

UNIVERSITI PUTRA MALAYSIA

PROTECTION SCHEMES FOR FIBER –TO-THE-HOME ACCESS NETWORKS WITH INTRA NETWORK SWITCH

P'NG WON TIANG

FK 2008 51

PROTECTION SCHEMES FOR FIBER-TO-THE-HOME ACCESS NETWORKS WITH INTRA NETWORK SWITCH

By

P'NG WON TIANG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

April 2008

To My Parents

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

PROTECTION SCHEMES FOR FIBER-TO-THE-HOME ACCESS NETWORKS WITH INTRA NETWORK SWITCH

By

P'NG WON TIANG

November 2007

Chairman : Professor Mohamad Khazani Abdullah, PhD

Faculty : Engineering

Today, data traffic is increasing at an unprecedented rate and has pushed the existing network infrastructure to the limit particularly in the access layer. There has been many development of high speed protocols to meet the demands but the existing physical medium, which consists of copper-based network, do not have the capabilities to support these protocols. This is the reason why the problem of access network bottleneck still exists and has severely hinders the ability of service providers to offer new high-speed data services to their customer.

Telephone companies are now working enthusiastically to switch from copper to fiber based network: Fiber-To-The-Home (FTTH); one that is inexpensive, simple, scalable, and capable of delivering bundled voice, data and video services to an end-user over a single network. However, there is still one obstacle, which has been generally overlooked, which is, providing protection to the access line. The fiber optics access mainly consists of a single fiber running upstream and a single fiber running downstream. If a protection path were to be created, the network provider would have to lay another 2 fibers on the network. This would increase deployment costs and also costs

111

for the subscribers. Thus, a new way of providing fault tolerance to the system has to be introduced, by taking costs consideration and also efficiency in deploying the solution.

In this thesis, three novel cost efficient schemes for providing fault tolerance to the FTTH system are introduced and methodologies to detect failures are also suggested. In 'Asynchronous Transfer Mode Passive Optical Network (APON) FTTH access network with an intra network switch' scheme, various classes of traffic, which logically represent different applications based on their Quality of Service (QoS) requirements, are defined. Access packets are switched to available working Optical Line Terminals (OLTs) according to prioritization in time of failure. In 'Time Slots Switching (TSS)' protection scheme, a new algorithm is proposed to cut off the empty portion of a time slot and the proposed switch will arrange time slots from all Optical Network Units, ONUs, (including ONU originally served by the faulty OLT) to be sent to working OLTs in round robin fashion. In 'Time Slots Redistribution (TSR)' protection scheme, protection is provided through redistribution of time slot allocated to ONUs by OLT to accommodate the ONUs of the failed OLT.

The survival of the network is studied by terminating the supporting OLT unit one after another in simulation and observing the packet delay, packet loss ratio, the buffer occupancy and also the throughput of the switch. Results show that for different traffic elasses, the number of supportable ONUs exceeds the standard value of the Full Service Access Network (FSAN) recommendations, which are 32 units per OLT. Cost analysis also shows proposed protection schemes are more cost efficient than all existing protection schemes. These results highlight the contribution of this thesis.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SKIM-SKIM PERLINDUNGAN BAGI JARINGAN AKSES GENTIAN-OPTIK-KE-RUMAH MENGGUNAKAN SUIS PERANTARAAN JARINGAN DALAMAN

Oleh

P'NG WON TIANG

November 2007

Pegerusi : Profesor Mohamad Khazani Abdullah, PhD

Fakulti: Kejuruteraan

Pada masa kini, peningkatan trafik data dalam kadar yang menakjubkan telah mengguna infrastruktur rangkaian jaringan akses secara maksimanya. Pembangunan protokol berhalaju tinggi yang telah dilakukan bagi menampung kehendak ini pula dihad oleh media fizikalnya, jaringan berasaskan dawai. Ini merupakan sebab masalah akses masih wujud dan telah mengehad kemampuan penawar perkhidmatan untuk menawarkan perkhidmatan data berhalaju tinggi kepada pelanggan.

Syarikat-syarikat telefon dewasa ini berusaha menukar jaringan berasas dawai kepada jaringan berasas gentian optik: gentian-optik-ke rumah (FTTH) yang murah, mudah, boleh dilanjutkan dan berupaya mneyampaikan perkhidmatan suara, data dan video kepada pengguna melalui satu jaringan sahaja. Namun, terdapat satu halangan yang sering terabai perlu diatasi iaitu memberi perlindungan kepada jaringan capaian. Jaringan capaian merangkumi satu saluran gentian optik yang membawa maklumat ke hulu jaringan dan satu lagi gentian optik yang membawa maklumat ke hilir jaringan. Jika penawar perkhidmatan ingin mengadakan perlindungan bagi saluran rangkaian gentian optik, 2 lagi gentian optik tambahan perlu diletakkan ke dalam rangkaian tersebut. Ini akan meningkatkan kos pemasangan dan juga kos untuk menggunakan perkhidmatan

tersebut. Oleh itu, satu cara baru untuk memberi perlindungan kepada rangkaian akses tersebut perlu diperkenalkan dengan memberi penekanan kepada kos dan kecekapan kaedah tersebut.

Di dalam tesis ini, tiga skim baru yang berkos rendah untuk menawarkan perlindungan kepada sistem FTTH telah diperkenalkan dan kaedah untuk mengesan kerosakan juga dicadangkan. Kaedah 'Jaringan akses APON FTTH dengan satu suis perantaraan jaringan', pelbagai jenis kelas trafik yang mewakili pelbagai jenis aplikasi bergantung kepada kualiti perkhidmatan (QoS) mereka telah diperkenalkan. Paket yang membuat akses akan disalur ke OLTs yang berfungsi mengikut keutamaan masa kegagalan mereka. Dalam kaedah perlindungan 'Pensuisan Selit Masa (TSS)', satu algoritma baru untuk memotong bahagian selit masa yang kosong dan suis yang diperkenalkan akan mengatur selit masa daripada semua ONU (termasuk ONU yang asalnya diservis OLT yang rosak) kepada OLT yang berfungsi secara bergilir. Dalam kaedah perlindungan 'Pengagihan Semula Selit Masa (TSR)', perlindungan diberi melalui pembahagian semula selit masa yang diberi kepada ONU oleh OLT bagi menawarkan perkhidmatan kepada ONU yang diservis OLT yang rosak.

Keupayaan tahanan rangkaian tersebut dianalisis dengan mensimulasikan kerosakan OLT-OLT dalam rangkaian tersebut. Parameter-parameter seperti kelengahan paket, nisbah kerosakan paket, bilangan paket yang menduduki penimbal suis yang digunakan dan juga truput suis tersebut. Dalam keputusan simulasi yang didapati, bilangan ONU yang dapat disokong oleh rangkaian tersebut adalah melebihi bilangan ONU yang direkomendasikan oleh FSAN, iaitu hanya 32 unit untuk satu OLT. Analisis kos juga menunjukkan skim-skim perlindungan yang dicadang adalah lebih kos efektif daripada semua skim pelindungan yang sedia ada. Keputusan-keputusan ini menonjolkan sumbangan tesis ini.

vi

ACKNOWLEDGEMENTS

I wish to thank everyone who has directly or indirectly contributed to the research of this thesis. The following list, by no mean exhaustive, is an attempt to acknowledge at least a few of them.

First and foremost, I wish to express my deepest gratitude and appreciation to Prof. Dr. Mohamad Khazani Abdullah, the chairman of my supervisory committee for his guidance, inspiration and many invaluable comments and suggestions throughout the research period.

I am grateful to my supervisors Prof. Dr. Sahbudin Saari for his useful comments and suggestions for carrying out the research in proper manner. My regards to Associate Prof. Dr. Sabira Khatun for guiding me on the aspect of computer simulations and numerical analysis.

I wish to take this opportunity to express my sincere gratitude to all my fellow friends in UPM Photonics Laboratory for their help, friendship and insightful discussion, especially to Mr. Cheah Cheng Lai and Puan Siti Barirah Ahmad Anas. I believe one day, we would achieve worldwide recognition for our efforts in the R&D industry. I would also like to thank my friend, Ms Ong Hooi Tin for giving me full support on my work.

Finally, I would like to thank my parents who provided me with continual encouragement and support during this study.

I certify that an Examination Committee has met on 15th April 2008 to conduct the final examination of P'ng Won Tiang on his Doctor of Philosophy thesis entitled "Protection Schemes for Fiber-To-The-Home Access Networks with Intra Network Switch" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the Examination Committee were as follows:

NORMAN MARIUN, Ph.D Professor Ir., Faculty of Engineering,

Faculty of Engineering, Universiti Putra Malaysia. (Chairman)

BORHANUDDIN MOHD. ALI, Ph.D

Professor, Faculty of Engineering, Universiti Putra Malaysia. (Internal Examiner)

ABDUL RAHMAN RAMLI, Ph.D

Associate Professor Faculty of Engineering, Universiti Putra Malaysia. (Internal Examiner)

JEAN MICHEL DUMAS, PhD

Professor, University of Limoges, Ecole Nationale Superieure d' Ingenieurs de Limoges (ENSIL), France. (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohamad Khazani Abdullah, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Sahbudin Shaari, PhD

Professor Faculty of Engineering Universiti Kebangsaan Malaysia (Member)

Sabira Khatun, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia. (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10 July 2008

ix

DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or currently and is not concurrently submitted for any other degree at Universiti Putra Malaysia or other institution.

P'NG WON TIANG

Date:

TABLE OF CONTENTS

			Page	
DED	ICATI	ON	ii	
ABST	FRAC	Т	iii	
ABST	ABSTRAK			
ACK	ACKNOWLEDGEMENTS			
APPI	ROVA	L	viii	
DEC	DECLARATION			
LIST	OF T.	ABLES	xiv	
LIST	OF F	IGURES	XV	
LIST	OFA	BBREVIATIONS	xxiii	
СНА	PTER			
1	INTE	RODUCTION		
	1.1	Background	1	
	1.2	Motivation and Statement of Problem	2	
	1.3	Research Aims and Objectives	4	
	1.4	Scope of Study	5	
	1.5	Organization of Thesis	9	
2	LITE	ERATURE REVIEW		
	2.1	Introduction	12	
	2.2	Passive Optical Network (PON) Topologies	14	
	2.3	PON Upstream Accessing and FTTH Access Network	17	
		2.3.1 ATM-PON	20	
		2.3.2 The S-PON System	24	
		2.3.3 Ethernet PON FTTH Architecture (EPON)	25	
	2.4	Optical Network Topologies	28	
		2.4.1 Fiber-To-The-Home (FTTH)	30	
	2.5	Fiber Based Access Network Failures Detection and	33	
		Auto-Negotiation (AutoNeg) of EPON		
	2.6	ITU-T Recommendation G.983.1: The Existing Protection Schemes	36	
	2.7	Summary	39	
3	RESI	EARCH METHODOLOGY		
	3.1	Introduction	40	
	3.2	Topologies and Power Budget	40	
		3.2.1 Physical Layer Settings for Design and Simulation	41	
		3.2.2 Positioning of Intra Network Switch	43	
		3.2.3 Physical topologies for proposed protection schemes	46	
	3.3	System Model for Simulation of Protection Schemes with an Intra Network Switch	48	

	3.3.1 Traffic Model for Simulation of Protection Schemes with an Intra Network Switch	50
3.4	Fiber Optic Access Network Failures	52
0	3.4.1 Detection of Access Network Failures due to Fiber Optics	53
	Break	
	3.4.2 Using Power Level of Signal to Detect Failure	55
	3.4.3 Using GMII (Gigabit Media Independent Interface) and Auto-Negotiation to Detect Failure in EPON	64
3.5	APON FTTH Access Network with an Intra Network Switch	61
	3.5.1 Operation and Protocol Assumption	61
	3.5.2 Model Development	62
3.6	EPON FTTH Access Network with an Intra Network Switch	66
	3.6.1 Operation and Protocol Assumption	66
	3.6.2 Protocol Operation for the Protection Scheme based on Time	69
	Slots Switching (TSS)	
	3.6.3 Protection Scheme based on Time Slots Redistribution (TSR)	70
3.7	Simulation Design Parameters and Performance Parameters	72
3.8	Cost Analysis	74
3.9	Summary	76
PER NET	FORMANCE EVALUATION OF ATM PON FTTH ACCESS WORK WITH INTRA NETWORK SWITCH PROTECTION	
SCH	IEME	
4.1	Introduction	77
4.2	Performance Evaluation of 4OLTs	78
	4.2.1 Results and Analysis	79
4.3	Case I – Network Survivability of 3 OLT units	81
	4.3.1 Buffer Requirement Analysis	82
	4.3.2 Results and Analysis	85
4.4	Case II – Network Survivability of 2 OLT units	89
	4.4.1 Buffer Requirement Analysis	89
	4.4.2 Results and Analysis	93

4

Case III - Network Survivability of 1 OLT units 4.5 97 4.5.1 Buffer Requirement Analysis 98 4.5.2 Results and Analysis 101 Summary 4.6 104

5 PERFORMANCE EVALUATION OF ETHERNET PON FTTH ACCESS NETWORK WITH INTRA NETWORK SWITCH **PROTECTION SCHEME** 5.1 Introduction

5.1	Introduction	107
5.2	Time Slots Switching (TSS) Protection Scheme	107
5.3	Time Slots Redistribution (TSR) Protection Scheme	108

	5.4	Performance Evaluation of 4 OLTs for Time Slots Switching (TSS)
		Protection Scheme
		5.4.1 Results and Analysis
		5.4.2 Case I – Network Survivability of 3 OLT units
		5.4.3 Case II – Network Survivability of 4 OLT units
		5.4.4 Case III – Network Survivability of 1 OLT units
	5.5	Performance Evaluation of Time Slots Redistribution (TSR)
		Protection Scheme
		5.5.1 Results and Analysis
		5.5.2 Case I – Network Survivability of 3 OLI units $5.5.2$ Case I – Network Survivability of 3 OLT is
		5.5.3 Case II – Network Survivability of 2 OLT units $5.5.4$ C – III – Network Survivability of 2 OLT – 1.11
	= (5.5.4 Case III – Network Survivability of 1 OL1 units
	5.6	Summary
6	CON	IPARISON OF PERFORMANCE OF PROPOSED
	PRO	TECTION SCHEMES
	6.1	Introduction
	6.2	Buffer Size Requirement
	6.3	Average Packet Delay Analysis
	6.4	Summary
7	cos	T ANALYSIS AND DISCUSSIONS
	7.1	Introduction
	7.2	Cost Analysis
		7.2.1 Cost Analysis for 1+1 Protection Scheme proposed by ITU-T
		7.2.2 Cost Analysis for N+1 Protection Scheme proposed by
		Paceon Corporation
		7.2.3 Cost Analysis for Proposed Protection Scheme
	7.3	Comparison of cost analysis for 1+1, N+1, N+M and proposed
		protection scheme
	7.4	Summary
8	CON	CLUSION
	8.1	Conclusion
		8.1.1 ATM Switched FTTH system
		8.1.2 Timeslots Switching (TSS) protection scheme
		8.1.3 Timeslots Redistribution (TSR) protection scheme
		8.1.4 Cost Analysis
	8.2	Research Contributions
	8.3	Recommendation for Future Work
BĿr	FPFN	CES
NET		
RIO		OR STUDENT

LIST OF TABLES

Table 4.1	Simulation assumptions	Page 78
4.2	Simulation assumptions for Case I buffer analysis	83
4.3	Simulation assumptions for Case I performance analysis	85
4.4	Simulation assumptions for Case II buffer Analysis	90
4.5	Simulation assumptions for Case II performance analysis	93
4.6	Simulation assumptions for Case III buffer analysis	98
4.7	Simulation assumptions for Case III performance analysis	101
5.1	Simulation assumptions	110
5.2	Simulation assumptions	115
5.3	Simulation assumptions	116
5.4	Simulation assumptions	122
5.5	Simulation assumptions	123
5.6	Simulation assumptions	128
5.7	Simulation assumptions	130
5.8	Simulation assumptions	134
5.9	Simulation assumptions	139
5.10	Simulation assumptions	145
5.11	Simulation assumptions	150

LIST OF FIGURES

Figure		Page
1.1	Areas under study	6
1.2	Design and performance parameters for area under study 1	7
1.3	Design and performance parameters for area under study 2	8
1.4	Design and performance parameters for area under study 3	9
2.1	Coverage fields of ADSL and EPON	13
2.2	Upstream accessing methods	17
2.3	The ATM-PON setup	21
2.4	Wavelength allocation and frame structure of ATM based PONs	22
2.5	The S-PON setup	25
2.6	Fiber-To-The-Home (FTTH)	26
2.7	Downstream traffic in EPON	27
2.8	Upstream traffic in EPON	27
2.9	Different types of fiber access network topologies	29
2.10	The FTTEx and FTTCab access network	29
2.11	The FTTC access network	30
2.13	The FTTP (π - system) access network	31
2.14	The FTTH access network	31
2.15	Fiber-To-The-Home (FTTH) deployment scenarios	32
2.16	Fiber based access network failures	34
2.17	802.3z and 802.3ab Physical Layers	34

2.18	Existing protection schemes in ITU-T recommendation G.983.1	38
2.19	Protection scheme H	38
3.1	The physical topology used for design and simulation	42
3.2	Intra network switch is positioned in the centre of access network	45
3.3	Intra network switch is positioned in the CO of access network	45
3.4	Physical topology 1	47
3.5	Physical topology 2	47
3.6	Physical topology 3	48
3.7	State-Trasition-Diagram for the Switch	50
3.8	ON (Burst) – OFF (Silence) traffic model	52
3.9	Fiber optic access network failures	53
3.10	Flow chart for network failure detection mechanism using signal power	56
3.11	Fast Link Pulses of FLP	59
3.12	FLP burst and network Link Pulses (NLP)	59
3.13	16 bits data of Fast Link Pulses	59
3.14	Flow chart for network failure detection mechanism using Auto-Negotiation as detection tool	60
3.15	FTTH Switch basic queuing model	63
3.16	SCP basic working principle's algorithm	66
3.17	Ethernet MAC frame format	67
3.18	Start-of-Time-Slot (SOTS)	68
3.19	Time Slots Switching (TSS) based protection scheme	69

3.20	Protocol operation for Time Slots Switching (TSS) protection scheme	70
3.21	Time Slots Redistribution (TSR) protection scheme	71
3.22	Procedure of protection switching	72
4.1	Average packet delay versus number of ONU units (comparison of all different types of traffic)	79
4.2	Average throughput versus number of ONU units	81
4.3	Case I Setup	82
4.4	Packet Loss Ratio versus Buffer Size per port	84
4.5	Average Throughput versus Buffer Size	84
4.6	Average Packet Delay versus ONU for 3 surviving OLTs	86
4.7	Average Throughput versus ONU for 3 surviving OLTs	88
4.8	Case II Setup	89
4.9	Packet Loss Ratio versus Buffer Size for 2 surviving OLTs	91
4.10	Average Throughput versus Buffer Size for 2 surviving OLTs	92
4.11	Average Packet Delay versus ONU for 2 surviving OLTs	94
4.12	Average Throughput versus number of ONU for all traffic priority classes for 2 surviving OLTs	96
4.13	Case III Setup	97
4.14	Packet loss ratio versus buffer size for 1 surviving OLTs	99
4.15	Average throughput versus buffer size per port for all traffic classes for 1 surviving OLTs	100
4.16	Comparisons between average packet delays for all traffic classes versus the number of ONU units for 1 surviving OLTs	102
4.17	Average throughput versus the number of ONU units	104

4.18	Supportable number of ONU versus the number of surviving OLT units	105
5.1	Time Slots Switching (TSS) Protection Scheme	108
5.2	Time Slots Redistribution (TSR) Protection Scheme	108
5.3	Average packet delay versus number of ONU	110
5.4	Throughput versus number of ONU	111
5.5	Packet loss ratio versus number of ONU	112
5.6	Channel utilization versus number of ONU	113
5.7	Case I setup	114
5.8	Packet loss ratio versus buffer size for 3 surviving OLTs	115
5.9	Average packet delay versus number of ONU for 3 surviving OLTs	117
5.10	Packet loss ratio versus number of ONU for 3 surviving OLTs	117
5.11	Throughput versus number of ONU for 3 surviving OLTs	118
5.12	Throughput versus number of ONU for 3 surviving OLTs	119
5.13	Case II Setup	121
5.14	Packet loss ratio versus buffer size per port for 2 surviving OLTs	122
5.15	Average packet delay versus number of ONU for 2 surviving OLTs	124
5.16	Packet loss ratio versus number of ONU for 2 surviving OLTs	125
5.17	Average throughput versus number of ONU for 2 surviving OLTs	125
5.18	Channel utilization versus number of ONU for 2 surviving OLTs	126
5.19	Case III Setup	127
5.20	Packet loss ratio versus buffer size per port for 2 surviving OLTs	129
5.21	Average packet delay versus number of ONU for 2 surviving OLTs	131

5.22	Packet loss ratio versus number of ONU for 1 surviving OLTs	132
5.23	Average throughput versus number of ONU for 1 surviving OLTs	132
5.24	Channel utilization versus number of ONU for 1 surviving OLTs	133
5.25	Average packet delay versus number of ONU	135
5.26	Packet loss ratio versus number of ONU for 4 OLTs	136
5.27	Throughput versus number of ONU for 4 OLTs	136
5.28	Channel utilization versus number of ONU for 4 OLTs	137
5.29	Data interface bandwidth versus number of ONU for 4 OLTs	138
5.30	Case I setup	139
5.31	Average packet delay versus number of ONU for 3 surviving OLTs	140
5.32	Packet loss ratio versus number of ONU for 3 surviving OLTs	141
5.33	Throughput versus number of ONU for 3 surviving OLTs	141
5.34	Channel utilization versus number of ONU for 3 surviving OLTs	142
5.35	Data interface bandwidth versus number of ONU for 3 surviving OLTs	143
5.36	Case II Setup	144
5.37	Average packet delay versus number of ONU for 2 surviving OLTs	145
5.38	Packet loss ratio versus number of ONU for 2 surviving OLTs	146
5.39	Throughput versus number of ONU for 2 surviving OLTs	146
5.40	Channel utilization versus number of ONU for 2 surviving OLTs	147
5.41	Data interface bandwidth versus number of ONU for 2 surviving OLTs	148
5.42	Case III Setup	149

5.43	Average packet delay versus number of ONU for 1 surviving OLTs	151
5.44	Packet loss ratio versus number of ONU for 1 surviving OLTs	151
5.45	Throughput versus number of ONU for 1 surviving OLTs	152
5.46	Channel utilization versus number of ONU for 1 surviving OLTs	153
5.47	Supportable number of ONU versus the number of surviving OLT units for TSS protection scheme	154
5.48	Supportable number of ONU versus the number of surviving OLT units for TSR protection scheme	155
6.1	Comparison of buffer size versus number of surviving OLT for proposed protection schemes and FSAN standard	158
6.2	Comparison of average packet delay versus number of ONU for 4 OLTs for proposed protection schemes	159
6.3	Comparison of average packet delay versus number of ONU for 3 OLTs for the proposed protection schemes	160
6.4	Comparison of average packet delay versus number of ONU for 2 OLTs for the proposed protection schemes	161
6.5	Comparison of average packet delay versus number of ONU for 1 OLT for proposed protection schemes	162
6.6	Comparison of supportable ONU without packet loss versus surviving OLT for proposed protection schemes and FSAN standard	163
7.1	Second ITU-T G.983.1 protection Scheme	167
7.2	Third ITU-T G983.1 Protection Scheme	168
7.3	Fourth ITU-T G.983.1 Protection scheme	168
7.4	Cost analysis of 1+1 protection scheme versus the amount of fiber optic FTTH access network	170
7.5	Cost of revenue lost when failure occur for 1+1 protection scheme versus the amount of fiber optic FTTH access network	171

xx

7.6	Cost of repairing when failure occurs for 1+1 protection scheme versus the amount of fiber optic FTTH access network	172
7.7	Cost of active equipments for 1+1 protection scheme versus the amount of fiber optic FTTH access network	173
7.8	Cost analysis of 1+1 protection scheme versus OLT card failure probability	174
7.9	Protection scheme H	175
7.10	Cost analysis of N+1 protection scheme versus amount of fiber optic FTTH access network	177
7.11	Cost of revenue lost for N+1 protection scheme versus amount of fiber optic FTTH access network	178
7.12	Cost of repairing of N+1 protection scheme versus amount of fiber optic FTTH access network	179
7.13	Cost of active equipment for N+1 protection scheme versus amount of fiber optic FTTH access network	180
7.14	Cost analysis of N+1 protection scheme versus OLT card's failure probability	181
7.15	Cost analysis of N+M protection scheme versus amount of fiber optic FTTH access network	183
7.16	Cost of revenue for N+M protection scheme versus amount of fiber optic FTTH access network	184
7.17	Cost of repairing for N+M protection scheme versus amount of fiber optic FTTH access network	185
7.18	Cost of repairing for N+M protection scheme versus amount of fiber optic FTTH access network	186
7.19	Cost of repairing for N+M protection scheme versus OLT card's dailure probability (p)	187
7.20	Cost analysis of N+M protection scheme with different amount of backup OLT card versus number of FTTH access network (m)	188

xxi

7.21	Cost analysis of proposed protection scheme versus amount of FTTH access network (n)	191
7.22	Cost of revenue lost proposed protection scheme versus amount of FTTH access network (n)	192
7.23	Cost of revenue lost of proposed protection scheme versus amount of FTTH access network (<i>n</i>) with $b=0.5n$	193
7.24	Cost of repairing of proposed protection scheme versus amount of FTTH access network (n)	194
7.25	Cost of active equipment of proposed protection scheme versus amount of FTTH access network (n)	195
7.26	Cost analysis of proposed protection scheme versus OLT card failure probability (p)	196
7.27	Comparison of cost analysis of various protection scheme versus amount of FTTH access network	197
7.28	Comparison of cost of revenue lost of various protection scheme versus amount of FTTH access network	199
7.29	Comparison of cost of repairing scheme versus amount of FTTH access network	200
7.30	Comparison of cost of repairing of various protection scheme versus amount of FTTH access network	201

LIST OF ABBREVIATIONS

AAL ATM Adaptation Layer Add / Drop Multiplexers ADM ADSL Asymmetric Digital Subscriber Line APON Asynchronous Transfer Mode Passive Optical Network ATM Asynchronous Transfer Mode BPON Broadband Passive Optical Network Code Division Multiple Access CDMA CM Cable Modem CSMA/CD Carrier Sense Multiple Access With Collision Detection Central Office CO DBA Dynamic Bandwidth Allocation DSL Digital Subscriber Line DSLAM Digital Subscriber Line Access Multiplexer Ethernet in the First Mile EFM EPON Ethernet Passive Optical Network Frequency Division Multiple Access FDMA FSAN Full Service Access Network FTTH Fiber To The Home GPON Gigabit Passive Optical Network HFC Hybrid Fiber Coaxial Institute of Electrical and Electronics Engineers IEEE

IFG	Inter-Frame Gap
IP	Internet Protocol
ITU-T	International Telecommunication Union - Telecommunication Standardization Sector
LAN	Local Area Network
LW	Loss Weight
MAC	Media Access Control
MTU	Maximum Transmission Unit
OLT	Optical Line Terminal
ONT	Optical Network Terminal
ONU	Optical Network Unit
ORU	Optical Repeater Units
OSP	Outside Plant
RF	Radio Frequency
PLOAM	Physical Layer Operation, Administration, And Maintenance
PON	Passive Optical Network
SCMA	Subcarrier Multiple Access
SDH	Synchronous Digital Hierarchy
SONET	Synchronous Optical Network
SPON	Super Passive Optical Network
TDM	Time Division Multiplexing
TH	Threshold

xxiv