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Abstract of the thesis presented to the Senate of Universiti Putra Malaysia  
in fulfilment of requirement for the Doctor of Philosophy 

 

PROVING KOCHEN-SPECKER THEOREM USING PROJECTION 
MEASUREMENT AND POSITIVE OPERATOR-VALUED MEASURE 

 

By 

TOH SING POH 

December 2008 

Chairman : Associate Professor Hishamuddin Zainuddin, PhD 

Faculty : Institute for Mathematical Research 

 

One of the main theorems on the impossibility of hidden variables in quantum 

mechanics is Kochen-Specker theorem (KS). This theorem says that any hidden 

variable theory that satisfies quantum mechanics must be contextual. More specifically, 

it asserts that, in Hilbert space of dimension ≥ 3, it is impossible to associate definite 

numerical values, 1 or 0, with every projection operator Pm, in such a way that, if a set 

of commuting Pm satisfies 1=∑ mP , the corresponding values  will also satisfy 

. Since the first proof of Kochen and Specker using 117 vectors in R3, there 

were many attempts to reduce the number of vector either via conceiving ingenious 

models or extending the system being considered to higher dimension. By considering 

eight dimensional three qubits system, we found a state dependent proof that requires 

only five vectors. The state that we assign value of 1 is the ray that arises from 

intersection of two planes.   

)( mPv

( ) 1=∑ mPv
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 The recent advancements show that the KS theorem proof can be extended to 

two dimensional quantum system through generalized measurement represented by 

positive operator-valued measured (POVM). In POVMs the number of available 

outcomes of a measurement may be higher than the dimensionality of the Hilbert space 

and N-outcome generalized measurement is represented by N-element POVM which 

consists of N positive semidefinite operators { }dE  that sum to identity. Each pair of 

elements is not mutually orthogonal if the number of outcome of measurements is 

bigger than the dimensionality. In terms of POVM, Kochen-Specker theorem asserts 

that  and  could not be satisfied for .  We developed a 

general model that enables us to generate different sizes of the POVM for the proof of 

the Kochen-Specker theorem. We show that the current simplest Nakamura model is in 

fact a special case of our model. W  also provide another model which is as simple as 

the Nakamura’s but consists of different sets of POVM. 

IE
i

i =∑ ( ) IEv
i

i =∑ 2≥d
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PEMBUKTIAN TEOREM KOCHEN-SPECKER 
DENGAN MENGGUNAKAN PENGUKURAN OPERATOR UNJURAN DAN 
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Oleh 

TOH SING POH 
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Fakulti : Institut Penyelidikan Matematik 

 

Salah satu teorem utama mengenai ketidakwujudan pembolehubah tersembunyi dalam 

mekanik kuantum adalah teorem Kochen-Specker (KS). Teorem in menyatakan bahawa 

sebarang teori pengbolehubah tersembunyi yang mematuhi mekanik kuantum mestilah 

kontekstual. Secara spesifik, ia menyatakan bahawa di dalam ruang Hilbert yang 

berdimensi , adalah mustahil untuk memberi nilai tentu, samada 1 atau 0, kepada 

operator unjuran  di mana jika satu set  bertukar tertib memenuhi , nilai-

nilai  padanan  juga memenuhi 

3≥

mP

( mPv

mP 1=∑ mP

) ∑ = 1)mP(v . Sejak pembuktian pertama yang 

dikemukakan oleh Kochen dan Specker yang menggunakan 117 vektors dalam 3R , 

terdapat banyak usaha untuk mengurangkan bilangan vektor samada dengan 

mengemukakan model yang bijak atau mempertimbangkan sistem yang berdimensi 

lebih tinggi. Dengan mempertimbangkan sistem tiga qubit  lapan dimensi, kami 

mengemukakan pembuktian yang bergantung kepada keadaan, memerlukan hanya lima 

vektor. Keadaan yang diberikan nilai 1 adalah hasilan daripada persilangan dua muka.  

 v



 

 Perkembangaan baru-baru ini menunjukkan bahawa pembuktian teorem 

Kochen- Specker dapat diperluaskan kepada sistem kuantum berdimensi dua melalui 

pengukuran teritlak yang diwakili oleh ukuran bernilai operator positif  (UBOP). Dalam 

UBOP bilangan dapatan pengukuran adalah berkemungkinan lebih daripada dimensi 

ruang Hilbert dan pengukuran teritlak N-dapatan diwakili oleh UBOP N-unsur yang 

terdiri daripada N operator separa-tentu positif { }iE  yang terjumlah ke identiti. Setiap 

pasangan unsur tidak saling ortogon jika bilangan hasilan pengukuran adalah lebih 

daripada dimensi ruang. Dalam bentuk UBOP, teorem Kochen-Specker menyatakan 

bahawa  dan IE
i

i =∑ ( ) IEv
i

i =∑  tidak dapat dipatuhi bagi . Kami 

mengemukakan satu model umum yang membolehkan kami mengitlakkan saiz UBOP 

yang berbeza dalam pembuktian teorem Kochen-Specker. Kami menunjukkan bahawa 

model Nakamura yang termudah kini sebenarnya adalah kes khas dalam model kami. 

Kami juga membekalkan satu model lain yang seringkas model Nakamura tetapi terdiri 

dariapda set UBOP yang berlainan.  

2≥d
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CHAPTER 1 

INTRODUCTION 

 

1. Introduction 

 

Quantum theory has been born for over 100 years, but there are quite a number 

of fundamental questions that still puzzle physicists to date. Quantum weirdness that 

have been widely attracting physicists are nonlocality, contextuality, entanglement, 

indeterminancy, etc. The relations between idea of hidden variables and nonlocality are 

deeply studied in Bell theorem, whereas relations between hidden variables and 

contextuality are studied in Kochen-Specker (KS) theorem. Our study focuses on the 

latter which states that a hidden variable theory must be contextual. The first proof of 

the KS theorem was provided by Bell in 1966 and independently by Kochen and 

Specker in 1967 [1]. 

 

1.1 Contextuality 

 

In order to reveal the properties of a physical system, an observer needs to do 

measurement on the system. Measurement generates result that implies whether a 

certain property is associated with physical system. For example, to check whether the 

color of a car is red, our eyes need to receive light reflected from the car. This is in fact 

a measurement process. Our perception about the color is associated with the result of 

measurement that tells us whether the car is red. For simplicity, we would represent a 



positive result (existence of particular property) as 1, whereas representing a negative 

result (non-existence of particular property) is 0. 

 

 Suppose we measure both color and weight of the car at the same time. We 

would say that measurement of color and weight are in the same context of 

measurement. It is definitely possible to measure the color in different measurement 

context, for instance we often get to know about the color and speed of a car at the same 

time. In this case, measurement of color and speed would form another context. In 

classical physics, the results of measurement are independent of contexts. All of us 

believe that our perception of color would not be different so as to depend on whether 

we measure it together with weight or speed.  

 

 Through out the thesis we refer measurement to the determination of intrinsic 

angular momentum or spin of the quantum system being considered. Spin is one of the 

properties of quantum system that does not have a counterpart in classical system.  It is 

a nonclassical degree of freedom characterized by a number which can take values        

0, 2
1 , 1, 2

3 , … . Some elementary particles when passed through a nonuniform magnetic 

field they would be deflected either up or down; some would be deflected either up, 

down or non-deflection. The deflection is due to the interaction between spin and 

magnetic field. The interaction is a measurement that reveals the spin of the particle. 

Particles with only two possible exclusive deflections are called spin- 2
1  particles, 

whereas particles with three possible exclusive deflections are called spin-1 particles.  

 

 2


