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The present work simulates and predicts the fatigue crack growth in the 

friction stir welded (FSW) joint of the 2024-T351 Al alloy. The simulation is 

used to estimate the fatigue life of this welded joint. The study is based on finite 

element method (FEM) and in the framework of Fracture Analysis Code for two-

dimensional (FRANC2D/L), developed by Fracture Group of Cornell University. 

Fatigue crack behavior through the FSW joint is investigated under Linear 

Elastic Fracture Mechanics (LEFM) using the Paris’ model. The work 

concentrated on a stable crack propagation regime, the obtained fatigue life 

shows good agreement with experimental and analytical results. The present 

work incorporates a few different types of loading which are 1) the cyclic fatigue 

loading for the case of R= 0.1, 2) the longitudinal tensile residual stress, 3) the 

crack closure concept and 4) the residual stress relaxation phenomenon. In the 

current work the stress intensity factor is calculated by applying displacement 

correlation technique, which is based on calculating the displacement field 

around the crack tip. The maximum circumferential tensile stress method was 
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used to predict the fatigue crack direction. In fact FRANC2D/L does not have the 

capacity to consider different Paris’ constants for FSW zones and it predicts the 

crack propagation through the welded zones by considering the same values of 

Paris’ constants. This work presents a strategy to investigate the crack growth 

based on the corresponding Paris’ constants for each FSW zone. The numerical 

results are validated with the previous experimental and analytical work, which 

show a good agreement of 88% and 97%. 
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Kerja penyelidikan yang dibentangkan adalah simulasi dan jangkaan hayat 

kelesuan rambatan retak di dalam kimpalan secara geseran (FSW) bahan 

Aluminium 2024-T351 logam campuran. Kajian adalah berasaskan kaedah unsur 

terhingga berangka (FEM) dan didalam kod analisis patah dua dimensi 

(FRANC2D/L) yang dibangunkan oleh Kumpulan Kajian Patah Cornell 

University U.S.A. Sifat retak dikaji melalui elastik plastik mekanik patahlinear 

menggunakan hukum Paris. Kajian tertumpu kepada rambatan retak yang stabil 

keputusan hayat kelesuan adalah selari  dengan jangkaan yang diperolehi 

daripada eksperimen dan formulasi. Kajian menggabungkan 1) bebanan 

ulangalik dengan nisbah daya R=0.1, 2) daya dalaman regangan, 3) konsep retak 

tertutup dan 4) penggunaan daya dalaman.  

 

Faktor tegasan tumpu dikira melalui teknik anjalan korelasi, mengambilkira 

anjakan di depan tip retak. Perisian FRANC2D/L berupaya menjangka dengan 

tiga kaedah, di mana tegasan regangan maksimum lilitan dipilih. Kajian 
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mendapati perisian FRANC2D/L tidak berupaya menyerap pemalar Paris untuk 

zon yang berbeza ketika retak merambat di dalam kimpalan geseran ini. Kajian 

membentangkan kaedah penyelesaian masalah ini. Keseluruhan keputusan 

disahkan dengan keputusan eksperimen dan formulasi memberikan ketepatan 

jangkaan  88 dan 97 peratus. 
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