BLOCK MULTISTEP METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

ZARINA BIBI BT IBRAHIM

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2006

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

BLOCK MULTISTEP METHODS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

By

ZARINA BIBI BT IBRAHIM

September 2006

Chairman: Associates Professor Fudziah Ismail, PhD

Faculty: Science

Multistep methods for the solution of systems of Ordinary Differential Equations (ODEs) were described. The first part of the thesis is about the construction and derivation of new Block Backward Differentiation Formula (BBDF) method of constant step size and variable step size for solving first order stiff Initial Value Problems (IVPs). Their regions of stability were presented and numerical results of the methods were compared with existing methods.

The second part of the thesis describes the derivation of the Adams type block method to solve second order nonstiff systems directly whilst a mixture of the Adams type formulae and the new implicit BBDF method were used to solve second order stiff problems directly. Partitioning strategies for the block method were discussed in detail and numerical results of the block partitioning are compared with the nonblock Variable Step Variable Order (VSVO) Direct Integration method for solving second order ODEs directly.

Finally, this thesis deals with parallel numerical algorithms for the solution of systems of ODEs. The constructed BBDF methods are then tested and parallelism is obtained by using a Message Passing Insterface (MPI) library run on High Performance Computer (HPC). The parallel implementation of the new codes produced superlinear speedup as the dimension of the ODEs systems increased. Comparisons and illustrations with sequential codes are provided.

In conclusion, the numerical results clearly demonstrates the efficiency of using the new block multistep methods for solving ODEs. Application of these multistep block method to a widely used test problems reveals the reduction in the total number of steps and execution time when compared with sequential methods.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH BLOK MULTILANGKAH BAGI MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA

Oleh

ZARINA BIBI BT IBRAHIM

September 2006

Pengerusi: Profesor Madya Fudziah Bt Ismail, PhD

Fakulti: Sains

Kaedah multilangkah bagi menyelesaikan sistem Persamaan Pembezaan Biasa (PPB) dihuraikan. Bahagian pertama tesis ini berkenaan pembinaan dan pemerolehan kaedah baru Blok Formulasi Beza Ke Belakang (BFBB) menggunakan panjang langkah tetap dan panjang langkah berubah bagi menyelesaikan Masalah Nilai Awal (MNA) kaku peringkat pertama. Rantau kemantapan kaedah blok didedahkan dan keputusan berangka dibandingkan dengan kaedah sedia ada.

Bahagian kedua tesis ini menghuraikan pemerolehan kaedah blok Adams bagi menyelesaikan sistem tak kaku peringkat kedua secara terus manakala campuran daripada kaedah Adams dan kaedah tersirat BFBB yang baru digunakan bagi menyelesaikan masalah kaku peringkat kedua secara terus. Strategi pemetakan bagi kaedah blok dibincangkan secara terperinci dan keputusan berangka bagi pemetakan dalam blok dibandingkan dengan kaedah bukan blok Saiz Langkah Berubah Peringkat Berubah (SBPB) bagi menyelesaikan PPB peringkat kedua secara terus.

Akhirnya, tesis ini membincangkan algoritma berangka selari bagi menyelesaikan PPB. Kaedah BFBB yang dibentuk diuji dan keselarian diperolehi dengan menggunakan perpustakaan Penghantaran Mesej Antaramuka (MPI) yang dilarikan atas komputer berkeupayaan tinggi (HPC). Pelaksanaan selari kod baru tersebut menunjukkan kecekapan superlinear apabila dimensi sistem PBB meningkat. Perbandingan dan ilustrasi dengan kod sesiri diberi.

Kesimpulannya, keputusan berangka dengan jelas menunjukkan kecekapan menggunakan kaedah blok bagi menyelesaikan PPB. Pemakaian kaedah blok multilangkah kepada masalah secara meluas mendedahkan pengurangan dalam jumlah langkah dan masa pelaksanaan apabila dibandingkan dengan kod kaedah sesiri.

ACKNOWLEDGEMENTS

In the Name of Allah the Most Compassionate, the Most Merciful

First and foremost, I wish to express my sincere and deepest gratitude to the chairman of the supervisory committee, YBhg. Professor Dato' Dr. Mohamed bin Suleiman for his invaluable advice, guidance, assistance and most of all, for his constructive criticisms. This work would not have been completed without his help that I received in various aspects of the research. I am also grateful to the member of the supervisory committee, Associate Professor Dr. Fudziah bt Ismail and Dr. Rozita bt Johari.

A special thank you to Dr. Zanariah bt Abdul Majid for her advice and encouragement which has contributed in one way or another in completing this thesis. Special acknowledgement is extended to Khairil Iskandar bin Othman who have spent exceptional amounts of time in discussing and developing the algorithms during the course of my research.

I am also indebted to the Universiti Putra Malaysia for the scholarship and study leave which enables me to pursue this research.

Finally, I cannot put into words how much I appreciate the continuous support, understanding and patience of my husband, Azman, and my children, Sarah, Nabilah, Nina, Syasya and Luqman; and special thanks to my parents for their continuous encouragement. Thank you. This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Fudziah Ismail, PhD Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Dato' Mohamed Suleiman, PhD Professor Faculty of Science Universiti Putra Malaysia (Member)

Rozita Johari, PhD Lecturer Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Member)

> AINI IDERIS, PhD Professor / Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ZARINA BIBI BT IBRAHIM

Date:

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	xiv
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	xxi

CHAPTER

Ι	INTRODUCTION	22
	Literature Review	23
	Codes for solving stiff ODEs	23
	Sequential Block Method for solving ODEs	23
	Partitioning ODEs	24
	Parallel block methods for solving ODEs	25
	Objectives of the Thesis	26
	Outline of the Thesis	27
	Problem to be solved	29
	Stiff Systems of Ordinary Differential Equations	30
	Determining Convergence and Stability of Multistep	32
	methods	
	Errors in the solution of ODEs	36

II	IMPLICIT 2-POINT AND 3-POINT BLOCK	
	BACKWARD DIFFERENTIATION FORMULAE OF	
	CONSTANT STEP SIZE FOR SOLVING FIRST ORDER	
	STIFF ODEs	38
	Introduction	38
	Derivation of Implicit 2-point block BDF method	38
	Derivation of Implicit 3-point block BDF method	42
	Stability of the methods	45
	Stability of the implicit 2-point block BDF method	46
	Stability of the implicit 3-point block BDF method	48
	Implementation of the 2-point and 3-point block BDF	51
	method	51
	Newton Iteration of the implicit 2-point block BDF	
	method	53
	Newton Iteration of the implicit 3-point block BDF method	
	Problems tested	54

III	VARIABLE STEP SIZE OF IMPLICIT 2-POINT	
	BLOCK BACKWARD DIFFERENTIATION	
	FORMULAE FOR SOLVING FIRST ORDER STIFF	
	SYSTEMS OF ODEs	62
	Introduction	62
	Derivation of Variable Step Size Block BDF by Doubling	
	and Halving	62
	Derivation of the predictors	67
	Stability of the Methods	69
	Implementation of the method	75
	Estimating the Error and Step Size Selection	79
	Estimating the Local Truncation Error, LTE	79
	Estimating the Maximum error, MAXE	79
	Step size selection	80
	Problems tested	81
	Numerical results	85
	Discussion and Conclusion	94

56

60

IV	DERIVATION OF IMPLICIT BLOCK ADAMS AND	
	BDF METHOD FOR SOLVING SECOND ORDER	
	ODEs DIRECTLY	96
	Introduction	96
	Derivation for BGBDF for $j = 1$, variable step size	97
	Derivation for BGBDF for $j = 2$, variable step size	103
	Derivation of BGBDF predictors for $j = 1$	108
	Estimating the error	111
	Some Aspect of Stability	115
	Stability region for the Block Adams, $j = 0$	115
	Stability region for the BGBDF for $j = 1$	117
	Stability region for the BGBDF for $j = 2$	120

\mathbf{V}	IMPLEMENTATION OF BLOCK PARTITIONING	
	USING BLOCK ADAMS AND BDF METHODS FOR	
	SOLVING SECOND ORDER ODEs DIRECTLY	125
	Introduction	125
	Implementation of implicit block Adams method, $j = 0$	125
	Derivation of Newton iteration matrix for BGBDF	129
	Newton iteration for BGBDF method for $j=1$	129
	Newton iteration for BGBDF method for $j = 2$	134
	Strategy for Block Multistep Formulas Intervalwise	139
	Partitioning	
	Detailed test for Detecting Stiffness	139

Strategy for choosing <i>j</i>	141
Convergence of the corrector iteration	146
Problems tested	147
Numerical result	151
Discussion and Conclusion	157

VI	PARALLELISATION OF IMPLICIT BLOCK	
	MULTISTEP METHOD FOR SOLVING LARGE ODES	158
	Introduction	158
	Computers Architectures: An Overview	160
	SISD Model	161
	SIMD Model	161
	MISD Model	162
	MIMD Model	163
	Memory Architectures	163
	Shared memory	164
	Distributed memory	164
	Message Passing Interface	165
	Performance of parallel processing	166
	Speedup	166
	Efficiency	168
	Parallel implementation	168
	Matrix multiplication for Jacobian matrix	170
	High Performance Computer SunFire 1280 Architecture	171
	Problems tested	172
	Numerical results	174
	Discussion and Conclusion	192

VII	CONCLUSION	194
	Summary	194
	Future Work	195

BIBLIOGRAPHY	197
APPENDICES	204
BIODATA OF THE AUTHOR	224