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Open lamella systems such as layered double hydroxides (LDHs) can be used to 

generate new nanostructured materials of layered organic-inorganic nanohybrid type. 

The inorganic Zn-Al-layered double hydroxide (ZAL) was used as a matrix, hosting 

an active agent or a guest, toluene-4-sulphonate (TSA), 2,4-dichlorophenoxyacetic 

acids (24D), naphthaleneacetic acid (NAA) anthraquinone-2,6-disulphonate (AQDS) 

and dodecylsulfate sodium salt (SDS).   

 

They were prepared by spontaneous self-assembly method from an aqueous solution 

for the formation of a new layered organic-inorganic hybrid nanocomposite material. 

The Zn to Al ratio at R=4 and the various concentrations of anion organics at pH 10 

was found suitable to give well-ordered nanolayered organic-inorganic hybrid 

structure.  



 iv  

PXRD and FTIR analyses show that the inorganic-organic structure of LDH 

expanded from 8.8 Å to accommodate the anion organics for the formation of the 

nanocomposite. Nanocomposites were then calcined under N2 gas at different 

temperatures, 500 °C, 700 °C, and 1000 °C for the formation of the carbon products. 

In order to remove the carbonaceous products from the template matrix, the 

carbonized nanocomposite was treated with 2 M nitric acid.  

 

Powder X-ray diffraction pattern of the carbons showed that they are of amorphous 

type. The surface area and porosity studies show that the resulting materials are of 

mesoporous carbon with high BET surface area and high percentage of micropore 

content. No significant difference in the surface morphology of ZAL and its 

nanocomposites was observed under a scanning electron microscope. Both of them 

afforded non-uniform irregular agglomerates of compact and non-porous structure of 

plate-like morphology. The morphology of carbons showed agglomerates of compact 

and porous granular structure.    
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Sistem lamela terbuka seperti hidroksida berlapis ganda (LDHs) boleh menghasilkan 

satu siri bahan baru yang mempunyai nanostruktur bagi nanohibrid organik inorganik 

berlapis. Zink aluminium hidroksida berlapis ganda (ZAL) digunakan sebagai 

matriks dan lima bahan organik yang aktif dipilih iaitu (TSA) metil benzena-4-

sulfonat, (24D) 2,4 diklorofenoasetik, (NAA) asid naftalenaasetik, (AQDS) 

anthrakuinon-2,6 disulfonat dan (SDS) natrium dodesilsulfat. 

 

Mereka disediakan dengan kaedah sintesis terus melalui satu larutan untuk 

menyediakan nanokomposit organik-inorganik yang baru. Ratio bagi zink dan 

aluminium telah ditetapkan pada R=4 dan kepekatan yang berlainan bahan organik 

digunakan untuk menyediakan nanokomposit masing-masing. Didapati bahawa 

nanokomposit-nanokomposit yang disediakan pada pH 10 memberi struktur 

nanokomposit yang baik.  
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Analisis PXRD dan FTIR menunjukkan jarak basal bagi struktur organik-inorganik 

hidroksida berlapis ganda dikembang daripada 8.8 Å untuk memuatkan bahan 

organik yang aktif menjadikan nanokomposit. Kemudian, nanokomposit-

nanokomposit yang telah siap sedia diberi rawatan suhu dalam keadaan gas nitrogen 

atmosfera pada tiga suhu berlainan iaitu 500, 700 dan 1000 °C untuk menjadikan 

produk karbon. Asid nitrik 2 M diperlukan untuk mengeluarkan produk-produk 

karbon daripada templat. 

 

Produk karbon yang dihasilkan kemudian dianalisis oleh PXRD dan mendapati 

bahawa corak belauan sinar-x bagi bahan tersintesis berstruktur armofus. Kajian 

ASAP pula menunjukkan bahawa bahan tersintesis adalah karbon berliang meso dan 

memberikan BET luas permukaan spesifik yang tinggi dengan mempunyai peratusan 

kandungan mikro yang tinggi. Pemerhatian mikroskopi imbasan elektron 

menunjukkan tiada perbezaan ketara antara zink aluminium hidroksida berlapis 

ganda  dan nanokomposit. Pemerhatian mikroskopi imbasan elektron bagi produk-

produk karbon di bawah rawatan suhu menunjukkan berliang dan mempunyai 

partikel yang bersaiz kecil. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 The evolution of material technology 

 

Material technology has had such a profound impact on the evolution of human 

civilization. The current ‘Synthetic Materials Age’ has been precipitated by 

humankind’s demand for materials with superior performance characteristics. It is 

catalyzed by a technological revolution that will exploit several emerging 

technology, such as materials science, biotechnology, biomimetics, nanotechnology, 

molecular electronics, neural networks and artificial intelligence (Gandhi and 

Thompson, 1992). 

 

In materials science, a composite implies that the material is composed of a mixture 

of two or more constituents that differ in composition. Accordingly, one may well 

classify among the composite materials nearly all substances such as wood, bones, 

shells, etc, and also some man-made materials, such as certain powder metallurgy 

products, electrical insulators, resin-bonded magnetic materials, powder-charged 

plastics, paper laminates, etc, (Schiller, 1978). 

 

Revival of research on latest composite fabrication is a result of increasing interest 

focused on advanced technology material due to its interesting promising features. 

Advanced materials maybe defined as materials, which have enhanced mechanical 

and physical characteristics, compared to traditional materials. The characteristics 
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either allows for every significant, allow for new technologies that are not achievable 

using conventional materials (Schwartz, 1993). 

 

To date the vast majority of advanced technology research has been focused on 

nanotechnology, which showed the trend to obtain control of the composite size to a 

molecular level. A lecture delivered in 1959, by the late Noble Laureate in Physics, 

Richard P. Feyman, titled “There’s Plenty of Room at the Bottom”, discussed the 

prospect of fabricating materials and devices at the atomic molecular level confirmed 

that the concept of nanotechnology is not relatively new. Nanotechnology 

encompasses all aspects of science and technology involved in the study, 

manipulation, control individual atoms and molecules, making it possible to build 

machines on the scale of human cells, or create materials and products with 

nanostructures containing highly desirable properties. It is predicted that the 

nanotechnology will give an enormous impact on every aspect of human life (Hamid 

and Yarmo, 2003). 

 

Research performed over the last two decades has identified a variety of syntheses 

methods for the so-called ‘nanoparticles’ or ‘nanocomposites’. Although this term in 

its broadest sense refers to particles that have nanoscale dimensions (usually from 1 

to 100 nm particle diameter), it now also often implies that the presence of these 

particles in a device, system or formulation should result in improving properties and 

performance that are directly derived from the nano size character of the constituent 

particles. The high surface-to-volume ratio of the particles is the key to attaining 

novel and useful properties. For such cases, smaller nanoparticles are preferred, and 

it is generally found that prospective applications require particle diameters of 30 nm 
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or less to provide significant improvements over use of ‘conventional’ nano or 

micron scale particles. 

 

1.2 Nanocomposite Materials 

 

In materias science, a ‘composite’ implies that the material is composed of a mixture 

of two or more constituents that differ in composition. Thus, the term 

“nanocomposite” implies that the physical arrangement of the different constituents 

is on a scale of 1 to 100 nm (1 nm= 10-9 m, i.e., one billionth of a meter) (Roy et al., 

1986). 

 

Nanostructured materials are becoming of major significance and the technology of 

their production is rapidly growing into a powerful industry. These fascinating 

materials include nanofilms, nanocrystal, alloys, nanocomposites and 

semiconductors (Nalwa, 2000). The synthesis of materials of nanoscale dimension is 

important because the small size of these materials endows them with unusual 

structural and optical properties that might find application in catalysis electro-

optical devices. Such materials may also be valuable precursor to strong ceramic. 

These kinds of materials and their base technologies have also opened up exciting 

new possibilities for future applications in aerospace, automobile, batteries, 

insulators, printing, color imaging, drug delivery, medicine and cosmetics. 

 

The preparation of nanostructure materials depend on the following four common 

microstructural features: 

• The grain size and size distribution (<100 nm). 



 
 
 

 4 

• The chemical composition of the constituent phases. 

• The presence of interfaces, more specifically, grain boundaries, 

heterophases interface, or the free surface. 

• Interaction between the constituent domains. 

 

The presence and interplay of these four features largely determine the unique 

properties of the nanostructured materials. 

 

A two-dimensional layered structure consisting of thin crystalline inorganic layers 

with a thickness in nanometer range can be used as an ideal host of layered 

nanocomposite or organic-inorganic hybrid materials. One of the candidates for this 

type of structure is layered double hydroxide (LDH). A variety of anionic species can 

be inserted as guest into the interlayer spaces of the LDH, resulting in an expansion 

of the interlayer distance to a nanometer sized dimension to form a new 

nanocomposite material (Yamanaka, 1991). 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1 Layered Double Hydroxide 

 

Layered double hydroxides (LDHs) are also known as anionic clays. Feitknecht 

discovered it about 50 years ago, but their structure was only determined in 1970 by 

Allman for the Mg-Fe LDH (pyroaurite and sjögrenite) and by Brown and O’Hare 

for the Mg-Al LDH (hydrotalcite and manasseite) (Ehisissen et al., 1993). These 

compounds have a structure of sheet held together by strong covalent bonds in the xy 

plane to form a two-dimensional polyhydroxyl cation layers (Figure 2.1). These 

crystalline layers containing anions and water molecules are stacked considerable 

weaker bonds in the z direction (Hussein et al., 1995).  

 

 

 

 

  

 

 

 

 

 

Figure 2.1 Structure of LDH 
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