

# **UNIVERSITI PUTRA MALAYSIA**

## PROVING KOCHEN-SPECKER THEOREM USING PROJECTION MEASUREMENT AND POSITIVE OPERATOR-VALUED MEASURE

**TOH SING POH** 

IPM 2008 3



# **PROVING KOCHEN-SPECKER THEOREM USING PROJECTION MEASUREMENT AND POSITIVE OPERATOR-VALUED MEASURE**

**TOH SING POH** 

# DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2008



## PROVING KOCHEN-SPECKER THEOREM USING PROJECTION MEASUREMENT AND POSITIVE OPERATOR-VALUED MEASURE

By

TOH SING POH

Thesis Submitted to the School of Graduate Studies, Unversiti Putra Malaysia, in fulfilment of the Requirements for the Doctor of Philosophy

December 2008



To my mum, who never formally educated but has always shown support on my pursuit of knowledge. She passed away before my completion of study.

To my wife, who has always respected my research life.



Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of requirement for the Doctor of Philosophy

#### PROVING KOCHEN-SPECKER THEOREM USING PROJECTION MEASUREMENT AND POSITIVE OPERATOR-VALUED MEASURE

By

#### **TOH SING POH**

December 2008

## Chairman : Associate Professor Hishamuddin Zainuddin, PhD

Faculty : Institute for Mathematical Research

One of the main theorems on the impossibility of hidden variables in quantum mechanics is Kochen-Specker theorem (KS). This theorem says that any hidden variable theory that satisfies quantum mechanics must be contextual. More specifically, it asserts that, in Hilbert space of dimension  $\geq 3$ , it is impossible to associate definite numerical values, 1 or 0, with every projection operator  $P_m$ , in such a way that, if a set of commuting  $P_m$  satisfies  $\sum P_m = 1$ , the corresponding values  $v(P_m)$  will also satisfy  $\sum v(P_m) = 1$ . Since the first proof of Kochen and Specker using 117 vectors in  $\mathbb{R}^3$ , there were many attempts to reduce the number of vector either via conceiving ingenious models or extending the system being considered to higher dimension. By considering eight dimensional three qubits system, we found a state dependent proof that requires only five vectors. The state that we assign value of 1 is the ray that arises from intersection of two planes.



The recent advancements show that the KS theorem proof can be extended to two dimensional quantum system through generalized measurement represented by positive operator-valued measured (POVM). In POVMs the number of available outcomes of a measurement may be higher than the dimensionality of the Hilbert space and N-outcome generalized measurement is represented by N-element POVM which consists of N positive semidefinite operators  $\{E_d\}$  that sum to identity. Each pair of elements is not mutually orthogonal if the number of outcome of measurements is bigger than the dimensionality. In terms of POVM, Kochen-Specker theorem asserts that  $\sum_i E_i = I$  and  $\sum_i v(E_i) = I$  could not be satisfied for  $d \ge 2$ . We developed a general model that enables us to generate different sizes of the POVM for the proof of the Kochen-Specker theorem. We show that the current simplest Nakamura model is in fact a special case of our model. W also provide another model which is as simple as the Nakamura's but consists of different sets of POVM.



Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah.

## PEMBUKTIAN TEOREM KOCHEN-SPECKER DENGAN MENGGUNAKAN PENGUKURAN OPERATOR UNJURAN DAN PENGUKURAN OPERATOR-NILAI POSITIF

Oleh

#### **TOH SING POH**

**Disember 2008** 

## Pengerusi : Profesor Madya Hishamuddin Zainuddin, PhD

Fakulti : Institut Penyelidikan Matematik

Salah satu teorem utama mengenai ketidakwujudan pembolehubah tersembunyi dalam mekanik kuantum adalah teorem Kochen-Specker (KS). Teorem in menyatakan bahawa sebarang teori pengbolehubah tersembunyi yang mematuhi mekanik kuantum mestilah kontekstual. Secara spesifik, ia menyatakan bahawa di dalam ruang Hilbert yang berdimensi  $\geq 3$ , adalah mustahil untuk memberi nilai tentu, samada 1 atau 0, kepada operator unjuran  $P_m$  di mana jika satu set  $P_m$  bertukar tertib memenuhi  $\sum P_m = 1$ , nilainilai padanan  $v(P_m)$  juga memenuhi  $\sum v(P_m) = 1$ . Sejak pembuktian pertama yang dikemukakan oleh Kochen dan Specker yang menggunakan 117 vektors dalam  $R^3$ , terdapat banyak usaha untuk mengurangkan bilangan vektor samada dengan mengemukakan model yang bijak atau mempertimbangkan sistem yang berdimensi lebih tinggi. Dengan mempertimbangkan sistem tiga qubit lapan dimensi, kami mengemukakan pembuktian yang bergantung kepada keadaan, memerlukan hanya lima vektor. Keadaan yang diberikan nilai 1 adalah hasilan daripada persilangan dua muka.



Perkembangaan baru-baru ini menunjukkan bahawa pembuktian teorem Kochen- Specker dapat diperluaskan kepada sistem kuantum berdimensi dua melalui pengukuran teritlak yang diwakili oleh ukuran bernilai operator positif (UBOP). Dalam UBOP bilangan dapatan pengukuran adalah berkemungkinan lebih daripada dimensi ruang Hilbert dan pengukuran teritlak *N*-dapatan diwakili oleh UBOP *N*-unsur yang terdiri daripada *N* operator separa-tentu positif  $\{E_i\}$  yang terjumlah ke identiti. Setiap pasangan unsur tidak saling ortogon jika bilangan hasilan pengukuran adalah lebih daripada dimensi ruang. Dalam bentuk UBOP, teorem Kochen-Specker menyatakan bahawa  $\sum_{i} E_i = I$  dan  $\sum_{i} v(E_i) = I$  tidak dapat dipatuhi bagi  $d \ge 2$ . Kami

mengemukakan satu model umum yang membolehkan kami mengitlakkan saiz UBOP yang berbeza dalam pembuktian teorem Kochen-Specker. Kami menunjukkan bahawa model Nakamura yang termudah kini sebenarnya adalah kes khas dalam model kami. Kami juga membekalkan satu model lain yang seringkas model Nakamura tetapi terdiri dariapda set UBOP yang berlainan.



#### ACKNOWLEDGEMENTS

There are so many interesting topics in physics. Ironically, the broadness of my interest in certain sense signify the uncertain direction that I need to focus on and it in turns becomes one of the sources of depression in my academic life, especially whenever I somehow sense that the progress is too slow. I would like to thank my supervisor, Assoc. Prof. Dr. Hishamuddin, for playing his key role of leading me to work on fundamental problems of quantum mechanics and arouse my willingness to devote myself in this area for my future.

I would also like to thank my co-supervisors, Assoc. Prof. Dr. Jumiah Hassan and Dr. Isamiddin S. Rakhimov for their willingness to help and spend their invaluable time in examining my thesis.

I would like to thank Mr. Foo Kim Eng who is my good consultant in MatLab.



I certify that a Thesis Examination Committee has met on 4 December 2008 to conduct the final examination of Toh Sing Poh on his thesis entitled "Proving Kochen-Specker Theorem Using Projection Measurement and Positive Operator-Valued Measure" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

#### Mohanad Rushdan Md. Said, PhD

Associate Professor Faculty for Mathematical Research, Universiti Putra Malaysia. (Chairman)

#### Ionel Valeriu Grozescu, PhD

Associate Professor Faculty of Science, Universiti Putra Malaysia. (Internal Examiner)

#### Zuriati Ahmad Zukarnain, PhD

Lecturer Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (Internal Examiner)

#### Kwek Leong Chuan, PhD

Associate Professor National Institute of Education and Center for Quantum Technologies, National University of Singapore (External Examiner)

#### HASANAH MOHD. GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 29 January 2009



This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

#### Hishamuddin Zainuddin, PhD

Associate Professor Institute for Mathematical Research, Universiti Putra Malaysia. (Chairman)

#### Jumiah Hassan, PhD

Associate Professor Faculty of Science and Environmental Studies, Universiti Putra Malaysia. (Member)

### Isamiddin S. Rakhimov, PhD

Institute for Mathematical Research, Universiti Putra Malaysia. (Member)

## HASANAH MOHD. GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 12-2-2009



# DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

Toh Sing Poh

Date:



# TABLE OF CONTENTS

|                                   | Page  |
|-----------------------------------|-------|
| DEDICATION                        | ii    |
| ABSTRACT                          | iii   |
| ABSTRAK                           | V     |
| ACKNOWLEDGEMENTS                  | vii   |
| DECLARATION FORM                  | viii  |
| LIST OF TABLES                    | xiv   |
| LIST OF FIGURES                   | xviii |
| LIST OF SYMBOLS AND ABBREVIATIONS | XX    |

# CHAPTER

| 1 | INTR | ODUCTION                                                                      | 1  |
|---|------|-------------------------------------------------------------------------------|----|
|   | 1.1  | Contextuality                                                                 | 1  |
|   | 1.2  | Hidden Variable                                                               | 4  |
|   | 1.3  | Physical Meaning of Kochen-Specker Theorem                                    | 6  |
|   | 1.4  | Objectives                                                                    | 6  |
| 2 | LITE | RATURE REVIEW                                                                 | 7  |
|   | 2.1  | A Briefest Historical Introduction                                            | 7  |
|   | 2.2  | Kochen-Specker Theorem Proof in Three Dimensional Quantum System              | 8  |
|   | 2.3  | Kochen-Specker Theorem Proof in Four Dimensional                              |    |
|   |      | Quantum System                                                                | 10 |
|   | 2.4  | Kochen-Specker Theorem Proof in Eight Dimensional                             |    |
|   |      | Quantum System                                                                | 11 |
|   | 2.5  | Kochen-Specker Theorem Proof Using Positive<br>Operator-Valued Measure (POVM) | 12 |
| 3 | THE  | DRY I MATHEMATICAL TOOLS FOR QUANTUM                                          |    |
| 5 | met  | THEORY                                                                        | 14 |
|   | 3.1  | Complex Vector Space and Vector                                               | 14 |
|   | 3.2  | Linear Combination. Independence and Dimensionality                           | 16 |
|   | 3.3  | Dual Vector and Inner Product                                                 | 17 |
|   | 3.4  | Basis and Ray                                                                 | 18 |
|   | 3.5  | Linear Operator                                                               | 19 |
|   | 3.6  | Projection Operator                                                           | 21 |
|   | 3.7  | Eigenvalue and Eigenvector                                                    | 22 |
|   | 3.8  | Observable                                                                    | 23 |
|   | 3.9  | Commutability and Compatibility                                               | 24 |
|   | 3.10 | The Density Operator                                                          | 25 |



| 3.11 | Tensor Product         | 26 |
|------|------------------------|----|
| 3.12 | Spectral Decomposition | 28 |
| 3.13 | Functions of Operator  | 28 |
| 3.14 | Bloch Sphere           | 29 |
| 3.15 | Projective Measurement | 32 |
| 3.16 | POVM Measurement       | 33 |

| 4 | THEORY | Π | STRUCTURE   | OF | KOCHEN-SPECKER |
|---|--------|---|-------------|----|----------------|
|   | _      |   | THEOREM PRO | OF |                |

| -    | THEOREM PROOF                                           | - 35 |
|------|---------------------------------------------------------|------|
| 4.1  | Kochen-Specker Theorem                                  | 35   |
| 4.2  | Original Proof of Kochen-Specker Theorem                | 39   |
| 4.3  | Conway and Kochen's 31 Rays Proof                       | 58   |
| 4.4  | Peres' 33 Rays                                          | 63   |
| 4.5  | Mermin's Magic Square                                   | 68   |
| 4.6  | Peres' 24 Rays                                          | 70   |
| 4.7  | Kernaghan's 20 Vectors                                  | 73   |
| 4.8  | Cabello's Proofs                                        | 75   |
|      | 4.8.1 Proof with 18 Rays                                | 75   |
|      | 4.8.2 State Dependent Proof                             | 77   |
|      | 4.8.3 Probabilistic Proof                               | 79   |
|      | 4.8.4 Suggestion by Clifton                             | 80   |
|      | 4.8.5 Proof Utilizing Perfect Correlation               | 81   |
| 4.9  | Eight-Dimensional Kochen-Specker Theorem Proof          | 83   |
|      | 4.9.1 Mermin's Pentagram                                | 83   |
|      | 4.9.2 Kernaghan and Peres' Proof                        | 85   |
|      | 4.9.3 Switching Product Rule to Sum Rule                | 94   |
| 4.10 | Schütte Tautology and Quantum Contradiction             | 100  |
| METH | ODOLOGY                                                 | 113  |
| 5.1  | Rank Two Projectors                                     | 113  |
| 5.2  | Construction of Positive Operator-Valued Measure (POVM) | 114  |
| 5.3  | Model of Hexagon                                        | 115  |
| 5.4  | Model of Inscribed Cubes in Dodecahedron                | 118  |
| CALC | ULATION AND DISCUSSION                                  | 125  |
| 6.1  | Plane Intersection Proof for Eight Dimensional System   | 125  |
| 6.2  | More Basic Way of Examining Value Assignment            | 126  |
| 6.3  | Model as Simple as Nakamura's                           | 129  |
| 6.4  | General Proof via Model of Unit Circle                  | 131  |
|      |                                                         |      |

| CONC |            | 157 |
|------|------------|-----|
| 7.1  | Conclusion | 134 |
| 7.2  | Suggestion | 135 |



| BIBLIOGRAPHY       | 137 |
|--------------------|-----|
| APPENDICES         | 139 |
| BIODATA OF STUDENT | 159 |



# LIST OF TABLES

| Table |                                                                                     | Page |
|-------|-------------------------------------------------------------------------------------|------|
| 1     | Ten Normalized Rays with $x = 1$ and $y = -1.5171$                                  | 45   |
| 2     | The First Set of Ten Rays in Original Kochen-Specker Theorem Proof                  | 46   |
| 3     | The Second to Fifth Sets of Ten Rays in Original Kochen-<br>Specker Theorem Proof   | 48   |
| 4     | The Sixth to Tenth Sets of Ten Rays in Original Kochen-<br>Specker Theorem Proof    | 51   |
| 5     | The Eleventh to Fifteenth Sets of Ten Rays in Original Kochen-Specker Theorem Proof | 54   |
| 6     | Coordinates of 31 Rays in Conway and Kochen's Proof                                 | 59   |
| 7     | Orthogonal Triads Generated by 31 Rays in Conway and Kochen's Proof                 | 60   |
| 8     | Functional Identities Satisfied by Projectors in Conway and Kochen's Proof          | 60   |
| 9     | Functional Identities Satisfied by Eigenvalues in Conway and Kochen's Proof         | 61   |
| 10a   | Some Properties of 33 Rays in Peres' Proof (Part I)                                 | 64   |
| 10b   | Some Properties of 33 Rays in Peres' Proof (Part II)                                | 65   |
| 11    | Orthogonal Triads Generated by 33 Rays in Peres' Proof                              | 65   |
| 12    | Functional Identities Satisfied by Projectors in Peres' 33<br>Rays Proof            | 66   |
| 13    | Functional Identities Satisfied by Eigenvalues in Peres' 33<br>Rays Proof           | 66   |
| 14    | Coordinates of 24 Rays in Peres' Proof                                              | 70   |



| 15  | Orthogonal Tetrads Generated by 24 Rays in Peres' Proof                                | 71 |
|-----|----------------------------------------------------------------------------------------|----|
| 16  | Functional Identities Satisfied by Projectors in Peres' 24<br>Rays Proof               | 71 |
| 17  | Functional Identities Satisfied by Eigenvalues in Peres' 24<br>Rays Proof              | 72 |
| 18  | Orthogonal Tetrads in Kernaghan's 20 Rays Proof                                        | 73 |
| 19  | Functional Identities Satisfied by Projectors in Kernaghan's 20 Rays Proof             | 73 |
| 20  | Functional Identities Satisfied by Eigenvalues in Kernaghan's 20 Rays Proof            | 74 |
| 21  | Orthogonal Tetrads Generated by 18 Rays in Cabello et al.'s Proof                      | 75 |
| 22  | Functional Identities Satisfied by Projectors in Cabello et al.'s 18 Rays Proof        | 76 |
| 23  | Functional Identities Satisfied by Eigenvalues in Cabello et al.'s 18 Rays Proof       | 76 |
| 24  | Orthogonality between 18 Rays in Cabello et al.'s Proof                                | 77 |
| 25  | Functional Identities Satisfied by Projectors in Cabello et al.'s State Specific Proof | 78 |
| 26  | Functional Identities Satisfied by Eigenvalues as a Result of Clifton's Suggestion     | 80 |
| 27a | Common Eigenvectors for the Five Products of Operators in Pentagram (Part I)           | 85 |
| 27b | Common Eigenvectors for the Five Products of Operators in Pentagram (Part II)          | 86 |
| 28  | Orthogonal Octads Generated by 40 Rays in Three Qubits System                          | 86 |
| 29  | Functional Identities Satisfied by Projectors in Three Qubits System                   | 87 |



| 30 | Functional Identities Satisfied by Eigenvalues in Three Qubits System                                    | 88  |
|----|----------------------------------------------------------------------------------------------------------|-----|
| 31 | Functional Identities Satisfied by Projectors in Kernaghan<br>and Peres' 36 Rays Proof                   | 89  |
| 32 | Functional Identities Satisfied by Eigenvalues in Kernaghan and Peres' 36 Rays Proof                     | 90  |
| 33 | Functional Identities Satisfied by Rank 1 and Rank 2<br>Projectors in Three Qubits System                | 91  |
| 34 | Functional Identities Satisfied by Eigenvalues of Rank 1<br>and Rank 2 Projectors in Three Qubits System | 92  |
| 35 | Functional Identities Satisfied by Projectors in Kernaghan<br>and Peres' 13 Rays Proof                   | 93  |
| 36 | Functional Identities Satisfied by Eigenvalues in Kernaghan and Peres' 13 Rays Proof                     | 93  |
| 37 | Seventeen Propositions that Constitute Schütte's Tautology                                               | 100 |
| 38 | Eleven Propositional Variables in Schütte's Tautology                                                    | 101 |
| 39 | Forty Nine Rays Generated by Schütte's Tautology                                                         | 109 |
| 40 | Orthogonal Triples Generated by Schütte's Tautology                                                      | 109 |
| 41 | Functional Identities Satisfied by Projectors Generated by Schütte's Tautology                           | 110 |
| 42 | Functional Identities Satisfied by Eigenvalues of Projectors<br>Generated by Schütte's Tautology         | 111 |
| 43 | Six POVM Elements in Nakamura's Proof                                                                    | 117 |
| 44 | Three POVMs in Nakamura's Proof                                                                          | 117 |
| 45 | Functional Relation Satisfied by Eigenvalues of POVM Elements in Nakamura's Proof                        | 117 |
| 46 | Eight Elements POVM Constructed From a Cube                                                              | 119 |



| 47  | Vertices of Dodecahedron and Corresponding Polar and Azimuthal Angles              | 120 |
|-----|------------------------------------------------------------------------------------|-----|
| 48a | Twenty POVM Elements in Cabello's Proof (Part I)                                   | 122 |
| 48b | Twenty POVM Elements in Cabello's Proof (Part II)                                  | 123 |
| 49  | Five POVMs in Cabello's Proof                                                      | 124 |
| 50  | Functional Relation Satisfied by Eigenvalues of POVM Elements in Cabello's Proof   | 124 |
| 51  | Functional Identities Satisfied by Projectors in Plane<br>Intersection Method      | 125 |
| 52  | Reduced Functional Identities Satisfied by Projectors in Plane Intersection Method | 126 |
| 53  | Six POVM Elements in 3-Axis Model                                                  | 129 |
| 54  | Three POVMs in 3-Axis Model                                                        | 130 |
| 55  | Functional Relations Satisfied by Eigenvalues of POVM Elements in 3-Axis Model     | 130 |
| 56  | Summary of $(m, n, p, q)$ Generated via Circle Model                               | 132 |
| 57  | POVMs for (8, 4, 4, 2) and (8, 4, 6, 3) via Circle Model                           | 132 |



# LIST OF FIGURES

| Figure |                                                                                                                              | Page |
|--------|------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | A Schematic Diagram of the Stern-Gerlach Device<br>Oriented along Direction y. Spin-up and spin-down<br>particles are Shown. | 3    |
| 2      | Bloch Sphere                                                                                                                 | 31   |
| 3      | Ten Rays Used to Prove that Any Two Rays Assigned with Different Value (1 and 0) Could Not be Arbitrarily Close              | 40   |
| 4      | Relative Directions of Three Crucial Rays                                                                                    | 46   |
| 5      | Relative Directions of Three Crucial Rays after Fourth Rotation                                                              | 49   |
| 6      | Relative Directions of Three Crucial Rays before Fifth Rotation                                                              | 50   |
| 7      | Relative Directions of Three Crucial Rays after Ninth Rotation                                                               | 52   |
| 8      | Relative Directions of Three Crucial Rays before Tenth Rotation                                                              | 53   |
| 9      | Relative Directions of Three Crucial Rays after Fourteenth Rotation                                                          | 55   |
| 10     | Rescaled Unit Structure for First Set of Ten Rays                                                                            | 56   |
| 11     | Structure Produced by Joining Repeated Rays in the Fifteen Unit Structures                                                   | 57   |
| 12     | Dots on Cubes that Representing 31 Rays used in Conway and Kochen's Proof                                                    | 58   |
| 13     | Dots on Cubes that Representing 33 Rays Used in Peres'<br>Proof                                                              | 63   |
| 14     | Mermin's Magic Square                                                                                                        | 68   |



| 15 | Mermin's Pentagram                                                                   | 83  |
|----|--------------------------------------------------------------------------------------|-----|
| 16 | Hexagon in Nakamura's Proof                                                          | 116 |
| 17 | Each Vertex Forms Two Lines with Length 1.15469 via Joining to Two Opposite Vertices | 121 |
| 18 | Each Vertex Shares Three Pentagonal Surfaces                                         | 121 |
| 19 | Vertices of Five Inscribed Cubes                                                     | 122 |



# LIST OF SYMBOLS AND ABBREVIATIONS

| arphi angle    | State                                              |
|----------------|----------------------------------------------------|
| $ e_i\rangle$  | i <sup>th</sup> basis vector                       |
| $\otimes$      | Tensor product                                     |
| $R_i$          | Ray labeled as <i>i</i>                            |
| $P_i$          | Projection operators corresponding to $R_i$        |
| $\hat{\Omega}$ | Operator                                           |
| $\hat{ ho}$    | Density Operator                                   |
| α,β,           | Complex number                                     |
| $V^n(F)$       | n-dimensional vector space over a field $F$        |
| Н              | Hilbert space                                      |
| 0              | Observable                                         |
| Tr             | Trace                                              |
| $X^{\dagger}$  | Transpose conjugate of <i>X</i>                    |
| $\sigma_{_i}$  | Pauli matrice                                      |
| $\lambda_{i}$  | i <sup>th</sup> Eigenvalues                        |
| $p(\lambda_i)$ | Probability to get result as $\lambda_i$           |
| E(O)           | Expectation value of measurement upon observable O |
| $\hat{E}_i$    | i <sup>th</sup> positive semidefinite operator     |



| Ŕ    | Krauss Operator                  |
|------|----------------------------------|
| HVT  | Hidden Variable Theory           |
| POVM | Positive Operator-Valued Measure |



#### CHAPTER 1

#### **INTRODUCTION**

#### 1. Introduction

Quantum theory has been born for over 100 years, but there are quite a number of fundamental questions that still puzzle physicists to date. Quantum weirdness that have been widely attracting physicists are nonlocality, contextuality, entanglement, indeterminancy, etc. The relations between idea of hidden variables and nonlocality are deeply studied in Bell theorem, whereas relations between hidden variables and contextuality are studied in Kochen-Specker (KS) theorem. Our study focuses on the latter which states that a hidden variable theory must be contextual. The first proof of the KS theorem was provided by Bell in 1966 and independently by Kochen and Specker in 1967 [1].

#### 1.1 Contextuality

In order to reveal the properties of a physical system, an observer needs to do measurement on the system. Measurement generates result that implies whether a certain property is associated with physical system. For example, to check whether the color of a car is red, our eyes need to receive light reflected from the car. This is in fact a measurement process. Our perception about the color is associated with the result of measurement that tells us whether the car is red. For simplicity, we would represent a



positive result (existence of particular property) as 1, whereas representing a negative result (non-existence of particular property) is 0.

Suppose we measure both color and weight of the car at the same time. We would say that measurement of color and weight are in the same context of measurement. It is definitely possible to measure the color in different measurement context, for instance we often get to know about the color and speed of a car at the same time. In this case, measurement of color and speed would form another context. In classical physics, the results of measurement are independent of contexts. All of us believe that our perception of color would not be different so as to depend on whether we measure it together with weight or speed.

Through out the thesis we refer measurement to the determination of intrinsic angular momentum or spin of the quantum system being considered. Spin is one of the properties of quantum system that does not have a counterpart in classical system. It is a nonclassical degree of freedom characterized by a number which can take values  $0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ . Some elementary particles when passed through a nonuniform magnetic field they would be deflected either up or down; some would be deflected either up, down or non-deflection. The deflection is due to the interaction between spin and magnetic field. The interaction is a measurement that reveals the spin of the particle. Particles with only two possible exclusive deflections are called spin- $\frac{1}{2}$  particles.

2