

UNIVERSITI PUTRA MALAYSIA

SIMULATION OF FATIGUE CRACK GROWTH IN FRICTION

STIR-WELDED JOINTS OF 2024-T351 ALUMINUM ALLOY

AMIRREZA FAHIM GOLESTANEH

T FK 2008 70

SIMULATION OF FATIGUE CRACK GROWTH IN FRICTION STIR-WELDED JOINTS OF 2024-T351 ALUMINUM ALLOY

By

AMIRREZA FAHIM GOLESTANEH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

November 2008

DEDICATION

To my dear parents, that I owe them my life

To my supervisor Dr. Aidy Ali who I learned a lot from

To my high school teacher Mr. Shirdavani who interested me in mechanical engineering field.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

SIMULATION OF FATIGUE CRACK GROWTH IN FRICTION STIR-WELDED JOINTS OF 2024-T351 ALUMINUM ALLOY

By

AMIRREZA FAHIM GOLESTANEH

November 2008

Chairman : Aidy Ali, PhD

Faculty : Engineering

The present work simulates and predicts the fatigue crack growth in the friction stir welded (FSW) joint of the 2024-T351 Al alloy. The simulation is used to estimate the fatigue life of this welded joint. The study is based on finite element method (FEM) and in the framework of Fracture Analysis Code for twodimensional (FRANC2D/L), developed by Fracture Group of Cornell University. Fatigue crack behavior through the FSW joint is investigated under Linear Elastic Fracture Mechanics (LEFM) using the Paris' model. The work concentrated on a stable crack propagation regime, the obtained fatigue life shows good agreement with experimental and analytical results. The present work incorporates a few different types of loading which are 1) the cyclic fatigue loading for the case of R= 0.1, 2) the longitudinal tensile residual stress, 3) the crack closure concept and 4) the residual stress relaxation phenomenon. In the current work the stress intensity factor is calculated by applying displacement correlation technique, which is based on calculating the displacement field around the crack tip. The maximum circumferential tensile stress method was

used to predict the fatigue crack direction. In fact FRANC2D/L does not have the capacity to consider different Paris' constants for FSW zones and it predicts the crack propagation through the welded zones by considering the same values of Paris' constants. This work presents a strategy to investigate the crack growth based on the corresponding Paris' constants for each FSW zone. The numerical results are validated with the previous experimental and analytical work, which show a good agreement of 88% and 97%.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SIMULASI RAMBATAN RETAK OLEH KELESUAN DI DALAM KIMPALAN GESERAN 2024-T351 AL LOGAM CAMPURAN

Oleh

AMIRREZA FAHIM GOLESTANEH

November 2008

Pengerusi : Aidy Ali, PhD

Fakulti : Kejuruteraan

Kerja penyelidikan yang dibentangkan adalah simulasi dan jangkaan hayat kelesuan rambatan retak di dalam kimpalan secara geseran (FSW) bahan Aluminium 2024-T351 logam campuran. Kajian adalah berasaskan kaedah unsur terhingga berangka (FEM) dan didalam kod analisis patah dua dimensi (FRANC2D/L) yang dibangunkan oleh Kumpulan Kajian Patah Cornell University U.S.A. Sifat retak dikaji melalui elastik plastik mekanik patahlinear menggunakan hukum Paris. Kajian tertumpu kepada rambatan retak yang stabil keputusan hayat kelesuan adalah selari dengan jangkaan yang diperolehi daripada eksperimen dan formulasi. Kajian menggabungkan 1) bebanan ulangalik dengan nisbah daya R=0.1, 2) daya dalaman regangan, 3) konsep retak tertutup dan 4) penggunaan daya dalaman.

Faktor tegasan tumpu dikira melalui teknik anjalan korelasi, mengambilkira anjakan di depan tip retak. Perisian FRANC2D/L berupaya menjangka dengan tiga kaedah, di mana tegasan regangan maksimum lilitan dipilih. Kajian

mendapati perisian FRANC2D/L tidak berupaya menyerap pemalar Paris untuk zon yang berbeza ketika retak merambat di dalam kimpalan geseran ini. Kajian membentangkan kaedah penyelesaian masalah ini. Keseluruhan keputusan disahkan dengan keputusan eksperimen dan formulasi memberikan ketepatan jangkaan 88 dan 97 peratus.

ACKNOWLEDGEMENTS

I hereby convey my sincere gratitude and appreciation to my venerable supervisor Dr. Aidy Bin Ali, who supported me with invaluable and worthwhile advice on this work, and gave me a panorama of observance into the research. I also would like to appreciate the efforts of the honorable Associate Professor Dr. Wong Shaw Voon from Department of Mechanical and Manufacturing Engineering and Dr. Faizal Mustapha from Department of Aerospace Engineering, Universiti Putra Malaysia for accommodating me with helpful advice on my research. I also thank to all other faculty members who somehow helped me to implement this research.

Finally, I would like to express my gratitude to my beloved parents, for their guidance, supports, love and encouragement.

I certify that a Thesis Examination Committee has met on 7 November 2008 to conduct the final examination of Amirreza Fahim Golestaneh on his thesis entitled "Simulation of Fatigue Crack Growth in Friction Stir-Welded Joints of 2024-T351 Aluminum Alloy" in accordance with the Universities and University Colleges Act 1971 and the constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as Follows:

Nor Mariah binti Adam, PhD Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd Sapuan bin Salit, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Barkawi bin Sahari, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Ahmad Kamal Ariffin bin Mohd. Ihsan, PhD Profesor Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 29 January 2009

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Aidy bin Ali, PhD

Senior Lecturer Department of Mechanical and Manufacturing Engineering Faculty of Engineering Universiti Putra Malaysia (Chairman)

Wong Shaw Voon, PhD

Associate professor Department of Mechanical and Manufacturing Engineering Faculty of Engineering Universiti Putra Malaysia (Member)

Faizal Mustapha, PhD

Lecturer Department of Aerospace Engineering Faculty of Engineering Universiti Putra Malaysia (Member)

HASANAH MOHD. GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: February 12, 2009

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citation, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

> AMIRREZA FAHIM GOLESTANEH Date: Nov 26, 2008

TABLE OF CONTENTS

DEDICATION	II
ABSTRACT	III
ABSTRAK	V
ACKNOWLEDGEMENTS	VII
APPROVAL	VIII
DECLARATION	Х
LIST OF TABLES	XIII
LIST OF FIGURES	XIV
LIST OF ABBREVIATIONS	XIX

CHAPTER

1	INTR	RODUCTION	1
	1.1	Introduction	3
	1.2	Research problem	3
	1.3	Scope of the study	4
	1.4	Objective of the research	4
	1.5	Lay out of the thesis	
		•	6
2	LITE	RATURE REVIEW	6
	2.1	Introduction to friction stir welding joints	8
	2.2	Characteristics of friction stir welding joints	8
		2.2.1 Microstructure characteristics of FSW	8
		1) Nugget zone	9
		2) Flow arm	11
		3) Thermo-mechanically affected zone (TMAZ)	11
		4) Heat affected zone (HAZ)	12
		2.2.2 Hardness characteristics of FSW	13
		2.2.3 Residual stress characteristics of FSW	19
	2.3	Fatigue in friction stir welding joints	23
		2.3.1 Fatigue crack initiation	25
		2.3.2 Fatigue crack propagation	27
		1) Microstructure and hardness effects on fatigue	27
		crack propagation in FSW joints	
		2) Residual stress effect on fatigue crack	28
		propagation in FSW joints	
	2.4	Linear elastic fracture mechanics (LEFM)	36
	2.5	Elastic-plastic fracture mechanics (EPFM)	41
	2.6	Empirical fatigue crack growth models	43
	2.7	Crack closure	49
		a) Plasticity-induced closure	51
		b) Roughness-induced closure	51
		c) Oxide-induced closure	52
		d) Fluid-induced closure	52

	2.8	Simulation of fatigue crack propagation	55
3	MET	HODOLOGY	68
		1) Modeling and meshing procedures	70
		2) Analyzing and simulating procedures	70
	3.1	Modeling and meshing procedures	71
		3.1.1 Experimental specimen	71
		3.1.2 Modeling the specimen in CASCA	72
		3.1.3 Meshing process	74
	3.2	CASCA output data	76
	3.3	Analyzing and simulating procedures	77
		3.3.1 Pre-processing	77
		1) Problem type	77
		2) Material properties	78
		3) Boundary conditions	82
		4) Loading	83
		I) Loading analysis	83
		II) Load introducing to the software	88
		3.3.2 Stress analysis and post-processing	99
		3.3.3 Crack initiation	90
		3.3.4 Stress analysis after crack introduction	92
		3.3.5 Crack propagation	93
		3.3.6 Post-processing stage	99
4	RESU	ULTS AND DISCUSSIONS	105
	4.1	Stress distribution	105
	4.2	Crack growth simulation under 270 MPa maximum stress in each zone	106
	4.3	Stress intensity factor (SIF) history	116
	4.4	Last propagation step	118
	4.5	Total crack growth simulation under 270 MPa	120
		maximum stress	
	4.6	Crack growth simulation under various loading	124
	4.7	Prediction of fatigue life and S-N curve	132
5	CON	CLUSIONS AND RECOMMENDATIONS	135
	5.1	Conclusions	135
	5.2	Recommendations for further work	136
REFERENC	CES		138
APPENDIC	ES		145
BIODATA OF THE AUTHOR 10		169	

LIST OF TABLES

Table		Page
2.1	Residual stress within FSW joints in SCT and CT specimens of 2024 Al alloy obtained by hole-drilling method [13]	21
2.2	Residual stresses within FSW joints in SCT and CT specimens of 2024 Al alloy after applying 2% plastic strain [13]	32
2.3	Initial crack dimensions [4]	61
3.1	Mechanical properties of 2024-T351 according to ASTM E8M-94a [1, 3, 72]	70
3.2	Experimental yield stress and Poisson's ratio for FSW 2024- T351 Al alloy [1, 2]	81
3.3	Load conditions respective to the applied stresses	89
3.4	Paris model constants from Bussu [13] and Ali [2] experiments and regression calculation	100
4.1	Crack growth rate based on simulation and analytical methods for 270 MPa maximum applied stress	121
4.2	Number of cycles at each zone of FSW polished mirror material for different applied stress conditions	132
4.3	Comparison between simulation, analytical and experimental fatigue lifetime of FSW polished mirror material for different applied stress conditions	133

LIST OF FIGURES

Figure		Page
2.1	A schematic illustration of FSW butt joint [19]	6
2.2	FSW technology, schematic view [8]	7
2.3	Weld microstructure zones [8]	10
2.4	Effect of FSW on Al grain size (a) base material (b,c) nugget zone [5, 13]	11
2.5	Typical microstructure in TMAZ [13]	12
2.6	Typical microstructure in HAZ [13]	13
2.7	Hardness characteristic curve for 7050 Al alloy [28]	15
2.8	Hardness variation within 5083 Al alloy [29]	16
2.9	Hardness variation in 2024-T351 Al alloy [13]	17
2.10	Hardness variation for 6082 Al alloy [16]	18
2.11	Hardness variation for AA7005/10 vol.%Al2O3p composite [5]	19
2.12	The residual stress profile along the FSW 2024-T351 Al alloy weld [2]	22
2.13	Empirical crack growth data of 2024-T351 Al alloy for surface cracks [13].	24
2.14	Schematic illustration of the idealized crack growth [51]	25
2.15	Crack growth behavior of 2024-T351 Al alloy at base material, PJL and 11 mm away from it for SCT specimen [13]	29
2.16	Crack growth behavior of 2024-T351 Al alloy at base material and 25 mm away from it for SCT specimen [13]	30
2.17	Crack growth behavior of 2024-T351 Al alloy at base material and weld material for CT specimen [13]	31
2.18	Crack growth data for 2024-T351 Al alloy SCT specimen after 2% plastic strain parallel to the weld line [13]	32
2.19	Crack growth data for 2024-T351 Al alloy CT specimen after	33

2% plastic strain perpendicular to the weld line [13]

2.20	Fatigue life of (a) FSW joint as welded (b) FSW polished mirror joint [2]	34
2.21	Fatigue lifetime of (a) FSW peened as welded (b) FSW peened after skimmed [2]	35
2.22	Increase of yield strength in elastic-plastic material under loading and unloading process	37
2.23	Plastic zone at the crack tip in (a) plane strain and (b) plane stress conditions [50]	38
2.24	Nonlinear elastic material under loading and unloading processes	42
2.25	Schematic illustration of the fatigue crack growth and the effect of load ratio [4]	44
2.26	Schematic drawing of polar coordinate axis ahead of a crack tip [37]	46
2.27	Load-displacement behavior of cracked and uncracked specimen [47]	49
2.28	Plasticity-induced closure [47]	51
2.29	Roughness-induced closure [47]	52
2.30	Oxide-induced closure [47]	52
2.31	Crack closure induced by viscous fluid between the crack faces [47]	53
2.32	Extrapolation for the crack opening load from crack opening displacement versus load data [63]	54
2.33	Crack growth measurements and FE predictions versus crack size (a) 14 mm specimen thickness (b) 30 mm specimen thickness [57]	55
2.34	Crack propagation along the crack front after cyclic loading [46]	59
2.35	Initial cracks inserted into the crack growth simulations [4]	61
2.36	Six-node triangular elements around the crack tip [42]	64

3.1	Process of conducting the study	69
3.2	(a) Four-point bending specimen [1], (b) longitudinal specimen configuration and coordinate system relative to the weld line [2]	72
3.3	Free-body diagram of specimen loaded in four-point bending machine	73
3.4	Two-dimensional simulation specimen covered by mesh elements and subjected to distributed loading	75
3.5	Stress-strain curves for each microstructure zone in FSW 2024- T351 Al alloy a) PZ b) HAZ c) TMAZ d) NZ [2]	81
3.6	Stress contour in Y direction after crack propagation under 270 MPa maximum applied stress	83
3.7	Remeshing process (a) removing the primary mesh elements (b) replacing eight quarter-point elements around the crack tips	92
3.8	Stress intensity factor for 270 MPa max stress at HAZ-PZ boundary (a) displacement correlation technique (b) J integral (c) modified crack closure	96
3.9	Crack tip hits the boundary between HAZ and PZ	97
3.10	Cycles-crack length plot for maximum applied stress=270 MPa after fracture	98
3.11	Number of cycles versus the half of the crack length within (a) TMAZ, (b) NZ, (c) HAZ and (d) PZ for 243 MPa applied stress range	104
4.1	Stress distribution in Y direction for 270 MPa maximum applied stress	106
4.2	Number of cycles versus half of the crack length within the TMAZ up to the HAZ boundary for 270 MPa maximum applied stress	107
4.3	Number of cycles versus half of the crack length within the TMAZ up to the NZ boundary for 270 MPa max applied stress	108
4.4	Number of cycles versus half of the crack length within the HAZ up to the PZ boundary for 270 MPa maximum applied stress	113
4.5	Number of cycles versus half of the crack length within the PZ	116

for 270 MPa maximum applied stress

4.6	Stress intensity factor based on displacement correlation method (a) the variation of KI versus half of crack length (b) KI of initial crack (c) KI at the end of propagation process	118
4.7	Number of cycles versus half of the crack length at the end of stage II for 270 MPa maximum applied stress	119
4.8	SIF (KI) for 270 MPa maximum applied stress in stage III	119
4.9	Crack propagation data based on simulation and analytical methods for 270 MPa maximum applied stress	122
4.10	Crack growth rate versus SIF range based on simulation and analytical method for 270 MPa maximum applied stress	122
4.11	Crack growth rate versus cycles based on simulation and analytical method for 270 MPa maximum applied stress	124
4.12	Last fatigue crack propagation process through the PZ (a) 270 MPa max applied stress, (b) 277.8 MPa max applied stress, (c) 292.55 MPa max applied stress, (d) 303.67 MPa max applied tress	126
4.13	Last fatigue crack propagation process through the parent zone (a) 311 MPa max applied stress, (b) 322 MPa max applied stress, (c) 333 MPa max applied stress, (d) 351 MPa max applied stress	128
4.14	Last fatigue crack propagation process through the parent zone (a) 373 MPa max applied stress, (b) 395 MPa max applied stress, (c) 418 MPa max applied stress, (d) 444 MPa max applied stress	129
4.15	Last fatigue crack propagation process through the PZ under 466 MPa max applied stress	130
4.16	Fatigue life predictions of FSW joint of 2024-T351 Al alloy	134
A.1	Number of cycles versus the half of the crack length within (a) TMAZ, (b) HAZ and (c) PZ for 277.8 MPa max applied stress	146
A.2	Number of cycles versus the half of the crack length within (a) TMAZ, (b) HAZ and (c) PZ for 292.5 MPa max applied stress	148

- A.3 Number of cycles versus the half of the crack length within(a) TMAZ, (b) HAZ and (c) PZ for 303.6 MPa max applied 150 stress
- A.4 Number of cycles versus the half of the crack length within (a) TMAZ, (b) HAZ and (c) PZ for 311 MPa max applied stress 152
- A.5 Number of cycles versus the half of the crack length within (a) TMAZ, (b) HAZ and (c) PZ for 322 MPa max applied stress 154
- A.6 Number of cycles versus the half of the crack length within (a) TMAZ, (b) HAZ and (c) PZ for 333 MPa max applied stress 156
- A.7 Number of cycles versus the half of the crack length within (a) TMAZ, (b) HAZ and (c) PZ for 351 MPa max applied stress 158
- A.8 Number of cycles versus the half of the crack length within (a) TMAZ, (b) HAZ and (c) PZ for 373 MPa max applied stress 160
- A.9 Number of cycles versus the half of the crack length within (a) TMAZ, (b) HAZ and (c) PZ for 395 MPa max applied stress 162
- A.10 Number of cycles versus the half of the crack length within (a) TMAZ, (b) HAZ and (c) PZ for 418 MPa max applied stress 164
- A.11 Number of cycles versus the half of the crack length within (a) TMAZ, (b) HAZ and (c) PZ for 444 MPa max applied stress 166
- A.12 Number of cycles versus the half of the crack length within (a) TMAZ, (b) HAZ and (c) PZ for 466 MPa max applied stress 168

LIST OF ABBREVIATIONS

а	Edge crack length
$a_{e\!f\!f}$	Total size of the crack
$\frac{\partial a}{\partial N}$	Crack growth rate
b	Empirical factor
BEM	Boundary Element Method
С	Paris' constant
C_0	Material constant
C', n, p, q	Constants
СТ	Compact Tension
CTOD	Crack Tip Opening Displacement
$CTOD_{c}$	Critical Crack Tip Opening Displacement
CTOD _c INIT	Initial value of Critical Crack Tip Opening Displacement
CTS	Compact Tension Shear specimen
<i>E</i> , <i>E</i> ′	Modulus of elasticity

EPFM	Elastic-Plastic Fracture Mechanics
<i>F</i> ₁ , <i>F</i> ₂	External forces acting on specimen
FAZ	Flow Arm Zone
FNK	Forman–Newman–de Koning
FRANC2D	Fracture Analysis Code 2-D
FSW	Friction Stir Welding
G	Shear modulus
g	Energy release rate for LEFM
Н	Constant strain hardening
HAZ	Heat Affected Zone
HCF	High Cycle Fatigue
Ι	Second moment of inertia
K	Stress intensity factor
K _c	Fracture toughness
K_{I}, K_{II}, K_{III}	Stress intensity factor of three modes
K _{max}	Stress intensity factor of the maximum applied stress

$K_{_{op}}$	Opening stress intensity factor
L	Crack length on the crack face
$L_{ m l/~4}$	Distance from the quarter node to the crack tip
LCF	Low Cycle Fatigue
LEFM	Linear Fracture Mechanics
М	Moment
$Max\sigma_{rex}$	Maximum stress after relaxation
$Min\sigma_{rex}$	Minimum stress after relaxation
т	Paris' constant
Ν	Number of cycles
n	Strain hardening exponent
NZ	Nugget Zone
OSM	Object Solid Modeler
Р	External applying load
PJL	Plane Joint Line
PZ	Parent plate Zone

R	Stress ratio
<i>R</i> ₁ , <i>R</i> ₂	Support reaction forces
r, θ	Polar coordinates
r_f	Plastic zone radius
$r_{p(6\pi)}$	Plastic zone radius for plane strain
$r_{p(combo)}$	Plastic zone radius for planar condition
SCT	Surface Crack Tension
$S_{ m max}/\sigma_0$	Ratio of maximum applied stress to the material yield strength
TMAZ	Thermomechanically Affected Zone
TWI	The Welding Institute
u, V	Nodal displacements in x and y direction
W	Walker exponent
x	Distance from origin
у	Distance from neutral axis of cross section
Y	Correction factor

α	Plane stress/strain constraint
Δa	Mesh element size or incremental crack length
ΔK	Stress intensity factor range
$\Delta k_{_{e\!f\!f}}$	Effective stress intensity factor range
ΔK_{th}	Threshold range
$\Delta\sigma_{\scriptscriptstyle e\!f\!f}$	Effective stress range
V	Poisson ratio
$\sigma_{_{e\!f\!f}}$	Effective stress
$\sigma_{\scriptscriptstyle m max}$	Maximum applied stress
$\sigma_{_{ m max+res}}$	Maximum stress after incorporating residual stress
$\sigma_{ m min}$	Minimum applied stress
$\sigma_{{ m min}+res}$	Minimum stress after incorporating residual stress
$\sigma_{_{op}}$	Opening stress
$\sigma_{\scriptscriptstyle res}$	Residual stress
$\sigma_{_0}$	Yield strength

Two-dimension

