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This thesis describes the time domain reflectometry computational technique to locate 

discontinuities in transmission line using Agilent VEE version 6. The reflection 

coefficient measurement data were transformed from frequency domain into time 

domain using Fast Fourier Transform (FFT) technique. Measurements were done on 

waveguides and coaxial cable using HP 8720B network analyzer. The vector network 

analyzer (VNA) has a time domain capability where transformation from frequency to 

time domain data is realized using chirp z-transform (CZT) which can be utilized to 

locate short circuit discontinuities. Unfortunately, the VNA is heavy, bulky and an 

expensive way of simulating time domain reflectometry measurement. The frequency-

to-time measurement option is not a readily built in feature but needs to be purchased 

before it is included in the VNA in which it comes at a higher cost for end user. 

Additionally, frequency-to-time measurement option of the VNA has limited capability 
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with only selected transformation algorithm, window and gating method. This motivates 

the transformation using computer software instead of VNA to transform data, thus, the 

development of transformation software.  

 

All the measurements and calculations were implemented using transformation software 

developed using Agilent VEE version 6. The analysis on resolution was done and 

parameters that affects the resolution; number of points and frequency range, was 

analyzed. The transformation software transforms frequency domain data to time 

domain. The peaks in the measurement data represent discontinuity in the test 

components/devices. Measurements were done on combinations of well define 

components which includes WR-90 waveguides and RG402 coaxial cable. The 

performance of the transformation software was tested by comparing the results with 

true physical measurement of the devices. The results show that the reflection coefficient 

obtained from the software is in good agreement with the VNA in terms of the location 

of discontinuity with both VNA and transformation software having ≈5% deviation with 

the true physical value. The transformation software results are as reliable as the VNA. 

This transformation software is flexible, cheap and easy to use. It is ready to be 

incorporated into mobile computer and can be used with any frequency domain 

measurement device. 
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Tesis ini memperihalkan tentang teknik pengiraan pantulan domain masa untuk 

menentukan ketidakselanjaran dalam garis pancaran menggunakan Agilent VEE versi 6. 

Data ukuran pekali pantulan ditukar bentuk dari domain frekuensi ke domain masa 

dengan menggunakan teknik Jelmaan Fourier Cepat (FFT). Pengukuran dilakukan ke 

atas pandugelombang dan kabel sepaksi menggunakan Penganalisis Rangkaian Vektor 

(VNA) HP 8720B. VNA mempunyai kebolehan pengukuran dalam domain masa untuk 

menentukan ketidakselanjaran dimana penukaran data dari bentuk domain frekuensi ke 

domain masa dilakukan dengan menggunakan algoritma Jelmaan Z Chirp (CZT). 

Walaubagaimanapun, VNA adalah mesin yang berat, besar dan merupakan cara yang 

mahal untuk mensimulasikan pengukuran teknik pantulan domain masa. Pilihan 

pengukuran domain frekuensi ke domain masa merupakan satu pilihan yang perlu dibeli 

sebelum ia disertakan bersama VNA dengan harga yang lebih mahal. Di samping itu, 
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pilihan ukuran domain frekuensi ke domain masa VNA adalah terhad dengan hanya 

mempunyai transformasi terpilih dan cara tetingkap dan pepintu tertentu sahaja. Ini 

memberi ilham untuk menggunakan perisian komputer untuk melakukan transformasi 

bagi menggantikan transformasi data menggunakan VNA.  

 

Kesemua ukuran dan kiraan telah dilakukan dengan menggunakan perisian transformasi 

yang diprogram menggunakan Agilent VEE 6. Analisis resolusi telah dijalankan dan 

parameter yang boleh mempengaruhi resolusi; bilangan titik dan julat frekuensi, telah 

dikaji. Perisian transformasi berjaya menukarkan data domain frekuensi ke domain 

masa. Puncak dalam data pengukuran mewakili ketidakselanjaran dalam komponen/alat 

yang diuji. Ukuran telah dijalankan ke atas kombinasi komponen yang diketahui ciri-

cirinya termasuk pandugelombang siri WR-90 dan kabel sepaksi siri RG402. Prestasi 

perisian transformasi telah diuji melalui perbandingan keputusan dengan ukuran fizikal 

sebenar komponen. Keputusan menunjukan pekali pantulan yang diperolehi dari perisian 

transformasi dan VNA adalah dari segi penentuan ketidakselanjaran adalah memuaskan 

dan kedua-dua keputusan VNA dan perisian transformasi mempunyai pembezaan 

sebanyak ≈ 5 % dengan nilai fizikal sebenar. Keputusan perisian transformasi adalah 

setanding VNA. Perisian transformasi ini boleh diubah, murah dan mudah untuk 

digunakan. Ia juga sedia digunakan bersama komputer mudah alih atau sebarang alat 

ukuran domain frekuensi.  
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CHAPTER 1 

 

INTRODUCTION 

 

Time Domain Reflectometry (TDR) is a remote sensing electrical measurement 

technique that is nondestructive and has been used for many years to determine the 

spatial location and nature of various objects. It is utilized to determine the 

characteristics of transmission lines by observing reflected waveforms. It is an extension 

of an earlier technique in which reflections from an electrical pulse were monitored to 

locate faults/discontinuities and to determine the characteristics of power transmission 

lines.  

 

An early form of TDR that most people are familiar with is radar and was largely 

developed as the result of World War II radar research. However, there is a lacked in 

necessary instrumentation to make full use of TDR. With the advent of commercial TDR 

research oscilloscopes in the early 1960's, it became feasible to test this new technology. 

Today, TDR technology is the "cutting edge" methodology for many diverse 

applications.  

 

 

 

 

 



1.1 An Overview of the Determination of Material Discontinuities 

 

Material discontinuity is defined as the tangible substance that goes into the makeup of a 

physical object lacking in connection or continuity. Translating it into a more physical 

term, it is the difference in impedance which causes a mismatch in connectivity or 

continuity of the material or object under test or of measurement. In the following 

subtopics the issue pertaining material discontinuities, its application and technology is 

discussed. 

 

Material discontinuity can take into many forms in the world of science and technology. 

It is the change in electrical properties of a substance, the impedance difference or 

mismatch in a material or simply a disconnected electrical wire or a change of chemical 

property in a pure alloy. 

 

In technological point of view, this can be applied to engineering, geographical and even 

agricultural industry. For example, in engineering field, this analogy applies to fault 

locating technique where faults in cable, cracks in pipes, walls of building and even 

roads need to be detected to prevent further damage. In geographical field, the study of 

terrain, archeological excavation and even vegetation area has a need in recognition 

technique. For the agriculture industry, there is a need for moisture content measurement 

for soil and even rubber milk. For a noninvasive and nondestructive testing technique, 

the microwave method can be applied. 
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1.1.1 Technology and Application in Determination of Material Discontinuities 

 

The TDR is widely used for its accuracy and is one of the many nondestructive testing 

for locating fault. It transmits a fast rise time pulse along the conductor. If the conductor 

is of uniform impedance and properly terminated, the entire transmitted pulse will be 

absorbed in the far-end termination and no signal will be reflected back to the TDR. 

However, where impedance discontinuities exist, each discontinuity will create an echo 

that is reflected back to the reflectometer (hence the name). Increases in the impedance 

create an echo that reinforces the original pulse while decreases in the impedance create 

an echo that opposes the original pulse. The resulting reflected pulse measured at the 

output/input to the TDR is displayed or plotted as a function of time and, since the speed 

of signal propagation is relatively constant for a given transmission medium, can be read 

as a function of cable length. This is similar in principle to radar.  

 

Because of this sensitivity to impedance variations, a TDR is often used to verify cable 

impedance characteristics, splice and connector locations and associated losses, and 

estimate cable lengths, as every nonhomogenity in the impedance of the cable will 

reflect some signal back in the form of echoes. 

 

The TDR techniques have been utilized in many fields. It is used to determine soil 

moisture water content in porous media, where over the last two decades substantial 

advances have been made; including in soils, grains and food stuffs, and in sediments. 

The key to TDR’s success is its ability to accurately determine the permittivity 
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(dielectric constant) of a material from wave propagation, and the fact that there is a 

strong relationship between the permittivity of a material and its water content. 

 

TDR has also been utilized to monitor slope movement in a variety of geotechnical 

settings including highway cuts, rail beds, and open pit mines. In stability monitoring 

applications using TDR, a coaxial cable is installed in a vertical borehole passing 

through the region of concern. The electrical impedance at any point along a coaxial 

cable changes with deformation of the insulator between the conductors. A brittle grout 

surrounds the cable to translate earth movement into an abrupt cable deformation that 

shows up as a detectable peak in the reflectance trace. 

 

TDR equipment are commonly used for in-place testing of very long cable runs, where it 

is impractical to dig up or remove what may be a kilometers-long cable. They are 

indispensable for preventive maintenance of telecommunication lines, as they can reveal 

growing resistance levels on joints and connectors as they corrode, and increasing 

insulation leakage as it degrades and absorbs moisture long before either leads to 

catastrophic failures. Using a TDR, it is possible to pinpoint a fault to within feet or 

inches. 

 

In labs and research centers, TDR technique is incorporated in measurement equipment 

called ‘Vector Network Analyzer’ (VNA). It makes measurement by sweeping 

frequencies over a device under test (DUT) and transforms it into time domain using the 

time domain option available in the equipment.  
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