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Faculty: Engineering

High–voltage dc has a wide area of application in military, science and industry.

Based on the energy equation, in order to produce more potential energy, due to lim-

itations in increasing the capacitance, another parameter which is the voltage must

be increased to a higher value. In the recent century, many types of high–voltage

generators and voltage multipliers are introduced to do this task, and until now;

their development and improvement are subject to be continued. Indeed, a charge

pump is another type of voltage multiplier that can produce a dc voltage at its out-

put. Unlike the voltage multipliers that employ to generate a low or high–voltage

dc, charge pumps are generally used in low–voltage applications. In this thesis, a

novel charge pump is developed for high–voltage applications. By re–designing a

voltage multiplier circuit, it attempts to propose a novel charge pump configura-

tion that can produce higher output dc voltage and stored potential energy. Since,

the proposed circuit includes many energy storage components, understanding its

performance and calculating the output voltage in time–domain seems to be very

complicated and time–consuming process. Thus, a circuit theory is used to explain

the performance of the circuit in a simple way. Furthermore, this theory offers an

iii



© C
OPYRIG

HT U
PM

equation to explain the correlations between the output voltage and stored potential

energy with the input voltage and number of stages. In order to evaluate the pro-

posed circuit, simulation has been carried out, and its output results were compared

with calculations. In order to identify a more precise behaviour of the output volt-

age parameters, in steady–state, and their dependence to the input voltage, number

of stages and pumping frequency; an approximate mathematical model optimized

for each parameter that can give an enhanced view of the circuit for better under-

standing of its behaviour. In addition, a new time–domain equation is suggested

for the proposed charge pump. Moreover, based on the suggested time–domain

equation, a suitable transfer function for both the transient and the steady–state

response of the proposed charge pump is calculated. This transfer function can

be used for modelling and simulating the circuit as a control system. Ultimately,

a prototype circuit of the proposed charge pump with the ability of converting to

the conventional circuit with the same values, and circuit parameters have been de-

signed, optimized and fabricated; its output results were compared with the output

results of the conventional circuit; and results of calculation and simulation. In this

research, the novel charge pump is successfully designed, fabricated and validated.

The results show its promised application in science and military.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENAMBAHBAIKAN PAM CAS UNTUK APLIKASI PENYAHCAS
KAPASITOR

Oleh

ARASH MOHAMMADI TOUDESHKI

Jun 2013

Pengerusi: Prof. Norman Mariun, PhD, Ir

Fakulti: Kejuruteraan

Voltan tinggi arus terus mempunyai aplikasi yang luas dalam tentera, sains dan

indutri. Berdasarkan persamaan tenaga, untuk menghasilkan tenaga yang lebih

berpotensi, disebabkan batasan dalam meningkatkan kapasiti, parameter lain, iaitu

voltan mesti ditingkat ke nilai yang lebih tinggi. Dalam beberapa abad, pelba-

gai jenis penjana voltan tinggi dan pengganda voltan diperkenalkan kepada tugas

ini, dan sehingga kini, pembangunan dan peningkatan mereka masih diteruskan.

Sesungguhnya, pam cas adalah jenis lain bagi pengganda voltan yang boleh meng-

hasilkan voltan arus terus pada keluarannya. Tidak seperti pengganda voltan yang

menggaji untuk menghasilkan voltan arus terus yang rendah atau tinggi, pam cas

biasanya digunakan dalam aplikasi voltan rendah. Dalam tesis ini, novel pam cas

dibangunkan untuk aplikasi voltan tinggi. Dengan merekabentuk semula litar peng-

ganda voltan, ia cuba untuk mencadangkan novel konfigurasi pam cas yang boleh

menghasilkan voltan arus terus dan potensi menyimpan tenaga. Kerana litar yg

dicadangkan termasuk banyak komponen menyimpan tenaga, memahami prestasi

dan mengira voltan keluaran dalam domain masa dilihat sangat rumit dan memakan

masa proses. Oleh itu, teori litar digunakan untuk memperjelaskan prestasi litar
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dalam jalan yang mudah. Selain itu, teori ini menawarkan persamaan untuk men-

erangkan hubungan antara voltan keluaran dan tenaga potensi yang disimpan den-

gan voltan input dan bilangan peringkat. Dalam usaha untuk menilai litar yang di-

cadangkan, ia telah disimulasikan dan keputusan keluarannya dibandingkan dengan

keputusan pengiraan persamaan yang telah dicadangkan. Dalam usaha untuk men-

genalpasti kelakuan parameter voltan keluaran, dalam keadaan mantap, dan per-

gantungannya dalam voltan input, bilangan peringkat dan kekerapan mengepam;

anggaran model matematik dioptimumkan bagi setiap parameter yang boleh mem-

beri pandangan yang dipertingkatkan litar untuk pemahaman yang lebih baik untuk

tingkah lakunya. Bagi aplikasi tentera dan saintifik, mengetahui perilaku domain

masa bagi keluaran litar juga adalah penting. Dalam perkara ini, persamaan do-

main masa yang baru telah dicadangkan bagi pam cas ini. Selain itu, berdasarkan

persamaan domain masa yang telah dicadangkan, satu rangkap pindah yang sesuai

yang boleh menjelaskan kedua-dua fana dan keadaan mantap. Reaksi bagi pam

cas yang dicadangkan, telah dikira. Rangkap pindah ini boleh digunakan untuk

pemodelan dan simulasi litar itu sebagai sistem kawalan. Akhirnya, litar prototaip

bagi pam cas yang dicadangkan dengan keupayaan menukar ke litar konvensional

bersama nilai yang sama, dan parameter litar yang telah direka, dioptimasikan dan

dibina; keputusan keluarannya dibandingkan dengan keputusan keluaran bagi litar

konvensional; dn juga keputusan pengiraan dan simulasi. Dalam penyelidikan ini,

novel pam cas telah direkabentuk, dibina dan disahkan dengan jayanya Keputusan

menunjukkan ianya menjanjikan aplikasi dalam sains dan tentera.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Voltage Increasing Techniques

Since electricity was discovered, due to various applications, there is always a need

for higher voltage level. However, the subsisted power supplies could produce very

low–voltages, based on their source of energy or insulation limits. Engineers have

always tried to find ways for generating a voltage, higher than the supply voltage.

As a result, many methods have been suggested and utilized to do this task. Some

of the most commonly applied methods for producing a voltage larger than the

power supply voltage are as follows.

1. Step–up transformers

2. Voltage multiplier circuits

3. Level shifters

4. Charge pump circuits

5. Switched–capacitor circuits

6. Boost or step–up converters

Transformers were the first utilized systems, which were introduced to convert a

low–voltage input to a high–voltage output. However, since a transformer needs

huge amount of copper and iron in its structure, to isolate and wireless transmis-

sion of the input energy from primary to its secondary winding by magnetizing the

core, losses can occur because of copper impedance and hysteresis (in high–voltage
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application since the extra gap exists due to the required insulation these losses are

more significant). Furthermore, the size, insulation and cooling of transformers are

the issues that need to be concerned (Lee et al., 2011).

Because of the mentioned limitation of the transformer, another method must be

found, which can produce high–voltage, especially in electrostatic applications that

the output voltage of the supply is important, more than its current. Respectively,

a cascade configuration of voltage doublers which could produce an output voltage

higher than the input voltage, as a function of its number of stages, has been in-

troduced (Cockcroft and Walton, 1932).

In the circuit of Cockcroft and Walton (1932), huge vacuum tubes were used. Com-

pared to those similar circuits today, it had a big size, high–voltage drop, high–

losses, high–energy transmission path and output impedance, low voltage–gain,

slow output rise speed, and it was costly.

Some of these problems were almost solved or reduced by the invention of the semi-

conductors and topological development of the conventional Cockcroft and Walton

(1932) voltage multiplier (Dickson, 1976; Karthaus and Fischer, 2003; De Roover

and Steyaert, 2010; Chung et al., 2011; Qiang et al., 2012). However, the problem

of the low voltage–gain and long rise–time still remain.

The amount of the voltage can be increased by using level shifter circuits. This cir-

cuit can rapidly increase the voltage value, and it was a low–power system. More-

over, it includes many MOSFET switches in its configuration (Liu et al., 2010).

This limits utilizing this circuit in a high–voltage application, but it was suitable

only for low–voltage application.
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DC–DC switching boost or step–up converter was an alternative to produce an

output voltage, which was higher than the input voltage. The principal of these

DC–DC converters were based on controlling the duty–cycle of switch and deal-

ing with the energy between magnetic inductors and capacitors (Deng et al., 2012).

However, due to some practical limits such as electromagnetic interferences, voltage

drop, poor insulation, low breakdown voltage of the switches, high impedance of the

energy transmission path and losses are impractical for high–voltage applications.

Switched–capacitor was an option which was employed to attain higher voltage gain

with fewer numbers of stages and number of electronic and passive components as

well (Makowski and Maksimović, 1995; Starzyk et al., 2001). However, the problem

with this type of voltage multipliers was the low breakdown voltage of switches;

difficult control and switching of a switch between the source and capacitor with-

out any proportional element; and complexity in its configuration, which limit the

potentiality of using this voltage multiplier in high–voltage application. However,

since this configuration has a high–voltage efficiency and lower output and trans-

mission path impedance compared to the traditional methods, it is only suitable

for low–voltage on–chip applications.

Another regular method to generate a voltage larger than the available supply volt-

age is the charge pump circuit (Shin et al., 2000; Pylarinos and Rogers Sr, 2003).

Unlike the other traditional DC–DC converters, which employ inductors, charge

pumps are only capacitors and switches (Dickson, 1976).

1.1.2 Capacitor Discharge Application

One of the applications that requires a voltage higher than the available power sup-

ply voltage is the Marx impulse generator (Toudeshki et al., 2012b). This genera-

tor is producing high–voltage impulses based on the capacitor discharge technique

3
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(Toudeshki et al., 2013). In this technique, capacitors charge in parallel connec-

tion and discharge the stored energy to the load, when capacitors are connected in

series. Before discharge occurs for a Marx impulse generator, the output voltage

peak can be attained to the maximum of m times greater than the input DC voltage.

Although the Marx impulse generator is a circuit that is used for increasing the in-

put DC voltage to a higher level, this circuit also needs a high–voltage DC source,

in its input. This requirement is for making a sustainable insulation breakdown

in the air gaps. Therefore, the Marx impulse generator itself needs another DC

voltage multiplier circuit for providing its required high input DC voltage.

1.1.3 Summary of Background

All the mentioned methods which were used in order to achieve a voltage which is

higher than the source, had some advantages and disadvantages and none of them

was perfect. However, by utilizing the advantages of each configuration, it is ex-

pected that a new circuit with better performance can be proposed. Although the

proposed circuit topologies look simple, due to existence of many switches, pas-

sive energy storage components, voltage drops and transmission of the ac electrical

power through the circuit’s components, the exact performance of the circuit is

complicated and needs to be simplified.

The circuits that is discussed in this thesis, sometimes called “voltage multiplier”

and often “charge pump”. It is believed that both names are correct and can be use

to call this circuit. However, since the transformers and boost converters are also

multiplying the applied input voltage to a constant value, it is preferred to call the

Cockcroft and Walton; Dickson’s class circuits as “charge pump”, which this name

can show the natural functionality of these types of circuits. This is the reason why

this name is appeared in the title of this thesis.

4
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1.2 Problem Statement

Since about a century ago, many methods for producing a voltage larger than the

available supply voltage are known, such as Cockcroft and Walton (1932); Falkner

(1973); Dickson (1976); Makowski and Maksimović (1995); Starzyk et al. (2001);

Karthaus and Fischer (2003). However, considering the advantages and disadvan-

tages of each method shows that some unsolved problems still remain. The main

problem is the low–voltage gain capability of the existing circuits. Although the

voltage gain of Makowski and Maksimović (1995) and Starzyk et al. (2001) circuit

configurations were significantly greater than other methods, they are impractical

for high–voltage applications. On the other hand, the maximum voltage gain of

the existing configurations which can be employed for high-voltage application such

as Cockcroft and Walton (1932) and Karthaus and Fischer (2003) cannot be more

than two times number of stages times the input voltage. Thus, in order to attain a

higher voltage gain, using the same number of stages, the circuit configuration needs

to be improved. In addition, it is found that calculating the output voltage by fol-

lowing the actual performance of the charge pump is difficult and time–consuming.

Moreover, calculating the output voltage as a function of time is also a complex

and time-consuming process. In order to design a charge pump, knowing the out-

put voltage value as a function of number of stages and other significant parameters

is necessary. On the other hand, the long transient time is another problem that

exists on this topic, and needs to be improved.

1.3 Aim of study

In order to produce a higher amount of potential energy, the aim of this study

is to improve on the performance of the existing charge pump configuration for

high–voltage application. Respectively, a novel charge pump configuration should

5
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be proposed. A new numerical–graphical technique need to be demonstrated for

describing the numerical correlations between the voltage gain of the proposed novel

charge pump and the previous charge pumps. The exact behaviour of the proposed

charge pump circuit must be obtained by clarifying its optimal model. By knowing

more information regarding the performance of the proposed charge pump circuit,

it can be utilized for different fields of applications.

1.4 Objectives

The main objectives of this study are as follows.

i. To propose a new circuit configuration of charge pump that can be utilized in

high–voltage applications.

ii. To find a simple method that can explain the performance of the proposed

circuit.

iii. To generalize an approximate mathematical model for calculating the output

voltage of the proposed charge pump configuration, in steady–state.

iv. To suggest a time–domain model for the proposed and conventional charge

pump systems.

1.5 Research Contributions

The most significant contributions of this study are as follow:

a. Introducing a novel charge pump configuration that can be utilized in high–

voltage application.

6
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b. Simplifying the complex performance of the proposed circuit (in a theoretical,

numerical and graphical ways), understandable for future applications.

c. The graphical and analytical presentation of the output gain correlations between

the previous and the proposed novel charge pump circuits.

d. Finding the optimal value of the input capacitance.

e. Generalizing a new approximate mathematical model for the output voltage

components of the proposed novel charge pump configuration, in steady–state,

as a function of the input voltage, number of stages and pumping frequency.

f. A universal model as a function of time that can explain the time–domain re-

sponse of both conventional and proposed novel charge pump circuits.

g. Proposing an open–loop control system and investigating the stability of the

charge pump, based on the sinusoidal input voltage and its time–domain re-

sponse, for both conventional and proposed novel charge pump circuits, that can

be used to simulate the performance of both charge pump circuits for future

studies.

h. Simulation, experimental test, measurement and data analysis of the proposed

novel charge pump circuit.

1.6 Scope and Limitations of the Study

The main purpose of the novel charge pump circuit is for storage of the potential

energy in a capacitor. This stored energy will be used in capacitor discharge ap-

plication. Therefore, the load of this circuit is assumed as a pure capacitive load

during all design, calculation, test and evaluation process. The experimental circuit

design optimization is carried–out based on the biggest value of energy storage com-

ponent (100 nF) with maximum breakdown voltage of 1 kV, which was available in

the electronic market in Malaysia, to achieve the required DC output of 3 kV and

7
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0.45 J potential energy, from an initial 6 to 9 V DC power supply, for the capacitive

discharge application. However, theoretically this method can be also generalized

for different values of voltage gain and number of stages.

1.7 Outline of Thesis

This thesis includes five chapters, as the following. Chapter 1 (the current chapter)

is the introduction of this thesis and introduces the background, statement of the

problem, aim of study, objectives and the scope and limitations of the study. Chap-

ter 2 is the literature review. The general methodology of this work is presented

in Chapter 3 and the results, and their discussions are given in Chapter 4. Finally,

the work is concluded in Chapter 5.

8
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Nimo, A., Grgić, D. and Reindl, L. M. 2012. Optimization of passive low power
wireless electromagnetic energy harvesters. Sensors 12 (10): 13636–13663.

187



© C
OPYRIG

HT U
PM

Ogata, K. 2010. Modern control engineering . 5th edn. Boston: Prentice Hall.

O’Neil, P. V. 2007. Advanced engineering mathematics . 6th edn. Thomson.

Palumbo, G. and Pappalardo, D. 2006. Charge pump circuits with only capacitive
loads: optimized design. Circuits and Systems II: Express Briefs, IEEE Transac-
tions on 53 (2): 128–132.

Palumbo, G. and Pappalardo, D. 2010. Charge pump circuits: An overview on
design strategies and topologies. Circuits and Systems Magazine, IEEE 10 (1):
31–45.

Palumbo, G., Pappalardo, D. and Gaibotti, M. 2002. Charge–pump circuits: power–
consumption optimization. In Circuits and Systems I: Fundamental Theory and
Applications, IEEE Transactions on, 1535–1542.

Park, S. and Jahns, T. M. 2005. A self-boost charge pump topology for a gate
drive high-side power supply. IEEE Transactions on Power Electronics 20 (2):
300–307.

Pelgrom, M. J. M. 2013, In Analog-to-Digital Conversion, In Analog-to-Digital Con-
version, 197–225, New York, NY: Springer New York, 197–225.

Pelliconi, R., Iezzi, D., Baroni, A., Pasotti, M. and Rolandi, P. L. 2003. Power
efficient charge pump in deep submicron standard CMOS technology. Solid-State
Circuits, IEEE Journal of 38 (6): 1068–1071.

Phang, K. and Johns, D. A. 2001. A 1 V 1 mW CMOS front-end with on–chip
dynamic gate biasing for a 75 Mb/s optical receiver. In Solid-State Circuits Con-
ference, 2001. Digest of Technical Papers. ISSCC. 2001 IEEE International , 218–
219. IEEE.

Pishgahi, A. 2012. Numerical investigation of laminar flow and thermal character-
istics of tangential cooling air jet in a sudden expansion channel . PhD thesis,
Universiti Putra Malaysia.

Pylarinos, L. and Rogers Sr, E. S. 2003. Charge pumps: An overview. In in Proceed-
ings of the IEEE International Symposium on Circuits and Systems . Deparrment
of Electrical and Computer Engineering University of Toronto: Citeseer.

Qiang, Z., Weining, N., Yin, S. and Yude, Y. 2012. A CMOS AC/DC charge pump
for a wireless sensor network. Journal of Semiconductors 33 (10): 105003.1–
105003.5.

Quinino, R. C., Reis, E. A. and Bessegato, L. F. 2012. Using the coefficient of
determination R2 to test the significance of multiple linear regression. Teaching
Statistics (Weatherburn): 1–5.

Rashid, M. H. 2011. Microelectronic Circuits: Analysis and Design. 2nd edn. Cen-
gage Publishing.

Reinhold, G. and Gleyvod, R. 1975. Megawatt HV DC power supplies. Nuclear
Science, IEEE Transactions on 22 (3): 1289–1292.

188



© C
OPYRIG

HT U
PM

Reinhold, G., Truempy, K. and Bill, J. 1965. The symmetrical cascade rectifier an
accelerator power supply in the megavolt and milliampere range. Nuclear Science,
IEEE Transactions on 12 (3): 288–292.

Richelli, A., Mensi, L., Colalongo, L., Rolandi, P. L. and Kovacs-Vajna, Z. M.
2007. A 1.2 to 8 V charge–pump with improved power efficiency for non-volatille
memories. In 2007 IEEE International Solid–State Circuits Conference. Digest
of Technical Papers , 522–619. IEEE.

Sablonnière, P., Sbibih, D. and Tahrichi, M. 2012, In Curves and Surfaces, In Curves
and Surfaces (eds. J. D. Boissonnat, P. Chenin, A. Cohen, C. Gout, T. Lyche,
M. L. Mazure, and L. Schumaker), Lecture Notes in Computer Science, vol. 6920,
603–611, Springer Berlin / Heidelberg, 603–611.

Shang, Z. Q. 1993. The convergence problem in SPICE. In SPICE: Surviving Prob-
lems in Circuit Evaluation, IEE Colloquium on, 10–1. IET.

Shin, J., Chung, I. Y., Park, Y. J. and Min, H. S. 2000. A new charge pump without
degradation in threshold voltage due to body effect [memory applications]. Solid-
State Circuits, IEEE Journal of 35 (8): 1227–1230.

Starzyk, J. A., Jan, Y. W. and Qiu, F. 2001. A DC-DC charge pump design based on
voltage doublers. Circuits and Systems I: Fundamental Theory and Applications,
IEEE Transactions on 48 (3): 350–359.

Stern, F., Wilson, R. V., Coleman, H. W. and Paterson, E. G. 1999. Verification and
validation of CFD simulations . Iowa Institute of Hydraulic Research, University
of Iowa.

Tam, K. S. and Bloodworth, E. 1990. Automated topological generation and anal-
ysis of voltage multiplier circuits. Circuits and Systems, IEEE Transactions on
37 (3): 432–436.

Tanzawa, T. and Tanaka, T. 1997. A dynamic analysis of the Dickson charge pump
circuit. Solid–State Circuits, IEEE Journal of 32 (8): 1231–1240.

Tatari, M. 2011. A new efficient technique for finding the solution of initial-value
problems using He’s variational iteration method. International Journal for Nu-
merical Methods in Biomedical Engineering 27 (9): 1376–1384.

Toudeshki, A., Mariun, N., Bashi, S. M., Hizam, H., Badran, S. M. and Jamaludin,
H. 2012a. Reducing electromagnetic interference of high-power non-isolated DC-
to-DC step-down converter based on total harmonic distortion of input current.
International Review on Modelling and Simulations (I.RE.MO.S.) 5 (1): 107–113.

Toudeshki, A., Mariun, N., Hizam, H., Abdul Wahab, N. I., Hojabri, M., Sai’d,
Y. A., Saadatian, O., Mansoor, M. and Saadatian, E. 2013. Derivation of Load
Peak Voltage , Power Consumption and Potential Energy Management in a
Thyristor Controlled Marx Impulse Generator for Capacitor Discharge Appli-
cation. Majlesi Journal of Energy Management 2 (2): 1–5.

189



© C
OPYRIG

HT U
PM

Toudeshki, A., Mariun, N., Hizam, H. and Wahab, N. I. A. 2012b. The energy
and cost calculation for a Marx pulse generator based on input DC voltage,
capacitor values and number of stages. In Power and Energy (PECon), 2012
IEEE International Conference on, 745–749.

Wang, J., Dong, L. and Fu, Y. 2011. Modeling of UHF voltage multiplier for radio–
triggered wake-up circuits. International Journal of Circuit Theory and Applica-
tions 39 (11): 1189–1197.

Wang, J., Fu, Y. and Dong, L. 2009a. Modeling of UHF voltage multiplier for radio–
triggered wake–up circuit. In 2009 IEEE 10th Annual Wireless and Microwave
Technology Conference, 1–3. Ieee.

Wang, X., Wu, D., Qiao, F., Zhu, P., Li, K., Pan, L. and Zhou, R. 2009b. A
high efficiency CMOS charge pump for low voltage operation. In ASIC, 2009.
ASICON’09. IEEE 8th International Conference on, 320–323. IEEE.

Wolfram, S. 1984. Geometry of binomial coefficients. American Mathematical
Monthly 91 (9): 566–571.

Wu, J. T. and Chang, K. L. 1998. MOS charge pumps for low-voltage operation.
Solid-State Circuits, IEEE Journal of 33 (4): 592–597.

Zhang, M. and Llaser, N. 2004. Optimization design of the Dickson charge pump cir-
cuit with a resistive load. In Circuits and Systems, 2004. ISCAS ’04. Proceedings
of the 2004 International Symposium on, V–840–V–843. IEEE.

Zhang, T., Palii, S. P., Eyler, J. R. and Brajter-Toth, A. 2002. Enhancement of
ionization efficiency by electrochemical reaction products in on–line electrochem-
istry/electrospray ionization Fourier transform ion cyclotron resonance mass spec-
trometry. Analytical chemistry 74 (5): 1097–1103.

Zhou, J., Huang, M., Zhang, Y., Zhang, H. and Yoshihara, T. 2011. A novel charge
sharing charge pump for energy harvesting application. In SoC Design Conference
(ISOCC), 2011 International , 373–376. IEEE.

Zumbahlen, H. 2008a, In Linear Circuit Design Handbook, In Linear Circuit Design
Handbook , Ch. 13, 943, Analog Devices, inc, 943.

Zumbahlen, H. 2008b, In Linear Circuit Design Handbook, In Linear Circuit Design
Handbook , Ch. 8, 943, Analog Devices, inc, 943.

190


	IMPROVED CHARGE PUMP FOR CAPACITOR DISCHARGE APPLICATIONS
	ABSTRACT
	TABLE OF CONTENTS
	CHAPTERS
	REFERENCES



