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MUATH DHEAA ABDULRADHA AL-FALAHI 

May 2015 

Chairman: B.T. Hang Tuah Bin Baharudin, P.Eng, PhD  
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The development of novel materials (superalloys) is an evolving process towards 

improving the serviceability of their components in hostile industrial environments. 

Hastelloy-C276 is one variation of nickel-based superalloys which is a ductile corrosion-

resistant superalloy that is widely used in chemical and nuclear industries. The superior 

properties of superalloys such as; the high-temperature strength, strain-hardening 

capacity, poor thermal conductivity and high chemical affinity hinder their machinability 

and therefore they are known as difficult-to-machine materials. Little studies were done 

on the machinability of Hastelloy-C276 particularly in term of surface integrity, 

therefore, this thesis aims to investigate surface integrity and tool wear in groove milling 

of Hastelloy-C276 using coated carbide end mills coated using different cutting 

parameters and conditions in the speed range of 24 m/min to 120 m/min. Two aspects of 

surface integrity were concerned; the arithmetic roughness and the micro-defects. Focus-

variation microscope and scanning electron microscope (SEM) with the aid of energy 

dispersive x-ray spectroscopy (EDX) were used to measure the arithmetic roughness and 

the micro-defects of the machined surfaces respectively. Cutting speed of 50 m/min and 

below combined with the minimum feed and non-shallow depth of cut produced 

superior surface finish with average roughness below 50 nm. The dominant surface 

defects at low cutting speed were side flow, micro-chips re-deposition and long grooves. 

At cutting speed of 70 m/min and higher, cracks appeared on ploughed layers on the 

surface and these cracks are created by the brittle fracture due to the high strain-rate. 

Other surface defects at high cutting speed were smears, debris and side flow. The 

increase in surface defects at high cutting speed resulted in increase in surface roughness 

beyond 100 nm. Surface cavitation appeared at most of the runs and was probably 

caused by the breakage of the nucleated carbide phases. Tool-workpiece friction in dry 

machining resulted in large surface craters and large ploughing in addition to severe 

plastic flow, overlaps and voids created by the thermally induced deformation. Built-up 

edges formation on the tool faces can be avoided by increasing the cutting speed to 

70m/min in wet machining for better chip disposal and only to 50m/min in dry 



© C
OPYRIG

HT U
PM

ii 

 

machining since the high oxidation reduces chips adherence tendency. The high 

oxidation promoted in dry machining resulted in less chips adhesion on groove’s edges 

due to the poor adhesive capacity of the oxide compounds.  
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KESAN PARAMETER PEMOTONGAN KE ATAS INTEGRITI PERMUKAAN 

DALAM PEMESINAN ALUR  HASTELLOY-C276 MENGGUNAKAN 

KARBIDA YANG BERSALUT MELALUI PEMESINAN KERING DAN 

BERPENYEJUK 

Oleh  

MUATH DHEAA ABDULRADHA AL-FALAHI 

Mei 2015 

Pengerusi: B.T. Hang Tuah Bin Baharudin, P.Eng, PhD  

Fakulti: Kejuruteraan 

 

Kajian dalam pemprosesan bahan aloi super yang semakin berkembang amatlah penting 

untuk penambahbaikan terhadap kegunaan super-aloi tersebut sebagai komponen dalam 

perindustrian. Hastelloy-C276 adalah salah satu aloi super yang berasaskan Nikel, 

berkemampuan untuk menahan hakisan terhadap karat dan digunakan secara meluas 

dalam industri kimia dan nuklear. Kehebatan sifat aloi super ini mampu bertahan 

kekuatannya pada suhu tinggi, kebolehannya dalam pengerasan terikan, dan konduksi 

terma rendah adalah penyebab aloi Nikel dikenali sebagai bahan sukar untuk diproses. 

Didapati tidak banyak maklumat kajian telah dibuat berkenaan integriti permukaan aloi 

Hastelloy-C276, oleh sebab itu kajian ini dilakukan bertujuan untuk menyiasat 

pemprosesan mesin menggunakan alat pemotong hujung rata di mana parameter 

pemotongan pada kadar yang berbeza dalam pelbagai kelajuan pemotongan antara 24 

m/min dan 120 m/min. Mikroskop pelbagai fokus, mikroskop imbasan electron (SEM) 

dan mikroskop optik telah digunakan untuk mengukur kekasaran permukaan, kecacatan 

permukaan menganalisis dan menganalisis kehausan alat pemotong, masing-masing. 

Kekasaran permukaan di bawah 50 nm boleh didapati dengan kelajuan pemotongan 50 

m/min dan bawah dengan kadar suapan yang minimum dan pemotongan axial yang 

tidak cetek. Kekasaran permukaan telah meningkat atas 100 nm dengan kelajuan 

pemotongan 70 m/min dan atas kerana kecacatan permukaan menjadi lebih teruk. Profil 

permukaan yang tidak sekata telah dihasilkan dalam pemposesan mesin kering kerana 

suhu tinggi semasa pemesinan yang meningkatkan pengoksidaan, ubah bentuk plastik 

yang teruk dan geseran antara alat pemotong dan aloi. Serpihan di pinggir alat pemotong 

adalah selalu kelakuan kehausan yang utama; lekatan haus dan kejadian built-up edge 

berlaku pada kelajuan pemotongan yang rendah. Dalam pemprosesan mesin kering, 

serpihan adalah lebih teruk terjadi kerana suhu tinggi dan rekatan adalah kurang kerana 

pengoksidaan tinggi. Untuk mendapat permukaan kasar yang rendah tanpa permukaan 

mikro-kecacatan yang teruk, hasil daripada kajian ini, berdasarkan kelajuan pemotongan 
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di bawah 50 m/min dengan kadar suapan yang minimum serta kedalaman pemotongan 

yang tidak cetek mesti digunakan. 
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CHAPTER 1 

 

INTRODUCTION 

 

Metallic alloys that have high strength, outstanding corrosion- and creep resistance and 

capable to retain their physical properties at high temperatures above 650°C are known 

as superalloys. These alloys have been developed mainly for air foils in the hot section 

of gas turbine engines and then they became widely used in several other applications 

such as; nuclear reactors, industrial furnaces, rocket components, heat exchangers, 

petrochemical equipment, petroleum production, automotive turbochargers and 

biomedical devices (Charre, 1997; Geddes & Leon, 2010). Machining processes such as 

turning, milling, grinding and broaching are vitally important in superalloys parts 

manufacturing. Superalloys machining is quite costly due to the very low allowable 

cutting speeds which are only 5-10% of those allowed for steel alloys. Low cutting 

speed is required due to the severe tool wear that is caused by the varying thermal and 

mechanical loads causing poor accuracy and surface deterioration. The properties that 

make superalloys difficult-to-machine are the high-temperature strength, high dynamic 

shear strength, hard carbide phases which make them abrasive, high strain hardening 

capacity and poor thermal conductivity which increases the tool tip temperature 

(Donachie & Donachie, 2002; Zhang, 2013). Due to the high importance of superalloys’ 

surface condition on the machined part life, this thesis represents a study on the 

machined surfaces in groove milling of Hastelloy-C276 using carbide end mills with 

newly developed coating.     

 

 

1.1. The Background of Hastelloy-C276 

 

Hastelloy is a name for Ni-Cr-Mo-W superalloys which are wrought ductile superalloys 

that are known by their excellent performance in corrosive mediums and their very good 

weldability which make them preferred choice in aerospace engines, marine, petroleum, 

chemical and nuclear industries (Akhter et al., 2001; Guo et al., 2014). Due to their poor 

castability, the cast forms of Hastelloy are more susceptible to chemical attack and 

therefore they are available in wrought forms (Gossett, 1988). The strong corrosion 

resistance of Hastelloy is counted to high percentage of Chromium which improves the 

oxidation resistance and Mo and W which improve their corrosion resistance to non-

oxidizing acids (Davis, 2000). The strong physical properties are counted for Cr which 

increase hardenability, Mo which improves strength and toughness and W which 

enhances the hot hardness (Cardarelli, 2008).  Hastelloy-C267 is one variation of these 

alloys which is known by its versatility to several corrosive mediums such as chloride 

and seawater and due to their good formability they are produced in a variety of products 

such as; pipes, flanges, strips bars, etc. (Mehta et al. 2014). Hastelloy-C267 is used 

therefore for heat exchangers, reaction vessels, and piping in chemical industry and for 

stack liners, ducts, dampers, scrubbers and fans in pollution control industry (Davis, 

2000). 

 

 

http://ezproxy.upm.edu.my:2135/search?facet-author=%22James+L.+Gossett%22
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1.2. The Machinability of Hastelloy-C267 

 

The superior physical properties of Ni-based superalloys in general and their high 

temperature strength depress their machinability and therefore they are known as 

difficult-to-machine material. The following points summarize the dominant factors that 

make Ni-based superalloys intractable in machining: 

 

- The heat generated by cutting is hardly dissipated into the workpiece due to the 

poor thermal conductivity of Ni-based superalloys and therefore the heat become 

concentrated in the cutting zone and become extremely high to extent that it can 

easily reach beyond 800° C (El-Wardany et al. 1996).  Normal tools may not be 

able to withstand this extreme temperature due to oxidation in addition to the 

high chemical affinity of Ni-based superalloys which cause severe diffusion of 

their elements into the tool (Donachie & Donachie, 2002). The high cutting 

temperature also produce tensile residual stresses on the machined surfaces 

(Pawade et al. 2008) in addition to surface damages such as crack and plastic 

flow (Zhou et al. 2012). 

 

- The high strain hardening capacity of Ni-based superalloys increases the stresses 

on the cutting tool which decrease tool life and thus machining at low feed rate is 

required which reduces the productivity (Lavella et al. 2008; Zhu et al. 2013). 

 

- Welding of work material on the tool face and the formation of built-up edge 

(BUE) which can contribute to groove formation on tool face by peeling of some 

part of the cutting tool when the BUE is removed by progressive machining 

(Liao & Shiue, 1996). 

 

- Difficult chip control and the formation of long continuous and serrated hard 

chips enhance the crater wear (Ezugwu et al. 2009). 

 

The integrity of the machined surface is one of the main aspects of the machinability and 

it is crucially important due to its impact on the service life, performance and reliability 

of the components especially in aerospace and nuclear industries where the components 

are operating under high stresses, temperatures and corrosive environments (Field, 

1973). Surface integrity includes several features of the surfaces which are mainly the 

arithmetic roughness, surface damages, surface hardness and residual stresses (Ulutan & 

Ozel, 2011). The low arithmetic surface roughness can’t guarantee high quality of the 

machined surface as it can be associated with poor quality of other integrity features 

such as the micro-damages which could hinder some of the material properties such as 

fatigue strength and creep life (Zhou et al. 2012).  

 

Due to the aforementioned difficulties, there is always a need to use special tools in 

machining Ni-based superalloys. NS Tool Corporation, Ltd has developed MUGEN-

coating-premium which is meant to machine intractable superlloys. This study is aimed 

to investigate the effect of cutting parameters under on the surface arithmetic roughness, 

topology in milling Hastelloy-C276 using MUGEN-premium coated carbide end mills 
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with and without the application of water-based fluid coolant. Focus variation micro-

scope has been used to obtain the arithmetic surface roughness values and 3D surface 

topography of the machined surfaces. Scanning electron microscopes (SEM) with the 

aid of energy dispersive x-ray spectroscopy (EDX) have been used to investigate the 

surface micro-damages. Other issues such as the primary tool wear and edge cleanness 

has been also discussed. 

 

 

1.3. Statement of the Problem 

 

The development of novel materials keeps evolving by altering the percentages of 

alloying elements and applying different heat treatments to alter the micro-structures for 

the purpose of improving the alloys’ serviceability in a very particular application. 

Despite some general common properties between Hastelloy-C276 and other difficult-

to-machine materials in term of hardness, high temperature-strength, strain-hardening 

capacity and so on, it is not easy to predict the distinct issues associated with its 

machinability by relying on data obtained for other intractable materials especially at 

different machining conditions. Different manufacturing processes such as; turning, 

indexable milling, grinding and so on, and different workpiece properties such as phase 

structures and alloying elements are enough to make difference in the output particularly 

for surface finish and tool wear. Surface finish can be affected by the deformability of 

the material’s micro-phases and tool wear by the diffusivity of the alloying elements and 

their tendency to adhere on the tool face in addition to the other factors such as work 

hardening. The majority of the studies in this field were concerned about hard Ni-based 

aerospace alloys such as; Inconel and Nimonic and there is lack of studies that were 

concerned about machining ductile corrosion-resistant superalloys (Hastelloy) 

particularly in groove milling. Little attention has been made also to the micro-surface 

abuse of the machined surfaces and the possible mechanisms of their formation, despite 

their impact on component’s fatigue and creep life. Understanding the surface damages 

and their mechanism can help engineers to mitigate surface abuse by adjusting the 

machining parameters and conditions.   

 

 

1.4. Objectives  

 

This thesis aims to investigate the effect of cutting parameters (cutting speed, feed rate 

and depth of cut) and cutting condition (dry and with application of water-based fluid 

coolant) in full slot milling (grooving) of Hastelloy-C276 on surface integrity. The two 

aspects covered at surface defects and roughness which are important measures of the 

product quality. Furthermore, the high adhesive affinity of the workpiece and the high 

temperature produced during machining result in rapid tool wear by adhesion and 

oxidation, respectively. This thesis intends to highlight these issues and, therefore, its 

objectives are: 
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1- To study the surface roughness and the micro-features of the machined surfaces 

under different cutting parameters and cooling conditions and subsequently 

determine the most recommended parameters and conditions for finish milling. 

2- To evaluate the dominant tool wear modes at the early stages machining and the 

effect of parameters on adhesion, oxidation and chipping wear.  

3- To determine the mechanism of surface damages formation and the most influential 

parameters to their formation.   

 

 

1.5. Research Scope 

 

Surface integrity of the machined surface in machining nickel-based superalloys 

includes several aspects, in addition to arithmetic roughness and damages, such as; 

surface hardness, the thickness of the hardened layer, the formation of white layer, the 

formation of fine grains layer on the top surface, residual stresses and microstructural 

alteration. This thesis focuses on surface roughness and damages which are two aspects 

that deals with surface topography without taking into account the deformation beneath 

the surface. This thesis is also concerned only about oxidation and adhesion wear modes 

which occur at the early stage machining without taking into account the progressive 

flank wear and tool life.  
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