd Ali Hassan
Fakulti	:	Fakulti Bioteknologi dan Sains Biomolekul

Hidrogen adalah sumber tenaga bersih, boleh diperbaharui dan mempunyai potensi yang besar sebagai sumber tenaga alternatif. Sumber biomass yang banyak dari pelbagai industri boleh dijadikan sebagai sumber penghasilan biohidrogen di mana kombinasi antara rawatan sisa dan penghasilan tenaga menjadi kelebihan untuk proses ini. Biomass yang mempunyai potensi menjadi substrat kepada penghasilan biohidrogen termasuk sisa makanan dan asas kanji, bahan cellulose, sisa tenusu, sisa buangan kilang kelapa sawit (POME) dan sisa gliserol. Objektif untuk kajian ini adalah untuk memencilkan mikroorganisma yang boleh menghasilkan hidrogen, mengoptimumkan penghasilan hidrogen daripada medium sintetik and sisa buangan kilang kelapa sawit (POME) and membaiki mikroorganisma yang terpencil dengan memperbanyak gene hydrogenase dalam bacteria.

Satu penghasil biohidrogen telah berjaya dipencilkan daripada sisa rawatan POME. Bacteria ini, dikenalpasti sebagai *Clostridium butyricum* EB6, menghasilkan hydrogen secara efisien semasa pertumbuhan sel. Kajian kawalan telah dijalankan dengan menggunakan medium sintetik dan penghasilan hydrogen mencapai 948 mL H₂/Lmedium dan kadar penghasilan biohidrogen mencapai 172 mL H₂/L-medium/h pada permulaan pH 6.0 dan 10 g/L glucose. Penambahan yis ekstrak didapatkan memberi kesan bermakna di mana penghasilan hidrogen tertinggi adalah 992mL H₂/L-medium semasa 4 g/L yis ekstrak ditambah. Kesan pH kepada penghasilan biohidrogen daripada sisa air kilang kelapa sawit (POME) juga dikaji. Keputusan eksperimen menunjukkan bahawa optimum kebolehan penghasilan biohidrogen adalah pada pH 5.5. Maksimum penghasilan hidrogen dan maksimum kadar penghasilan hidrogen adalah 3195 mL H₂/Lmedium and 1034 mL H₂/L-medium/h. Peratus hidrogen yang didapat di biogas adalah dalma 60% ke 70%

Proses pengoptimasasi penghasilan biohidrogen dalan medium sintetik telah dilakukan ke atas pH, kepekatan glukosa dan zat besi melalui kaedah permukaan tindakbalas (RSM). Keputusan dari rekaan komposit pusat (CCD) menunjukkan bahawa pH, kepekatan glukosa dan zat besi mempengaruhi penghasilan biohidrogen secara individu, interaktif and quadratik (P<0.05) dengan beberapa pengecualian. Keputusan CCD menunjukkan pH 5.6, 15.7 g/L glukosa dan 0.39 g/L FeSO₄ adalah yang optimum untuk menghasilkan biohidrogen dengan hasil hidrogen sebanyak 2.2 mol H₂/mol glukosa. Untuk memastikan model ekseperimen adalah betul, keputusan '*t*-test' menunjukkan model mempunyai keyakinan yang tinggi sebanyak 95% dengan t = 2.225. Berdasarkan

keputusan daripada kajian ini, keadaan kultur yang optimum bagi *C. butyriucm* EB6 mempunyai peningkatan yang penting dalam penghasilan biohidrogen.

C. butyricum EB6 berjaya menghasilkan biohidrogen daripada sisa air kilang kelapa sawit (POME). Rekaan komposit pusat (CCD) dan kaedah permukaan tindak balas (RSM) diaplikasikan untuk mengenalpasti keadaan yang optimum untuk penghasilan hidrogen (P_c) dan kadar penghasilan hidrogen maksimum (R_{max}) daripada POME. Keputusan eksperimen menunjukkan pH, suhu dan keperluan kimia oksigen (COD) dari POME mempengaruhi penghasilan hidrogen dan kadar penghasilan secara individu and interaktif. Keadaan optimum untuk penghasilan hidrogen (P_c) adalah pH 5.69 dan suhu 36°C and 92 gCOD/L, dengan nilai anggaran pada 306 mL H₂/g karbohidrat. Keadaan optimum untuk kadar penghasilan hidrogen maksimum (R_{max}) adalah pH 6.52, suhu 41°C dan 60 gCOD/L dengan nilai anggaran 914 mL H₂/h. Kajian pertindihan telah dilakukan untuk mendapat optimum model keseluruhan. Keadaan optimum untuk model keseluruhan adalah pH 6.05, suhu 36°C dan 94 gCOD/L. kandungan hidrogen dalam biogas yang terhasil adalah dalam lingkungan 60-70%.

Gen [Fe]-hydrogenase (*hydA*) daripada *C. butyricum* EB6 telah berjaya diamplifikasikan daripada DNA genomik. Keputusan jujukan nukleotida gen *hydA* telah dikenalpasti mempunyai 'open reading frames' sebanyai 1725bp yang mengkodkan 574 amino asid dengan anggaran saiz sebesar 64 kDaltons. hydA daripada *C. butyricum* EB6 dikenalpasti 80.5% serupa dengan *hydA* daripada *C. acetobutylicum* P262 dan serupa dengan Clostridia hydrogenase yang lain. Kaedah elektroporasi yang diupahsuai untuk *C.*

butyricum EB6 telah digunakan untuk transformasi *hydA*. Satu recombinan sel telah berjaya didapati dengan mempunyai kenaikan penghasilan hidrogen sebanyak 4.2 L-H₂/L-medium kepada 4.8 L-H₂/L-medium berbanding *C. butyricum* EB6 induk.

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest appreciation to my main supervisor, Prof Dr Mohd Ali Hassan and supervisory committee members, Prof Dr Raha Abdul Rahim, Prof Dr Yoshihito Shirai and Dr Nor'Aini Abdul Rahman for their guidance, encouragement and advice throughout my studies. I am grateful to have the patient and dedicated supervisors to lead me in this project. With their knowledge and help, I was able to solve any problems whenever I had encountered it during the course of my study. I also gratefully thanked the financial support by Ministry of Science, Technology and Innovation, Malaysia on this project, Universiti Putra Malaysia, Kyushu Institute of Technology (KIT) and Japan Society for Promotion of Science (JSPS).

I would like to thank the laboratory members and laboratory staffs such as Mr Rosli Aslim, Madam Renuga A/P Panjamurti and Madam Aluyah Marzuki. Thank you for the moral support and help whenever I needed. I would appreciate the guidance and ideas from you.

Last but not least, I am gratefully thanked my beloved parent and siblings for their understanding, support and encouragement. Thank you for listening to me and bear with me when I was frustrated with my research. Acknowledgement is also due to those who are involved directly and indirectly in the completion of this study.

I certify that a Thesis Examination Committee has met on 14 July 2009 to conduct the final examination of Chong Mei Ling on her thesis entitled "Biohydrogen Production from Palm Oil Mill Effluent by Locally Isolated *Clostridium butyricum* EB6" in accordance with the Universiti Putra Malaysia [P.U(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Arbakariya bin Arif, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Rosfarizan Mohamad, PhD

Assoc Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Norhani Abdullah, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Ferda Mavituna, PhD

Professor School of Chemical, Engineering and Analytical Science University of Manchester (External Examiner)

BUJANG KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosphy. The members of the Supervisory Committee were as follows;

Mohd Ali Hassan, PhD

Professor, Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Raha Abdul Rahim, PhD

Professor, Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

Nor'aini Abdul Rahman, PHD

Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

Yoshihito Shirai, PhD

Professor, Graduate School of Life Sciences and Systems Engineering, Kyushu Institute of Technology (KIT), Japan (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 11 September 2009

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

CHONG MEI LING

Date:

TABLE OF CONTENT

ABS ABS ACI API DEC LIS	STRAC STRAF KNOW PROV CLAR T OF 7	CT C LEDGEMENTS AL ATION CABLES	PAGE ii v ix x xii xvii
LIS	T OF I	IGURES	xix
LIS	T OF A T OF N	ABBREVIATIONS NOMENCLATURE	xxii xxiv
СН	APTEI	R Contraction of the second	
1	INTR	ODUCTION	
	1.1	Hydrogen energy	1
	1.2	Palm oil industry in Malaysia as source of biomass	2
	1.3	Objectives	3
2	LITE	RATURE REVIEWS	
	2.1	Introduction	4
	2.2	Types of waste materials	6
		2.2.1 Food and starch-based materials	6
		2.2.2 Lignocellulosic materials	10
		2.2.3 Dairy wastes	14
		2.2.4 Palm oil mill wastes	15
		2.2.5 Glycerol wastes	18
	2.3	Biohydrogen producing bacteria	19
		2.3.1 Anaerobic bacteria	20
		2.3.2 Facultative bacteria	25
		2.3.3 Aerobic bacteria	28
		2.3.4 Thermophilic bacteria	29
	24	Eactors affecting dark hydrogen fermentation	31
	2.4	2.4.1 Undissociated acid inhibition and pH changes	33
		2.4.1 Ondissociated acta minorition and pri changes 2.4.2 Hydrogen partial pressure	35
		2.4.2 Metal ions	36
	2.5	Hydrogenase	38
		2.5.1 Involvement of hydrogenase in hydrogen production	38
		2.5.2 Isolation of hydrogenase gene	40
	2.6	Conclusion	42

ISOI	LATION	AND SCREENING OF HYDROGEN PRODUCING	
MIC	ROOR	GANISMS	40
3.1	Introdu	action	43
3.2	Materi	als and methods	45
	3.2.1	Isolation procedure	45
	3.2.2	Carbohydrate termentation test	46
	3.2.3	Screening for best hydrogen producer	47
	3.2.4	Cell morphology test	47
	3.2.5	16s rRNA sequencing and phylogenetic analysis	48
	3.2.6	Hydrogen production in batch fermentation	50
	3.2.7	Hydrogen production in batch fermentation using POME as substrate	51
	3.2.8	Analytic methods	52
	3.2.9	Kinetic modeling	54
3.3	Results	s and Discussions	
	3.3.1	Characterization of isolated hydrogen producer	55
	3.3.2	Hydrogen production in synthetic medium	58
	3.3.3	Effect of yeast extract concentration	61
	3.3.4	Effect of pH on hydrogen production in POME	63
	3.3.5	Effect of temperature on hydrogen production at pH5.5 in POME	67
34	Conclu	ision	69
ON 7 BUT 4.1 4.2	THE YII YRICUM Introdu Materi 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Results	ELD OF BIOHYDROGEN BY CLOSTRIDIUM M EB6 action als and Methods Microorganism Reactor set-up and culture condition Experimental design Analytical methods Kinetic modeling	70 72 73 73 76 77
	4.3.1 4.3.2	Overall performance of biohydrogen production by <i>Clostridium butyricum</i> EB6 in synthetic medium Optimization of pH, glucose concentration and iron concentration for yield of biohydrogen production (r_{H_2} , mol H ₂ /mol glucose)	78 80
	4.3.3 4.3.3	Confirmation of model prediction Effect of pH glucose and iron concentration on	88 90
		hydrogen production	

OPT	'IMIZA'	TION OF BIOHYDROGEN PRODUCTION BY	
CLC	OSTRID	IUM BUTYRICUM EB6 FROM PALM OIL MILL	
EFF	LUENT	USING RESPONSE SURFACE METHODOLOGY	o -
5.1	Introd	uction	95
5.2	Materi	als and methods	97
	5.2.1	Microorganism and culture medium	97
	5.2.2	Cultivation medium and reactor set-up	97
	5.2.3	Experimental design	98
	5.2.4	Analytical method	10
	5.2.5	Kinetic modeling	102
5.3	Result	s and Discussion	103
	5.3.1	Overall performance of hydrogen production from POME	103
	5.3.2	Effect of pH, temperature and COD of POME on P_c (hydrogen production)	100
	5.3.3	Effect of pH, temperature and COD of POME on R_{max} (maximum hydrogen production rate)	113
	5.3.4	Process optimization	116
5.4	Conclu	usion	119
OVE	EREXPF	RESSION OF HYDROGENASE IN CLOSTRIDIUM	
BUT	'YRICU	M EB6	
6.1	Introd	uction	120
6.2	Materi	als and methods	
	6.2.1	Bacterial strains and plasmids	122
	6.2.2	Cloning and sequencing of the <i>C. butyricum</i> EB6 hydA gene	122
	6.2.3	Construction of recombinant C. butyricum EB6	123
	6.2.4	Hydrogen production by recombinant C. butyricum EB6	124
	6.2.5	Analytical methods	125
6.3	Result	s and discussion	120
	6.3.1	Molecular cloning and sequencing of <i>hydA</i> gene from <i>C. butyricum</i> EB6	120
	6.3.2	Hydrogen production by recombinant <i>C. butyricum</i> EB6	137
	6.3.3	Role of [Fe]-hydrogenase in hydrogen production in C. butyricum EB6	14(
6.4	Conclu	usion	141

7	SUMMARY, CONCLUSION AND SUGGESTION FOR FUTURE				
	WO]	RK			
	7.1	Summary	142		
	7.2	Conclusion	145		
	7.3	Suggestion for future work	147		
RE	FERE	NCES	148		
AP	PEND	ICES	163		
BIO	DDAT	A OF STUDENT			
LIS	ST OF	PUBLICATIONS			

LIST OF TABLES

Table		Page
2.1	Yield of biohydrogen from food and starch-based waste.	9
2.2	Yield of biohydrogen from cellulose- and lactose-based wastewater.	13
2.3	Characteristics of palm oil mill effluent.	17
2.4	Biohydrogen production by various microorganisms.	21-22
2.5	List of hydrogenases for which the primary structure has been determined.	41
3.1	Characteristic of POME.	51
3.2	Biohydrogen production by <i>Clostridium butyricum</i> EB6, using raw POME as sole substrate.	65
3.3	Comparision of the hydrogen production obtained in this study to those cited in the literature.	66
4.1	Central composite experimental design matrix on pH, glucose concentration and iron sulphate concentration.	75
4.2	The experimental result for r_{H_2} (mol H ₂ /mol glucose) for the composite design.	81
4.3	ANOVA analysis on model for Y_{H_2} .	83
4.4	Summary of model terms.	84
4.5	Comparison of the hydrogen production obtained in this study to those cited in the literature.	92
5.1	Central composite experimental design matrix on pH, temperature and COD of POME.	100
5.2	The experimental result for P_c and R_{max} for the composite design.	104
5.3	ANOVA analysis on model for Pc and Rmax.	108

5.4	Summary of model terms.	108
5.5	Summary of optimized conditions for P_c and R_{max} and experimental values.	112
5.6	Comparison of biohydrogen production with cited literature.	118

LIST OF FIGURES

Figure		Page
2.1	A schematic diagram for biohydrogen production from cellulose.	11
2.2	A schematic diagram of oil palm fresh food bunch processing flow.	16
2.3	Metabolic pathway of glucose by <i>Clostridium butyricum</i> under anaerobic condition.	23
3.1	The general procedure to get pure isolates	46
3.2	Scanning electron microscopy photo of <i>Clostridium butyricum</i> EB6, growing in POME at pH 6.5 and 37°C.	56
3.3	Phylogenetic tree of the two biohydrogen producing strains and their close relatives based on almost fully sequenced 16s rDNA was constructed. The tree, based on Jukes-Cantor distance, was constructed using neighbour-joining method with 1000 bootstrappings. <i>Bacillus subtilis</i> was selected as outgroup species. The scale bar represents 0.02 substitutions per nucleotide position. Bootstrap values are indicated at the nodes. Reference sequences in the dendogram were obtained from NCBI.	57
3.4	Batch hydrogen fermentation of Clostridium butyricum EB6 with the 6g/L of yeast extract as nitrogen source with 10 g/L of glucose was carbon source. (a) Profile of hydrogen production rate (mL/h), (b) Profile of cell growth and glucose consumption, (c) Profile of hydrogen gas production and total biogas production, and (d) Profile of pH changes	60
3.5	Cumulative hydrogen production at different ratio of yeast extract to ammonium sulfate.	62
3.6	Cumulative hydrogen production at different pH, ranging from pH 5.5 to pH 8.5.	64
3.7	Cumulative hydrogen production at temperature	68
4.1	Batch biohydrogen fermentation of <i>C. butyricum</i> EB6 at pH 5.5, 37°C and 15 g/L glucose. (a) Profile of biogas and biohydrogen production (mL), (b) Profile of dry cell weight (g/L) and glucose utilization (g/L), (c) Profile of acid accumulated (g/L).	79

4.2	Three dimension surface graphs of the model for yield (r_{H_2}) at the	86
	optimum point for each variable. (a) Optimum $FeSO_4$ at 0.39 g/L, (b) Optimum glucose concentration at 15.66 g/L, (c) Optimum pH at 5.60.	
4.3	Relationship between predicted values and observed values for yield of biohydrogen production (Y_{H_2})	89
4.4	Response linear plots of simulated data and experimental data. Yield of biohydrogen production at various glucose concentration at pH 5.6 and iron concentration 0.39 g/L was tested for the accuracy of model developed (Eq 6).	89
5.1	Batch hydrogen fermentation of <i>Clostridium butyricum</i> EB6 from POME at pH 6.0, 37°C and 80g COD/L. (a) Profile of hydrogen production (mL), (b) Profile of biogas production (mL), (c) Profile of hydrogen percentage, and (d) Profile of total carbohydrate.	105
5.2	Three dimension surface graphs of the model for P_c at the optimum point for each variable. (a) fixed pH at 6.0 (b) fixed COD at 80 g/L (c) temperature 37°C.	110
5.3	Relationship between predicted values and observed values. (a) Hydrogen production (mL H_2/g carbohydrate) (b) maximum hydrogen production rate (mL $H_2/h/L$).	111
5.4	Three dimension surface graphs of the model for R_{max} . (a) fixed pH at 6.0 (b) fixed temperature 37°C (c) fixed COD at 80 g/L.	115
5.5	Overlay plot of hydrogen production and hydrogen production rate in response to temperature and pH with the COD fixed at 94 gCOD/L. The optimum area is shaded in grey.	117
6.1	The digestion of pTZ57R/T-hyd with restriction enzyme KpnI and BamHI. Lane1: DNA Ladder Mix, Lane 2: double digested pTZ57R/T-hyd with KpnI and BamHI (1), Lane 3: double digested pTZ57R/T-hyd with KpnI and BamHI (2), Lane 4: single digested pTZ57R/T-hyd with BamHI, Lane 5: PCR product of <i>hydA</i> from <i>C. butyricum</i> EB6 (estimated size of ~2kb).	128
6.2	The amplification of $hydA$ gene of expected size and correct alignment based on colony PCR method by using M13 forward and hydA reverse primer (designed based on the 3' end of $hydA$ gene). Lane1: DNA Ladder Mix, Lane 2: colony with the inverse alignment (negative control). Lanes 3,4,5: colony with the correct alignment.	129

- 6.3 Alignment of [Fe]-hydrogenase of *C. butyricum* EB6 (C. but), *C.* 131 saccarobutyricum (C. sac), *C. paraputrificum* (C. par), *C. perfringers* (C. per) and *C. pasteurianum* (C. pas). Amino acids which are conserved in all sequences are highlighted. Clusters of conserved region are highlighted in blue. -, gap left to improve alignment. Numbers refer to amino acid residues at the start of the respective lines; all sequences are numbered Met-1 of the peptides.
- 6.4 Restriction map of plasmid pJIR418. The multiple cloning site 134 (MCS) is situated at *lacZ* gene. Therefore the selection of transformants can be carried by blue-white screening method.
- 6.5 Overview of construction of expression vector pJIR418-*hydA*. 135
- 6.6 The digestion of pJIR418-hyd with restriction enzyme KpnI and 136 BamHI. Lane1: single digested pJIR418-hyd, Lane 2: DNA Ladder Mix, Lane 3: double digested pJIR418-hyd with KpnI and BamHI.
- 6.7 Batch biohydrogen fermentation of C. butyricum EB6 at pH 5.7, 138 37°C, 15.7g/L of glucose and 0.39 g/L FeSO₄. (a) Profile of biogas and biohydrogen production (mL), (b) Profile of dry cell weight (g/L) and glucose utilization (g/L), (c) Profile of acid accumulation (g/L).
- 6.8 Batch biohydrogen fermentation of recombinant *C. butyricum* EB6 139 with overexpression of hydrogenase gene at pH 5.7, 37°C, 15.7g/L of glucose and 0.39 g/L FeSO₄. (a) Profile of biogas and biohydrogen production (mL), (b) Profile of dry cell weight (g/L) and glucose utilization (g/L), (c) Profile of acid accumulation (g/L).

LIST OF ABBREVIATIONS

H_2	-	Hydrogen
O ₂	-	Oxygen
CO_2	-	Carbon dioxide
MPOB	-	Malaysia Palm Oil Board
POME	-	Palm oil mill effluent
SREP	-	Small Renewable Energy Power Programme
COD	-	Chemical oxygen demand
D	-	Dilution factor
VSS	-	Volatile suspended solid
СНО	-	Carbohydrate
RS	-	Reducing sugar
HRT	-	Hydraulic retention time
СРО	-	Crude palm oil
FFB	-	Fresh fruit bunch
BOD	-	Biological oxygen demand
SS	-	Suspended solid
rRNA	-	Ribosomal ribonucleic acid
ATP	-	Adenosine triphosphate
DCW	-	Dry cell weight
EtOH	-	Ethanol
DGGE	-	Denaturing gradient gel electrophoresis
СО	-	Carbon monoxide
NADH	-	Nicotinamide adenine dinucleotide
RCM	-	Reinforced clostridia medium
SEM	-	Scanning electron microscope
EDTA	-	Ethylenediaminetetraacetic acid
NaOAc	-	Sodium acetate
SDS	-	Sodium dodecyl sulfate

PCR	-	Polymerase chain reaction
TS	-	Total solid
GC	-	Gas chromatography
DNA	-	Deoxyribonucleic acid
NCBI	-	National Center for Biotechnology Information
$C_6H_{12}O_6$		Glucose
CH ₃ COOH		Acetic acid
C ₃ H ₇ COOH		Butyric acid
RSM		Response surface methodology
CCD		Central composite design
ANOVA		Analysis of variance

LIST OF NOMENCLATURE

- $\beta_i = i$ th linear coefficient
- $\beta_{ii} = i$ th quadratic coefficient
- $\beta_{ij} = ij$ th interaction coefficient

 $\beta_o = \text{offset term}$

 $C_{H,i}$ = fraction of hydrogen gas in the headspace of the bottle measured using gas chromatography in the current (%/100)

 $C_{H,i-1}$ = fraction of hydrogen gas in the headspace of the bottle measured using gas chromatography in the previous intervals (%/100)

e = 2.718281828

H = cumulative hydrogen production (mL)

P = hydrogen production potential (mL)

 P_c = biohydrogen production (mL H₂/ g carbohydrate)

 R_m = maximum biohydrogen production rate (mL/h)

 R_{max} = Biohydrogen production rate per liter medium (mL H₂/ h/ L)

 $V_{G,i}$ = total biogas volumes in the current time intervals (mL)

 $V_{G,i-1}$ = total biogas volumes in the previous time intervals (mL)

 V_H the total volume of headspace in the reactor (mL)

 $V_{H,i}$ = cumulative hydrogen gas volumes at the current (*i*) time intervals (mL)

 $V_{H,i-1}$ = cumulative hydrogen gas volumes at the previous (*i*-1) time intervals (mL)

 x_1 = coded values of pH

