

UNIVERSITI PUTRA MALAYSIA

ANALYSIS OF HEAD LENGTH EFFECT OF WIRE ROPE SENSOR ON OUTPUT VOLTAGE

NOOR HASMIZA BT HARUN

FK 2008 12

ANALYSIS OF HEAD LENGTH EFFECT OF WIRE ROPE SENSOR ON OUTPUT VOLTAGE

By

NOOR HASMIZA BT HARUN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Master of Science

April 2008

Dedication

TO MAK, ABAH AND FAMILY

ESPECIALLY TO MY HUSBAND, ROZAIMI ABDUL JALIL AND DAUGHTER, SUFIYA DINA IMANI

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ANALYSIS OF HEAD LENGTH EFFECT OF WIRE ROPE SENSOR ON OUTPUT VOLTAGE

By

NOOR HASMIZA BINTI HARUN

April 2008

Chairman: Norhisam Misron, PhD

Faculty: Engineering

Wire rope are used extensively in industrial applications involving lifting machines such as lift system, cable car system as well as crane services. In many cases, failure of a wire rope could lead to expensive damage to equipment or even to loss of life. Structural integrity of the wire rope is to be monitored to safe guard human lives. Regular periodic inspection is necessary for optimum safe utilization.

Apart from visual inspection, the non destructive test methods are available to check the condition of this wire rope. Various methods have been used for wire rope testing such as eddy current, ultrasonic and radiographic. However, each method has some drawbacks in their application.

Currently, there is no specific tool to design the wire rope sensor. Trial and error method was used to design the wire rope sensor and it will consume longer time for prototyping and fabricating the sensor. This method does not offer rapid performance evaluation of the designed sensor and it will cause the process of improving the efficiency of the sensor will be slower. Therefore, development of a model to design

the wire rope sensor has been proposed. This model is able to investigate variable parameter involved in designing the wire rope sensor and it will speeding the process of prototyping the wire rope sensor.

In this research, a fabricated wire rope sensor based on electromagnetism principles has been analyzed. The sensor applies the theory of magnetic circuit for the crack detection operation. This is an added feature to the sensor as the magnetic circuit does not need any energy supply to be energized which indirectly reduces its energy consumption. This sensor is a passive type sensor and its structure is very simple. It is made up of three main components; sensor head, center yoke rounded with copper wire and a set of permanent magnet. The sensor will only produce a signal when there is a relative movement between the sensor head and the tested wire rope.

Derivations of theoretical calculations using permeance method was done to obtain a tools that manages to study the physical structures behaviors of the sensor. Finite Element Method (FEM) simulations and laboratory experiments have been conducted to observe the effects of head length to the output voltage of the sensor.

The objective of this research is to perform the analysis of head length, $L_{\rm h}$ effect of wire rope sensor on output voltage was successfully achieved. A theoretical equation for the voltage induced by the sensor has been deduced using permeance method. Finite Element Method (FEM) simulation and laboratory experiments were done to observe the effects of head length of the sensor head to the output voltage of the sensor. Comparison between simulation result, theoretical calculation and laboratory

experiment shows almost identical results. The analysis is necessary to obtain the best design for the wire rope sensor that would produce high output voltage.

v

Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

ANALISIS KESAN PANJANG MATA PENGESAN WAYAR KABEL KEPADA VOLTAN KELUARAN

Oleh

NOOR HASMIZA BT HARUN

April 2008

Pengerusi: Norhisam Misron, PhD

Fakulti: Kejuruteraan

Wayar kabel digunakan secara meluas dalam aplikasi industri seperti elevator, lif, kereta kabel dan kren. Dalam beberapa kes, kegagalan wayar kabel boleh mengakibatkan kerosakan kepada peralatan mahupun nyawa manusia. Keutuhan struktur wayar kabel haruslah dipantau untuk keselamatan manusia. Pemeriksaan berterusan adalah perlu untuk mengoptimumkan keselamatan.

Selain daripada pemeriksaan visual, kaedah ujian tanpa kerosakan juga digunakan untuk memeriksa keadaan wayar kabel. Pelbagai kaedah telah digunakan untuk pemeriksaan wayar kabel seperti arus "eddy", ultrasonic dan radiografi. Walaubagaimanapun, setiap kaedah mempunyai kelemahan dalam aplikasi.

Sekarang ini, tiada kaedah spesifik untuk mereka pengesan wayar kabel. Kaedah cuba dan salah telah digunakan untuk mereka pengesan wayar kabel dan ia menggunakan banyak masa untuk membuat protaip dan fabrikasi pengesan tersebut. Kaedah ini tidak menawarkan penilaian prestasi pantas dan ini akan menyebabkan

proses meningkatkan kecekapan pengesan akan menjadi lambat. Oleh sebab itu, pembangunan sebuah model untuk mereka pengesan wayar kabel telah dicadangkan. Model ini berupaya untuk memeriksa pelbagai parameter yang digunakan untuk mereka pengesan wayar kabel dan ini akan mempercepatkan proses membuat prototaip pengesan wayar kabel.

Dalam kajian ini, pengesan wayar kabel berasaskan prinsip elektromagnet telah dianalisa. Ia menggunakan teori litar magnet untuk operasi mengesan keretakan. Pengesan ini tidak memerlukan bekalan kuasa dan secara tidak langsung akan mengurangkan penggunaan kuasa. Pengesan ini adalah pasif dan strukturnya ringkas. Ia terdiri daripada tiga komponen penting: mata pengesan, tiang tengah yang dikelilingi dengan wayar kuprum dan juga sepasang magnet kekal. Pengesan ini hanya akan mengeluarkan isyarat jika terdapat pergerakan di antara mata pengesan dan wayar kabel.

Pembuktian pengiraan secara teori menggunakan kaedah galangan telah dijalankan untuk mendapatkan alat yang mampu mengkaji sifat struktur fizikal pengesan tersebut. Simulasi FEM dan eksperimen makmal telah dilakukan untuk melihat kesan panjang mata kepada voltan keluaran pengesan.

Objektif penyelidikan ini adalah untuk melaksanakan analisa kesan panjang mata pengesan wayar kabel kepada voltan keluaran telah berjaya dicapai. Pengiraan secara teori untuk voltan keluaran telah diperolehi menggunakan kaedah galangan. Simulasi FEM telah dilakukan untuk melihat kesan mata pengesan kepada voltan keluaran pengesan wayar kabel ini. Perbandingan di antara keputusan yang diperolehi

daripada simulasi FEM, pengiraan teori dan eksperimen makmal memberikan keputusan yang sama. Analisis ini adalah perlu untuk mendapatkan rekabentuk terbaik pengesan wayar kabel yang yang boleh menghasilkan keluaran voltan yang tinggi.

ACKNOWLEDGEMENTS

All praise to supreme almighty Allah swt. the only creator, cherisher, sustainer and efficient assembler of the world and galaxies whose blessings and kindness have enabled the author to accomplish this project successfully.

The author gratefully acknowledges the guidance, advice, support and encouragement she received from her supervisor, Dr. Norhisam Misron who keeps advising and commenting throughout this project until it turns to real success.

Great appreciation is expressed to Associate Professor Dr. Ishak Aris for his valuable remarks, help advice and encouragement.

Appreciation also to the Faculty of Engineering for providing the facilities and the components required for undertaking this project.

I certify that an Examination Committee met on (April, 3rd 2008) to conduct the final examination of Noor Hasmiza Harun on her Master of Science thesis entitled "Analysis of head length effect of wire rope sensor on output voltage" in accordance with University Putra Malaysia (Higher Degree) Act 1980 and University Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Prof. Dr. Sudhanshu Shekhar Jamuar

Faculty of Engineering University Putra Malaysia (Chairman)

Assoc. Prof. Dr. Senan Mahmod

Faculty of Engineering University Putra Malaysia (Member)

Dr. Syed Javaid Iqbal

Faculty of Engineering University Putra Malaysia (Member)

Prof. Dr. Syed Idris Syed Hassan

Pusat Pengajian Elektrikal dan Elektronik Kampus Kejuruteraan Universiti Sains Malaysia (Member)

> **Prof. Dr. Hasanah Mohd Ghazali** Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of University Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Dr. Norhisam Misron

Faculty of Engineering University Putra Malaysia (Chairman)

Assoc. Prof. Dr. Ishak Aris

Faculty of Engineering University Putra Malaysia (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:12 June 2008

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently submitted for any other degree at UPM or other institutions.

NOOR HASMIZA BT HARUN

Date: 23 May 2008

TABLE OF CONTENTS

ii
iii
vi
ix
Х
xii
XV
xix

CHAPTER

Ι	INTI	RODUCTION	1
	1.1	Background of the Wire Rope Sensor	1
	1.2	Problem Statement	3
	1.3	Objectives	5
	1.4	Scope of Study	6
	1.5	Contributions	8
	1.6	Thesis layout	8
п	тт		10
11		An evenue of related works	10
	2.1	All overview of related works	10
	2.2	Basic formula related to theoretical equations	1/
		derivations	. –
		2.2.1 The Faraday's Law	17
		2.2.2 Magnetic Circuit Analysis	18
		2.2.3 Permeance Method	19
	2.3	Finite Element Method	22
	2.4	Microcal Origin 7.5	26
	2.5	Properties of Permanent Magnets	28
		2.5.1 Alnico	29
		2.5.2 Ferrites	29
		2.5.3 Rare-Earth Permanent Magnets	30
	2.6	Basic principle of wire rope sensor	32
	2.7	Summary	33
		~y	55

III METHODOLOGY

3.1	System of wire rope sensor	35
3.2	Wire rope sensor specification	37
3.3	Derivation of theoretical equation using permeance	39
	method	

34

	3.4	Finite Element Method (FEM) Simulation	45
		3.4.1 Modeling using FEM	45
		3.4.2 Designed parameter in FEM simulation	51
	3.5	Summary	52
IV	RES	ULTS AND DISCUSSION	53
	4.1	Analysis on the derived equation using permeance	53
		method	
		4.1.1 Effects of width and length of P_1	54
		4.1.2 Effects of coil gap	55
		4.1.3 Effects of width and length of P_2	56
		4.1.4 Effects of head length gap	58
		4.1.5 Effects of diameter of the wire rope	59
		4.1.6 Effects of length of the crack, L_c	60
		4.1.7 Effects of gap of the $P_{\rm cr}$	61
	4.2	FEM Simulation Result	63
		4.2.1 Air gap effects	63
		4.2.2 Coil gap effects	66
		4.2.3 Back yoke saturation effects	68
		4.2.4 Effects of head length to the output voltage in FEM	70
	4.3	Effects of head length, $L_{\rm h}$ to the output voltage of the wire rope sensor	71
	4.4	Comparison of results from simulation, theoretical calculation and measurement	78
	4.5	Summary	79
V	CON WOI	ICLUSION AND SUGGESTIONS FOR FUTURE	81
	5.1	Conclusion	81
	5.2	Suggestions and Future Work Recommendation	83
DFFFDFN	ICES		Q1
RIODATA	OF TH	ΑΠΤΗΟΡ	04 80
			07 00
LIST OF F	UDLICA		20

LIST OF FIGURES

Figure		Page
2.1	Experiment setup for eddy current based crack detection sensor	11
2.2	Transducer structure used in magnetic sensing sensor	13
2.3	Magnetic flaw apparatus used for elevator inspection	14
2.4	Meraster MD-20 Tester	15
2.5	Meraster MD-120 Defectograph and its measuring head	16
2.6	Simple magnetic circuit	19
2.7	Magnetic circuit with an air gap	21
2.8	Magnetic equivalent circuit	21
2.9	Microcal Origin 7.5	26
2.10	Demagnetization curves for different permanent magnet materials	28
2.11	Flux linkages for designed wire rope	33
3.1	Research methodology wire rope sensor system	34
3.2	Modeling structure of the wire rope sensor	36
3.3	Block diagram of the wire rope sensor system	36
3.4	The constructed wire rope sensor	38
3.5	Permeance model of the wire rope sensor	40
3.6	Magnetic equivalent circuit of wire rope sensor	41
3.7	Modeling for θ_c calculation	44
3.8	Flow chart of the simulation process using FEM	46
3.9	Modeling structure of wire rope sensor in Microcal Origin	47
3.10	The <i>msk</i> , <i>blk</i> and <i>bod</i> file	48
3.11	Mesh calculation	49

3.12	The <i>fra</i> and <i>config</i> file	49
3.13	Flux potential for the modeled wire rope sensor	50
3.14	Flux density for the modeled wire rope sensor	50
3.15	Designed parameter used in FEM simulation	51
4.1	Effects of w_1 and l_1 to the voltage induced by the wire rope sensor	54
4.2	Effects of g_c to the voltage induced by the wire rope sensor	56
4.3	Effects of w_2 and l_2 to the voltage induced by the wire rope sensor	57
4.4	Effect of g_{hl} to the voltage induced by the wire rope sensor	58
4.5	Maximum output voltage versus head length	59
4.6	Effect of D to the voltage induced by the wire rope sensor	60
4.7	Effect of L_c to the voltage induced by the wire rope sensor	61
4.8	Effect of G to the voltage induced by the wire rope sensor	62
4.9	Modeling of wire rope sensor used to observe the effects of head length gap	64
4.10	Flux linkages at different air gap for various type of head length	64
4.11	Maximum flux linkages at different air gap for various type of head length	65
4.12	Maximum flux linkages for air gap, $g = 20$ mm and $g=30$ mm	65
4.13	Modeling of wire rope sensor used to observe the effects of coil gap	66
4.14	Maximum flux linkages at different coil gap for various type of head length	67
4.15	Maximum flux linkages for various coil gap configuration	67
4.16	Modeling of wire rope sensor used to observe saturation effects	68
4.17	Comparison between saturated and non saturated flux linkages at $g = 20$ mm	69
4.18	Comparison between saturated and non saturated flux linkages at $g = 30$ mm	69

xvi

4.19	Maximum voltage versus head length for $g=30$ mm	70
4.20	Experiment setup for wire rope sensor	71
4.21	Voltage versus time for laser displacement sensor and wire rope sensor	72
4.22	Distance versus time for laser displacement sensor and voltage versus time for wire rope sensor	73
4.23	Derivatives of distance per time for laser displacement sensor	74
4.24	Maximum voltage versus speed for wire rope with diameter of 5 mm	75
4.25	Maximum voltage versus speed for wire rope with diameter of 7.5 mm	75
4.26	Maximum voltage versus speed for wire rope with diameter of 10 mm	76
4.27	Maximum voltage versus diameter of wire rope at a speed of 1m/s	77
4.28	Graph of comparison between FEM, calculation and experiment	78

LIST OF ABBREVIATIONS

$L_{ m h}$	Head length
$g_{ m hl}$	Head length gap
<i>g</i> c	Coil gap
μ_0	Permeability of air = $4\pi \times 10^{-7}$
P_1	Permeance between coil gap
P_2	Permeance between head length gap
P_3	Permeance at the wire rope
P _c	Permeance at the crack
P _{cy}	Permeance at cylinder
P _r	Permeance at ring
w_1	Width of the P_1
l_1	Length of the P_1
<i>W</i> ₂	Width of the P_2
l_2	Length of the P_2
D	Diameter of the wire rope
L _c	Length of the crack
G	Gap of the ring
\mathbf{V}_s	Supply voltage
В	Magnetic density
$\phi_{ m t}$	Total flux flowing
Α	Magnetic area
It	Total current
ϕ_1	Flux flowing at P_1
ϕ_2	Flux flowing at P_2
ϕ_3	Flux flowing at P_3

\mathscr{R}_1	Reluctance of P_1
\mathscr{R}_2	Reluctance of P_2
\mathfrak{R}_3	Reluctance of P_3
$ heta_{ m c}$	Angle of crack = $x/35$
V	Output voltage of the wire rope sensor
Ν	Number of coil turn
$\frac{\partial \phi_3}{\partial t}$	Flux changes per second

CHAPTER 1

INTRODUCTION

1.1 Background of the Wire Rope Sensor

Wire ropes are used widely in industrial applications such as elevators, lift system, cable car system and crane services (Park and Park, 2002) and are often safetycritical components. In many cases failure of a wire rope could lead to expensive damage to equipment or even to loss of life (Yangsheng, Hanmin and Shuzi, 1988). Due to the long duration usage, surface as well as the internal of wire ropes may have defects (Zawada, 1999). Therefore, there is an obvious need to check the condition of the wire ropes regularly to avoid any fatal accident due to its internal flaw (Moriya, Sugawara and Tsukada, 2004).

A recent statistical of over 8000 laboratory and field test records indicates that visual wire rope inspections are frequently unreliable, and that visual methods must be considered, in many cases, questionable as a sole means of inspection (Weischedel, 1990). Apart from visual inspection, the non destructive test methods are available to check the condition of these wire ropes (Placko and Dufour, 1993). Various methods have been used for wire rope testing such as eddy current, ultrasonic and radiographic. However, each method has some drawbacks in their application.

Eddy current method, for example, works on the transformer principles, making this method complex. The sensor is based on the induction of voltage in a coil. Therefore, an excitation coil would generate an alternating magnetic field that causes eddy currents in the tested wire rope. Based on the excitation frequency used, eddy current would induce a magnetic field itself. The resulting field of both the excitation field

and the field caused by the eddy currents, induces a voltage in the measurement coils. The pulse-echo ultrasonic techniques of a longitudinal ultrasonic wave applied from one of the ends of the wire, propagating along it as a composite wave is one of the recent techniques used in the wire rope inspection. However, studies were performed looking for frequencies appropriated for giving good conditions to get good sensitivity and transmission and low attenuation (Desimone, Katchadjian, Tacchia and Giacchetta, 2001). Besides, ultrasonic testing requires sophisticated and high end instrument for signal detection and processing.

Radiography is another method used in the wire rope inspection. However, it is very hazardous and requires competent personnel for safety inspection. The radiographic test method illustrates the volume density of a test body in a two dimensional image. Gamma rays radiated by a radioactive isotope penetrate the cable and expose, in a more or less attenuated form, an x-ray film placed on the other side of the cable. Small wires fractures, corrosion and damage cannot normally be detected (Prakash, 1980).

In this research, a wire rope sensor based on electromagnetism principles has been developed. This sensor is a passive type sensor and its structure is very simple. It is made up of three main components; sensor head, center yoke rounded with copper wire and a set of permanent magnet. The sensor would only produce a signal when there is a flux change due to time that occurs between the sensor head and the wire rope. Finite Element Method (FEM) simulations and theoretical calculations using permeance method have been made to design the sensor and verify its efficiency. The observations are followed by sets of experiment for the wire rope sensor with two

different sizes of the head length where head length, L_h is defined as the length of the sensor head. Generally, the main objective of the research is to study the effects of designed parameter to the output voltage of the sensor. Specifically, the effects of the head length, L_h to the output voltage of the sensor have been observed in this research.

1.2 Problem Statement

Wire ropes are inspected periodically from the time they are installed until the time they are replaced. The frequency of inspection depends on the character and magnitude of the load carried by the rope and the condition of the rope. The closer to the replacement time of the rope, the more frequently and accurately the inspection has to be performed. The test procedure should be able to determine the actual strength of the rope and whether or not the replacement criteria apply (Kalwa and Piekarski, 1987).

Apart from careful visual examination and measurements of the external diameter, the nondestructive test methods available utilize electromagnetic fields, X-rays or mechanical waves (Wait, 1979). For example, in eddy current non destructive testing, an exciting coil generates eddy currents in the metal, which is being tested. The eddy currents are perturbed by defects in the metal, and the results is reflected in the magnetic field above the metal surface. In order to detect perturbations in this field one can observe changes in the impedance of the exciting coil or in the voltage induced in a secondary coil, if separate coils are used for excitation and detection. Unfortunately, in many important cases the changes are usually very small. Precise

measurements of small variations in relatively large values of impedance are difficult. Therefore, it requires additional detection devices such as differential eddy current probes (Chady and Enokizono, 1999). Thus, this method is quiet complex and inconvenience for field testing. The pulse-echo ultrasonic is one of the recent techniques used in wire rope inspection. However, studies were performed looking for frequencies appropriated for giving good conditions to get good sensitivity and transmission and low attenuation (Desimone, Katchadjian, Tacchia and Giacchetta, 2001). Finally, the radiographic test method illustrates the volume density of a test body in a two dimensional image (Prakash, 1980). However, it is very hazardous and requires competent personnel for safety inspection.

In this research, an analysis on the constructed wire rope sensor based on electromagnetism principles has been done (Shin, 2006). The advantages of this wire rope sensor are it is a passive type sensor and its structure is very simple. Besides, its highlighted features such as low cost, low power consumption and portable makes it very convenient for wire inspection. However, it is necessary for the researcher to design a wire rope sensor that will provide better performance.

In order to speed up the process of designing, an analysis based on magnetic circuit analysis on the designed parameter of the wire rope sensor has been done. The analysis is necessary to provide the researcher with a tool that manages to study the physical structure behavior of the wire rope sensor. Derivation of theoretical equation using permeance method was done based on the fabricated model by (Shin, 2006). Then, it was analyzed using Finite Element Method (FEM) simulation and laboratory experiment. Both methods were used to observe the effects of designed parameter of

4

the wire rope sensor to the output voltage of the sensor. Specifically, the effects of the head length, $L_{\rm h}$ of the sensor head to the output voltage of the sensor have been chosen as the main designed parameter to be observed in this analysis.

1.3 Objectives

The aim of this study is to provide an analysis of head length effect of wire rope sensor on output voltage using magnetic circuit analysis. There are two methods used in the magnetic circuit analysis in this research; derivation of the theoretical equation using permeance method and Finite Element Method (FEM) simulation. For derivation of the theoretical equation derived using permeance method, analysis has been done to the parameters involved in the equation to observe their effects to the output voltage of the sensor and focused is made to study the effects of head length of the sensor head to the output voltage. For FEM simulation, three effects of the designed parameter have been observed; effects of air gap, effects of coil gap and the back yoke saturation effects. Those effects have been studied to obtain the most similar magnetic resistance in the wire rope and it is necessary to study the effects of head length of the sensor head to the output voltage. Sets of laboratory experiment are also being conducted to study the effects of head length of the sensor head to the output voltage of the sensor. For conclusion, the major targets of this research can be summarized as:

- **1.** To derive the equation of the output voltage of the sensor using permeance method and study the effects of designed parameter to the output voltage.
- **2.** To perform the FEM simulation and study the effects of designed parameter to the output voltage of the sensor.

