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The Bernoulli numbers are among the most interesting and important number sequences 

in mathematics. It plays an important and quite mysterious role in various places like 

number theory, analysis and etc. In general, many existing generalizations of Bernoulli 

numbers {  for example [ ]20 re based on consideration of more general forms for 

the left side of the following equality 

}nB , 21  a

 

( ) ∑
∞

=

=
− 0 !1exp n

n

n n
tB

t
t  

or for some related functions. 

 

In this study, a generalization of Bernoulli numbers is offered by the use of their 

relations with Pascal’s triangle. The thesis begins with the generalization of Bernoulli 
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numbers { }   then a representation of  is presented, followed by the proof of the 

main result for odd n case (even case of n was considered in 

∞
=1nnB nB

[ ]2  ). Then special cases of 

Bernoulli numbers, namely when the initial sequence is an geometric or arithmetic 

sequence, are considered.  In these special cases more detailed representations of  are 

obtained. Then irreducibility problem over Z of polynomials closely related to  is 

considered followed by solution of this problem for some values of . At the end some 

unsolved problems, with which we have come across in doing this thesis, over the field 

nB

nB

n

Z  are formulated. 
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Nombor Bernoulli merupakan jujukan nombor yang menarik dan penting dalam 

matematik. Ia selalu diaplikasikan di dalam beberapa bidang matematik seperti teori 

nombor, analisis dan sebagainya. Secara amnya, pengitlakan nombor Bernoulli { }nB  

yang wujud pada masa kini, contohnya , adalah berdasarkan bentuk umum 

ungkapan sebelah kiri persamaan di bawah 

[20,21]

( ) ∑
∞

=

=
− 0 !1exp n

n

n n
tB

t
t  

atau bagi beberapa fungsi yang berkaitan. 

 

Dalam kajian ini, pengitlakan nombor Bernoulli dilakukan dengan mengambilkira 

hubungannya dengan segitiga Pascal. Kajian ini dimulakan dengan melakukan 

 v



pengitlakan terhadap nombor Bernoulli { }∞=1nnB  bagi menghasilkan perwakilan  dan 

diikuti dengan pembuktian hasil utama bagi n yang ganjil ( n yang genap telah dikaji 

dalam 

nB

[ ]2

nB

 ). Seterusnya, kes khusus bagi nombor Bernoulli dipertimbangkan iaitu 

apabila jujukan awal merupakan jujukan geometri dan aritmetik. Dalam kes-kes khusus 

ini, lebih banyak perwakilan yang terperinci bagi  telah diperoleh. Masalah 

ketidakbolehfaktoran dalam gelanggang Z bagi suatu polinomial yang berkait rapat 

dengan  juga dipertimbangkan dan disusuli dengan penyelesaian masalah tersebut 

bagi beberapa nilai n. Akhirnya, beberapa masalah yang tidak dapat diselesaikan yang 

timbul semasa kajian ini diatas medan 

nB

Z  dapat difomulasi. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Short history 

Two thousand years ago, Greek mathematician Phytagoras first noted about triangle 

numbers which are ....321 n++++  Archimedes found out  

( )( 121
6
1...321 2222 ++=++++ nnnn ) 

Later in the fifth century, Indian mathematician Aryabhata proposed 

( )
2

3333 1
2
1...321 ⎥⎦

⎤
⎢⎣
⎡ +=++++ nnn  

Which Jacobi gave the first vigorous proof in 1834. It is not until five hundred years 

later that Arabian mathematician Al-Khwarizm showed 

( )( )( )133121
30
1...321 24444 −+++=++++ nnnnnn . 

Studies of the more generalized formula for ∑  for any natural number 
−

=

1

1

n

k

rk r was only 

carried out in the last few centuries. Among them, the investigation of Bernoulli 

numbers is much significant. 
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Swiss mathematician Jacob Bernoulli (1654-1705) once claimed that instead of laboring 

for hours to get a sum of powers, he only used several minutes to calculate sum of 

powers such as  

500,242,924,241,424,243,424,241,924,409,911000...321 10101010 =++++ . 

 Obviously,  he had used a summation formula, knowing the first 10 Bernoulli numbers.  

 

The Bernoulli numbers are among the most interesting and important number sequences 

in mathematics. Its play an important and quite mysterious role in various places like 

number theory, analysis, differential topology and etc. They first appeared in 

posthumous work “Ars Conjectandi” by Jacob Bernoulli which was published in 1713 

after 8 years his death.  

 

After Jacob Bernoulli,  his brother Johann Bernoulli (1667-1748) continued to discover 

those Bernoulli numbers. These numbers were assisted in developing Fermat’s Last 

Theorem. The modern Bernoulli numbers are a superset of the archaic version. The term 

Bernoulli numbers was used for the first time by Abraham De Moivre (1667-1754) and 

Leonard Euler (1707-1783) which found its recursion relation. In 1735, the solution of 

the Basel problem, the relation between zeta function and Bernoulli numbers was one of 

Euler’s most sensational discoveries. 

 

The famous Clausen-von Staudt’s theorem regarding Bernoulli numbers fractional part 

was published by Karl von Staudt (1798-1867) and Thomas Clausen (1801-1885) 

independently in 1840. It allows computing easily the fractional part of Bernoulli 
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numbers and thus also permits to compute the denominator of those numbers. It is very 

useful and significant in the sense that it permits to compute exactly Bernoulli numbers 

as soon as there is sufficiently good approximation of it. 

   

Generalization of Bernoulli numbers are defined starting from suitable generating 

function. The number sequences of Euler, Genocchi, Stirling and others, as well as the 

tangent numbers, secant numbers are closely related to the Bernoulli numbers. The same 

is true for the numerous generalizations and expansions of the Bernoulli numbers and 

the corresponding polynomials. Perhaps one of the most important results is Euler-

Maclaurin summation formula, where Bernoulli numbers are contained and which 

allows accelerating the computation of slow converging series. They also appear in 

number theory (Fermat’s theorem). Realized that the Bernoulli numbers are important, 

the Indian mathematician Srinivasa Ramanujan (1887-1920) rediscovered those 

Bernoulli numbers in 1904. He investigated the series and calculated Euler’s constant to 

15 decimal places. He began to study the Bernoulli numbers, although this was entirely 

his own independent discovery. 

 

In the year 2001, Radoslav Jovanovic found that there is surprising connection with 

Bernoulli numbers and Pascal’s Triangle. To illustrate the Bernoulli numbers, he 

considers the function ( )
1−

= xe
xxf  . Taking advantage of the familiar exponential 

expansion  

...
!3!2!1

1
32

++++=
xxxex  
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hence, 

( )
...

!3!2
1

1

...
!3!2!1

232

+++
=

+++
=

xxxxx
xxf  

 

The function  can be expanded in a power series about ; for the sake of 

convenience in subsequent computations, he represent this series as 

( )xf 0=x

∑
∞

=

=
− 0 !1 n

nn
x x

n
B

e
x  

where ( ) 100 == fB . In order to determine the other coefficient  of the 

expansion, which are called Bernoulli numbers, he make use of the identity 

( ...2,1=nBn )

( )∑∑
∞

=

∞

=

=
+ 00

1
!!1 n

nn

n

n

x
n
B

n
x  

Multiplying together the power series and equating to zero the coefficients of the 

positive powers of the variable x, he obtain an infinite system of linear equations: 

( ) ( ) 0
!1

1.
!0

...
!2

1.
!1!1

1.
!

01 =
+

++
−

+ −

n
B

n
B

n
B nn  

or, multiplying by  and noting that ( !1+n )

( )
( ) ( )

kn
nC

kkn
n −

+=
+−

+
1!1!

!1  

 

Then last formula he written in the following form: 

( ) 01 11 =−+ ++ nn BB  

or, replacing  by n, ( 1+n )

( ) ,...3,2,1;01 ==−+ nBB nn  

 4



 he obtain an infinite system of equation : 

 

KKKKKKKKKKKKK

43210

3210

210

10

51010510
46410

3310
210

BBBBB
BBBB

BBB
BB

++++=
+++=

++=
+=

 

Hence, he successively find the connection with Bernoulli’s numbers and Pascal’s 

triangle. 

 

Bernoulli himself calculated the numbers up to . Later, Euler worked up to , then 

Martin Ohm extended the calculation up to  in 1840. A few years later, in 1877, 

Adams made the computation of all Bernoulli numbers up to . For instance, the 

numerator of  has 110 digits and the denominator is the number 30. In 1996, Simon 

Plouffe and Greg J. Fee computed  and this huge number has about 800,000 

digits. In July 2002, they improved the record to  which has 3,391,993 digits by a 

21 hours computation on their personal computer. The method is based on the relation 

between zeta function and Bernoulli numbers, which allow a direct computation of the 

target number without the need of calculating the previous numbers.   

10B

62B

750B

30B

124B

124B

000,200B

000,

 

In this research generalization of Bernoulli numbers is offered by the use of their 

relation with Pascal’s triangle. 

 

  

 5



1.2 Relation between Bernoulli numbers and Pascal’s Triangle 

 

Roughly speaking, all existing generalizations of Bernoulli numbers { , for example 

, are based on consideration of more general forms for the left side of the following 

equality 

}

]

nB

[ 2,1

∑
∞

=

=
− 0 !1)exp( n

n

n n
tB

t
t  

or for some related functions. 

 

Example 1.2.1 

Consider infinitely smooth function ( )
1−

== te
ttfy  defined on some neighbourhood 

of . The Taylor expansion of it at 0tt = 0tt =  is 

( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) .

!
...

!2
"

!1
'

0
0

02
0

0
0

0
0 ∑

∞

=

−=+−+−+=
k

k
k

tt
k

tftttftttftftf  

Therefore due to the ordinary definition of Bernoulli numbers ∑
∞

=0 !n

n

n n
tB  one has 

. Therefore ( )( )0n
n fB = 10 =B  as far as 1

1
lim

0
=

−→ tt e
t . 

( )
( )

( )
( )

( ) ( ) .
2
1

1
lim

2
1

12
lim

1
11lim

1
11lim

1
lim

00

'

2020

'

01

etcand
e

t
e

t

e
te

e
te

e
tB

tttt

t

t

tt

t

ttt

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−−
=

−

−−
=⎟

⎠
⎞

⎜
⎝
⎛

−
=

→→

→→→

       

 

 

 6



Example 1.2.2 

For  and ∑ . We know the first number is always ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=+ i

n
C i

n

1
1

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +n

i
iB

i
n

0
0

1
.10 =B  

For   then ,01 =1
2
⎟⎟
⎠

⎞
B

0
2

;1 ⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= Bn o 2

1
1 −=B . Recursively, for 

6
1;2 2 == Bn  and so on. 

 

May be the simplest definition of Bernoulli numbers { }nB  is the following: 10 =B  and if 

you already have known , where , then find  by solving the 

equation 

110 ,...,, −nBBB 1≥n nB

 

0
1

0
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
∑
=

i

n

i
B

i
n

 

 

Now we give a generalization of Bernoulli numbers by their relations with Pascal’s 

triangle. In future “sequence{ }na

,0 BB

” means  except for “Bernoulli 

sequence{ ”, which stands for  . 

,...,, 321 aaa

}nB ,...,, 321 BB

 

 The ordinary Bernoulli numbers can be defined in the following way as well: 

 (1) Consider Pascal’s triangle 
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    1   

        1           1 

     1    2    1 

        1         3          3           1 

             1            4           6           4            1  

                 1      5       10        10            5           1 

       MMMM

        
     

(2) Delete its “right side” consisting of ones and the rest write as the following 

matrix 

 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

.........

...05101051

...004641

...000331

...000021

...000001

A  

 

 

(3) Then evaluate 1−A  and you will get { }nB  as the first column of 1−A . 

 

 For a while consider the sequence { } { }nan = . If  ji <≤1  then  

i

ijjj

aaa
aaa

i
ijjj

i
j

....
....

...2.1
)1)...(1.(

21

11 +−−=
+−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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So one can consider any sequence { }na  of nonzero numbers, and its “Pascal’s triangle” 

 

 

(a)      1 

        1           1 

     1  
1

2

a
a      1 

        1       
1

3

a
a

         
1

3

a
a

         1 

             1         
1

4

a
a         

21

34

aa
aa

      
1

4

a
a          1  

                1     
1

5

a
a      

21

45

aa
aa

      
21

45

aa
aa

      
1

5

a
a

         1 

                                  MMMM

 

Remark 1.2.3 

 

The property of Pascal’s triangle that “An inside number of the ( )thn 1+  row (base) can 

be computed by going up to the ( )thn  row(base) and adding two neighbouring numbers 

above it” is not inherited by the above “Pascal’s triangle for .” But it inherits 

Pascal’s triangle’s following property related to its lateral sides: Consider its nth right 

{ }na
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lateral side. If you know its kth number then multiply it by 
k

kn

a
a 1−+  to get its ( )thk 1+  

number. 

 

(b) Now delete its “right side” consisting of ones and the rest of ones and the rest 

write as the following matrix 

 

   

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

......

...1

...01

...001

...0001

...00001

1

5

21

45

21

45

1

5

1

4

21

34

1

4

1

3

1

3

1

2

a
a

aa
aa

aa
aa

a
a

a
a

aa
aa

a
a

a
a

a
a
a
a

A  

 

(c) Evaluate  and call the sequence of entries of the first column of  the 

sequence of Bernoulli numbers for the given sequence

1−A 1−A

{ }na . We have 

 

 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−+−

−

−
−

−

−

=−

...

...
.
.

.

.
.
.

.

.

...
)()2(

...0
)(

...00

...0001

4

1

2

1
2
2

231
2
2

4342
2
2

4

1

3

1

2

1

2

32

3

1

2

1

2

1

1

a
a

a
a

a
aaa

a
aaaaa

a
a

a
a

a
a

a
aa

a
a

a
a

a
a

A  

The first column of  is the sequence of Bernoulli numbers. 1−A
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Here is the beginning part of that sequence of Bernoulli numbers for the given 

sequence{ }. na

 

,2,,,1 2
2

2
22434

4

1

2

32

3

1

2

1

a
aaaaa

a
a

a
aa

a
a

a
a +−

−
−

−−  

,...23
3
23

3
23

2
245

2
2352345

2
345

5

1

aa
aaaaaaaaaaaaaaa

a
a +−−+−

−  

 

 
Here we are not going to fix some { }na

, 21 aa

,...3a

,..., 3a

 and consider the corresponding Bernoulli 

numbers. In opposite, we will consider  as independent variables (i.e. there is 

no polynomial relation among ) and deal with entries of the corresponding 

matrix  as rational function in . Let 

,..., 3a

,, 21 aa

, 21 aa1−A { }nB  stand for the sequence of entries 

of the first column of  and 1−A [ ]r  stand for the integer part of a real number r. 

 

 

1.3 Objective of Research 

 

The following theorem was announced by Dr. Ural (2003) 

 

Theorem 1.3.1   For any , the rational function  is of the following form 1>n 1−nB

    
n

n

n
n D

N
a
aB 1

1 −=− ,          
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