

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT AND CHARACTERIZATION OF A DIAMINE OXIDASE-BASED HISTAMINE BIOSENSOR

CHING MAI KEOW

IB 2006 12

DEVELOPMENT AND CHARACTERIZATION OF A DIAMINE OXIDASE-BASED HISTAMINE BIOSENSOR

By

CHING MAI KEOW

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

November 2006

Dedicated to Papa, Mama..... Ling, Peng, Boy, Lee, Fun, Yuan and Jackson

Extended to Francis Wong

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

DEVELOPMENT AND CHARACTERIZATION OF A DIAMINE OXIDASE-BASED HISTAMINE BIOSENSOR

By

CHING MAI KEOW

November 2006

Chairman: Associate Professor Fatimah Abu Bakar, PhD

Institute: Bioscience

Histamine levels have been suggested as a rapid fish spoilage indicator. Therefore, histamine biosensors based on immobilization of diamine oxidase (DAO) in photocurable poly (2-hydroxyethyl methacrylate) (photoHEMA) film was developed. Histamine was oxidized by immobilized DAO at 0.35 volt on the surface of carbon-paste screen-printed electrode (SPE) versus conventional Ag/AgCl reference, and with platinum rod as a counter electrode, which named as macro electrode system histamine biosensor. No leaching of the immobilized DAO was observed during histamine detection using the biosensor. The optimized histamine biosensor displayed a linear response over the range of 0 to 60 ppm histamine with correlation coefficient (R^2) equals to 0.9946 (RSD < 11.19%). The sensitivity obtained was 5.56 nA ppm⁻¹ and the limit of detection was 0.65 ppm of histamine with the response time of 50 seconds. The histamine biosensor exhibited repeatability and reproducibility characteristic with RSD values equals to 14.06 and 7.80% (n = 10) respectively. The histamine biosensor was applied to determine histamine in tiger prawns (*Penaeus*)

monodon) and the results were agreeable with a conventional high performance liquid chromatography (HPLC) method, where a correlation of $R^2 = 0.9612$ (Y = 0.9614 x + 5.5813) was obtained. The developed histamine biosensor showed recovery of added histamine in the range of 93.11 to 100.58%.

Home made miniaturized histamine biosensor (30 mm x 10 mm) was then developed by screen-printed of carbon as working and counter electrodes together with Ag/AgCl reference electrode on the polyester substrate {named SPE (i)}. Miniaturized histamine biosensor with SPE (i) operated at 0.25 volt exhibited a linear range from 0 to 100 ppm of histamine with $R^2 = 0.9577$ (RSD < 9%) and sensitivity of 0.03 nAppm⁻¹ with the limit of detection of 2.46 ppm of histamine. The miniaturized histamine biosensor with a SPE (ii) was operated at 0.35 volt and it showed a linear range from 0 to 50 ppm histamine with R^2 of 0.9766 (RSD < 16%) and sensitivity of 0.40 nAppm⁻¹. The limit of detection of histamine was 4.64 ppm. The miniaturized SPE (i) was then modified with K₃Fe(CN)₆ and operated at 0.35 volt. This biosensor could detect the histamine in the linear range of 0 to 80 ppm with the $R^2 = 0.9931$ and sensitivity 5.31 nAppm⁻¹. The limit of detection for this modified histamine biosensor was 2.11 ppm histamine.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMBINAAN DAN PENCIRIAN HISTAMIN BIOSENSOR YANG BERDASARKAN DIAMINE OXIDASE

Oleh

CHING MAI KEOW

November 2006

Pengerusi: Profesor Madya Fatimah Abu Bakar, PhD

Institut: Biosains

Tahap histamin telah dicadangkan sebagai penunjuk ikan rosak secara cepat. Oleh itu, penderiabio histamin telah dibina berpandukan kepada pemegunan enzim diamine oxidase (DAO) dalam poli (2-hidroksietil metaakrilat) (fotoHEMA) boleh terawatfoto telah dibangunkan. Histamin telah dioksidakan oleh DAO yang terpegun pada 0.35 volt atas permukaan elektrod skrin bercetak pes-karbon melawan dengan rujukan Ag/AgCl konvensional, dan rod platinum sebagai elektrod lawan. Tiada larutresap semasa pengesanan histamin menggunakan penderiabio diperhatikan bagi DAO terpegun ini. Penderiabio yang dalam keadaan optimum telah menunjukkan julat respon linear dari 0 hingga 60 ppm histamin dengan koeffisien korelasi (R²) 0.9946 (RSD < 11.19%). Sensitivity penderiabio ini adalah 5.56 nAppm⁻¹ dan had pengesanan 0.65 ppm dengan masa tindak balas selama 50 saat. Penderiabio ini telah menunjukkan sifat kebolehulangan dan kebolehasilan dengan RSD 14.06 dan 7.80% (n = 10) masing-masing. Penderiabio histamin ini telah digunakan untuk mengesan

histamin dalam udang harimau (*Penaeus monodon*) dan keputusannya adalah bolehbanding dengan kaedah konvensional kromatografi cecair prestasi tinggi (HPLC), di mana satu korelasi R^2 sama dengan 0.9612 (Y = 0.9614 x + 5.5813) telah diperolehi. Penderiabio histamin yang telah dibina ini telah menunjukkan perolehan-semula dalam julat 93.11 sehingga 100.58% bagi tambahan histamin.

Penderiabio histamin buatan sendiri dengan saiz yang dikecilkan (30 mm x 10 mm) telah dibina dengan karbon bercetak-skrin sebagai elektrod berkerja dan elektrod lawan dan elektrod runjukan Ag/AgCl, di atas substrat poliester {dinamakan SPE (i)}. Penderiabio histamin mini dengan SPE (i) yang berfungsi pada 0.25 volt telah menunjukkan julat respon linear dari 0 sehingga 100 ppm histamin dengan $R^2 = 0.9577$ (RSD < 9%) dan sensitiviti adalah 0.03 nAppm⁻¹ dengan had pengesanan sebanyak 2.46 ppm histamin. Manakala, penderiabio histamin mini dengan SPE (ii) telah beroperasi pada 0.35 volt dan telah menunjukkan julat respon linear 0 sehingga 50 ppm histamin dengan $R^2 = 0.9766$ (RSD < 16%) dan sensitivitinya adalah 0.40 nAppm⁻¹. Had pengesanannya ialah 4.64 ppm histamin. Selepas itu, SPE (i) mini telah diubahsuai dengan K_3 Fe(CN)₆ dan telah beroperasi pada 0.35 volt. Biosensor ini telah dapat mengesan histamin dalam julat respon linear dari 0 sehingga 80 ppm histamine dengan $R^2 = 0.9931$ dan sensitivitinya adalah 5.31 nAppm⁻¹. Had pengesanan penderiabio histamin ini adalah 2.11 ppm histamin.

ACKNOWLEDGEMENTS

Firstly, I would like to express my gratitude to my project supervisor, Assoc Prof. Dr. Fatimah Abu Bakar, also to my internal co-supervisor, Prof. Dr. Abu Bakar Salleh, Mr Rahman Wagiran and my external co-supervisor Assoc. Prof. Dr. Lee Yook Heng. I much appreciate your guidance, continuous support and invaluable suggestions throughout the duration of my study.

I also would like thank to Ministry of Science, Technology and Innovation of Malaysia (MOSTI) for the National Science Fellowship (NSF) scholarship award and IRPA grant 09-03-03-006NBD. My appreciation is extended to the School of Graduate Study (SGS) and the Institute of Bioscience. I am proud to be a part of you.

Beside that, I also gratefully acknowledge Universiti Kebangsaan Malaysia for allowing me to use the lab facilities and for completion my labwork at PPSKTM, UKM. I would also like to thank the Chemistry department and lab assistant of UKM, Mr. Hassanuddin Salleh for his kindness whenever needed.

I am deeply appreciated to my lovely Papa and Mama. Thank you for bringing me to this meaningful world and always giving me unlimited support, sacrifice and love that I don't think I can repay all in this life. Also, to all my seven other siblings, who always stand by my side. Special thanks to my cute nieces, Grace and Vivian who

bring me a lot of joy and warm. You are very special. I am grateful to be your daughter, sister and aunty. I will always love all of you.

I would like to thank to my dearest Francis Wong. Thank you for your invaluable support all the time. With your love, I faced all challenges. You light up my life, I much appreciate and am lucky to have you in my life.

And all my friends, especially Sim Bean, who always, helped and guided me before and after graduating. The appreciation is extended to Choo Ta, Hoi Yen, Dr Rita, Lin Keat, Kak Nina, Sharina, Pek Choo, Kak Linda, Kee Shyuan, Ramziah, Nuria, Wan and so on, who are always lend me a hand.

Lastly, I would like to thank members of Neutraceutical and Enzymology Laboratory and individuals who I did not list down but had helped me a lot in this study. Thank you for all of you. May all of you be well and happy.

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

CHING MAI KEOW

Date:

TABLE OF CONTENTS

ii
iii
V
vii
ix
xiii
xiv
xix
xxi

CHAPTER

1	INT	RODUCTION	1			
2	LITI	ERATURE REVIEW	6			
	2.1	Histamine Seafood Poisoning	6			
	2.2	-	9			
		2.2.1 Transducer	12			
		2.2.2 Electrochemical biosensors	13			
		2.2.3 Amperometric Study	14			
		2.2.4 Advantages and Disadvantages of Amperometric	17			
		Biosensor				
	2.3		17			
		2.3.1 Advantages and Disadvantages of Immobilization	19			
	2.4		20			
		2.4.1 Selectivity of DAO	22			
	2.5	Polymer for Enzyme Immobilization	22			
		2.5.1 Poly (2-hydroxyethyl methacrylate)	24			
		2.5.1 Advantages and Disadvantages of Photocurable Poly	27			
	_	(2-hydroxyethyl methacrylate) (PhotoHEMA)	28			
	2.6	Determination of Histamine Using Conventional, AOAC, and				
		Biosensor Methods				
	2.7	8	34			
		2.7.1 Advantages and Disadvantages of Thick Film	36			
		Technology				
		2.7.2 Screen-printed Biosensor	37			
3	MET	THODOLOGY	40			
	3.1	Chemical and Biochemical Reagents	43			
	3.2	Instrumentation				
	3.3	Preparation of Reagents	47			
		3.3.1 Preparation of Standard Histamine Solution	47			
		3.3.2 Preparation of Diamine oxidase (DAO) Solution	47			

3.4	Preparation of Photocurable Poly(2-hydroxyethyl	48	
	methacrylate) and Poly(2-hydroxyethyl methacrylate)		
	3.4.1 Preparation of Photocurable Poly(2-hydroxyethyl	48	
	methacrylate) (photoHEMA)		
	3.4.2 Preparation of Poly(2-hydroxyethyl methacrylate)	48	
	(pHEMA)		
3.5	Characterization of Methacrylate Membrane for DAO	48	
	Immobilization		
	3.5.1 Immobilization of DAO by photoHEMA	48	
	3.5.2 Immobilization of DAO by pHEMA	49	
	3.5.3 Leaching Test (Bradford Assay)	49	
	3.5.4 Water Absorption	50	
3.6	Optimization of DAO for Histamine Determination	51	
	3.6.1 Voltage	51	
	3.6.2 Ratio of DAO: PhotoHEMA	53	
	3.6.3 Enzyme Loading	53	
	3.6.4 pH of Microenvironment of Immobilization	54	
3.7	Development and Optimization of Histamine Biosensor	54	
	3.7.1 A Comparison of Continuous and Individual	54	
	Measurement of Histamine		
	3.7.2 pH of Histamine Biosensor	55	
	3.7.3 Response Time of Histamine Biosensor	55	
	3.7.4 Response Range of Histamine Biosensor	55 56	
3.8 Characterization of Histamine Biosensor			
	3.8.1 Reproducibility of Histamine Biosensor	56	
	3.8.2 Repeatability of Histamine Biosensor	56	
	3.8.3 The Selectivity of Histamine Biosensor	56	
•	3.8.4 Baseline Study	57	
3.9	Validation of Histamine Biosensor	57	
	3.9.1 Biosensor Conditions	57	
	3.9.1.1 Sample Preparation	58	
	3.9.2 HPLC Conditions	58	
	3.9.2.1 Preparation of Standard Curve	58	
	3.9.2.2 Benzoylation of Standard Histamine Solution	59	
2 10	3.9.2.3 Sample Preparation and Histamine Extraction	60	
3.10	5 1	61	
3.11		61	
3.12	Miniaturized of Three Electrode System	63	
	3.12.1 Electrochemical Properties3.12.2 Examination of Pseudo-reference Electrode	66	
	3.12.2 Examination of Pseudo-reference Electrode 3.12.3 Calibration Curve of Histamine Biosensor	66 66	
2 1 2		67	
3.13	Preliminary Study of Modified SPE Histamine Biosensor	07	
RES	ULTS	68	
4.1	Characterization of polyHEMA for DAO Immobilization	68	
	4.1.1 Leaching Test (Bradford Assay)	68	
	4.1.2 Water Absorption	71	
4.2	Optimization of DAO for Histamine Determination	72	

4

		4.2.1 Voltage (Hydrodynamic Study) 72			
		4.2.2 pH of Microenvironment of Immobilization			
		4.2.3 Ratio of photoHEMA: DAO	77		
		4.2.4 Enzyme Loading	78		
4.3 Development and Optimization of Histamine Biosensor					
		4.3.1 Comparison of Individual and Continuous	79		
		Determination of Histamine			
		4.3.2 Optimization of pH for Histamine Biosensor	80		
		Response			
		4.3.3 Reaction Time of Histamine Biosensor	81		
		4.3.4 Response Range of Histamine Biosensor	82		
	4.4	Characteristic of Histamine Biosensor	83		
		4.4.1 Reproducibility of Histamine Biosensor	83		
		4.4.2 Repeatability of Histamine Biosensor	84		
		4.4.3 Selectivity of Histamine Biosensor	85		
		4.4.4 Baseline Study	85		
	4.5		87		
	4.6	- I	88		
	4.7	Miniaturized Electrode	90		
		4.7.1 Electrochemistry Properties	90		
		4.7.2 Examination of Pseudo-reference Electrode	92		
		4.7.3 Calibration Curve of Histamine Biosensor	95		
	4.8	Preliminary Study of Modified Histamine Biosensor	98		
5	DIS	CUSSION	102		
	5.1	Characterization of polyHEMA for DAO Immobilization	102		
	5.2	Optimization of DAO for Histamine Determination	104		
	5.3	Development and Optimization of Histamine Biosensor	109		
	5.4	Characteristic of Histamine Biosensor	111		
	5.5	Accuracy of Histamine Biosensor	113		
	5.6	Miniaturized Electrode	115		
	5.7	Preliminary Study of Modified Histamine Biosensor	118		
6	CON	NCLUSION	122		
REFERENCES			125		
API	PENDI	CES	144		
BIODATA OF THE AUTHOR			150		

LIST OF TABLES

Table		Page
1.1	Development of biosensors by different industries	4
2.1	Scombroid fish species implicated in histamine poisoning	6
2.2	Histamine-producing bacteria isolated from marine fish	8
2.3	Transducers commonly used in biosensors	12
2.4	Immobilization procedures for enzymes	19
2.5	Biosensors that using photocurable methacrylate and its derivatives as immobilized polymer matrix	25
2.6	Biogenic amines biosensors	31
2.7	Advantages of thick film technology	36
2.8	Determination of analytes using amperometric screen printed biosensors	30
3.1	Chemicals and reagents used in this experiment	44
3.2	Specifications of 90-48 W PW 230-48 W PW stencil (Sefar Asia Pacific Co., Ltd)	63
3.3	Electrode systems using for histamine biosensor fabrication	65
4.1	Recovery of different concentrations of histamine using histamine biosensor	89
4.2	Comparison of different type of electrodes for histamine determination	101
5.1	Overall description of the histamine biosensor	121

LIST OF FIGURES

Figure		Page
2.1	Overall concept of biosensor	10
2.2	Overall view of the CV experiment	15
2.3	Transduction of a chemical signal (substrate concentration) into electric current by an electrochemical biosensor (A) intermediate formation of an electrochemically detectable product; (B) direct electrochemical communication with the enzyme.	16
2.4	Immobilization methods of bio-molecules	18
2.5	DAO reactions with histamine (NH ₃ = ammonia; H_2O_2 = hydrogen peroxide; O_2 = oxygen and H_2O = water)	21
2.6	Structure of monomer Poly (2-hydroxyethyl methacrylate)	24
2.7	Screen printing process used in the fabrication of biosensors using screen printing technology: (a) mask and substrate preparation prior to the printing, (b) printing process, (c) paste deposited on the substrate after printing, (d) cross section of a screen-printing process	39
3.1	Flow chart of the methodology	40
3.2	Immobilization of DAO on top of carbon paste screen- printed electrode with active area of 4 mm^2 .	41
3.3	Instrumentation of histamine biosensor	42
3.4	UV exposure unit brand RS Component 196-5251	45
3.5	Thick Film Printer, model DEK-J1202RS	46
3.6	Standard calibration curve of BSA from 0.00 to 10.00 μ g of BSA	50
3.7	Schotten-Baumann benzoylation reaction	59

Figure		Page
3.8	Films for stencil production a: carbon basal track; b: Ag and AgCl reference layer; c: insulating layer.	62
3.9	Thick film conductor-design guidelines	62
4.1	Leaching levels of DAO entrapped by photoHEMA with different ratio of polymer: DAO; $a= 5:1$; $b = 4:1$; $c = 3:1$; $d = 2.1$; $e = 1:1$	69
4.2	The leaching profile of the entrapped DAO in pHEMA with time	70
4.3	Water absorption of photoHEMA within four hours	71
4.4	Hydrodynamic voltammogram for histamine determination (200 ppm) by free DAO (2.5 mg/ml) across 0.25 to 0.70 volt	73
4.5	Hydrodynamic voltammogram for immobilized DAO from 0.30 volt to 0.50 volt.	74
4.6	Chronoamperometry of hydrogen peroxide reduction at 0.35 volt (a) and oxidation at 0.60 volt (b) versus Ag/AgCl	75
4.7	Optimum pH of buffer used to dissolve DAO before photopolymerization	76
4.8	Optimum ratio of photoHEMA: DAO for histamine (50 ppm) determination	77
4.9	Enzyme loading of immobilized DAO for histamine (50 ppm) determination	78
4.10	Correlation between current changes (nA) by individual determination histamine compared to continuous determination of histamine	79
4.11	pH optimization of histamine biosensor for histamine (50 ppm) determination	80

Figure

4.12	Optimum reaction time of histamine (50 ppm) determination	81
4.13	Response range of histamine biosensor for different histamine concentrations at 0.35 volt, in phosphate buffer pH 7.4, 0.1 M	82
4.14	Reproducibility of histamine biosensor for 50 ppm histamine determination	83
4.15	Repeatability of histamine biosensor for 50 ppm histamine determination.	84
4.16	Selectivity of histamine biosensor towards (●) Putrescine, (□) Histamine, (○) Cadaverine	85
4.17	Current changes of sensor with DAO and without DAO	86
4.18	Standard curve for histamine detection using HPLC method	87
4.19	Correlation of histamine levels determined with both histamine biosensor and HPLC in tiger prawns sample (exposed time at 30 $^{0}C \pm 2$; a = 0 hour, b = 1 hour, c = 2 hours, d = 3 hours, e = 4 hours, f = 5 hours).	88
4.20	Cyclic voltammogram of 0.1 M potassium hexacyanoferrate in 0.1 M KCl from 1^{st} to 5^{th} scan, scan rate = 0.2 vs ⁻¹ for UPM-UKM SPE.	90
4.21	Cyclic voltammogram of 0.1 M potassium hexacyanoferrate (III) in 0.1 M KCl from 1^{st} to 5^{th} scan, scan rate = 0.2 vs ⁻¹ for commercialized SPE.	91
4.22	Interference effect of KCl for both UPM-UKM () and commercialized () SPEs	92
4.23	Cyclic voltammogram of 0.10 M potassium hexacyanoferrate (III) in 0.10 M KCl at (a) UPM-UKM SPE carbon working and counter electrodes versus pseudo-reference electrode and (b) UPM-UKM working and counter electrode versus conventional Ag/AgCl (Methrom) (3 M KCl)	93

Figure

4.24	Cyclic voltammogram of 0.10 M potassium hexacyanoferrate (III) in 0.10 M KCl at (a) SPE (ii) carbon working and counter electrode versus pseudo- reference electrode and (b) SPE (ii) carbon working and counter electrode versus conventional Ag/AgCl (Methrom) (3 M KCl)	93
4.25	Repeatability of SPE (i) histamine biosensor for 50 and 80 ppm histamine determination (electrode system: carbon paste working electrode, carbon paste counter electrode and Ag/AgCl pseudo-reference electrode)	94
4.26	Repeatability of SPE (ii) histamine biosensor for 50 and 80 ppm histamine determination (electrode system: carbon paste working electrode, carbon paste counter electrode and Ag/AgCl pseudo-reference electrode)	95
4.27	Response range of SPE (i) histamine biosensor for histamine determination at 0.25 volt.	96
4.28	Response range of SPE (ii) histamine biosensor for histamine determination at 0.35 volt	97
4.29	Cyclic voltammogram of modified SPE in saturated potassium hexacyanoferrate III in 0.1 M of KCl (Peak 1 = 0.10 volt; peak 2 = 0.39, volt; peak 3 = -0.10 volt and peak 4 = -0.42 volt)	98
4.30	Response range of modified SPE histamine biosensor at 0.35 volt	99
4.31	Response range of histamine biosensor; (\blacktriangle) Macro electrodes; (\circ) Modified SPE; (\Box) SPE (i); (\blacklozenge)SPE (ii)	100
5.1	Mechanism of the histamine biosensor; internally mediated via the electro-oxidation of the aldehyde product (Niculescu, <i>et al.</i> , 2001)	106
5.2	Continuous (a) and individual measurements (b, c) of different concentrations of histamine	109

Figure		Page
5.3	Suggested mechanism for charge transport in macro reference electrode	116
6.1	Miniaturized the bench type biosensor into the portable biosensor	124

LIST OF ABBREVIATIONS

1. DAO	Diamine oxidase
2. DMPP	2,2-hydroxyethyl methacrylate
3. polyHEMA	Poly (2-hydroxyethyl methacrylate)
4. photoHEMA	Photo (2-hydroxyethyl methacrylate)
5. UV	Ultra violet
6. HPLC	High Performance Liquid Chromatography
7. CV	Cyclic Voltammatry
8. SPE	Screen-printed electrode
9. AOAC	Associate Official Analytical Chemistry
10. FDA	Food and Drug Administrtation
11. SCE	Saturated calomel electrode
12. RSD	Relative standard deviation
13. BSA	Bovine serum albumin
14. LC	Liquid chromatography
15. PBS	Phosphate buffer saline

LIST OF SYMBOLS

1. mM	Millimolar
2. A	Ampere
3. V	Volt
4. Ox	Oxidation form
5. Red	Reduction form
6. ppm	Part per million
7. ppb	Part per billion
8. μl	Microliter
9. ml	Milliliter
10. g	Gram
11. N	Normality
12. kDa	Kilo Dalton

CHAPTER 1

INTRODUCTION

Histamine is known as a biogenic amine which is low molecular weight and possesses biological activity (Tombelli and Mascini, 1998). This compound was observed to accumulate in fish tissues when bacteria spoilage commenced (Male *et al.*, 1996) without altering the fish normal appearance and odor (Lehane and Olley, 2000). Histamine or 'Scombroid' poisoning is a short-lived and benign food-borne chemical intoxication typically associated with the consumption of food products containing large levels of histamine. Therefore, levels of histamine have been suggested as rapid fish spoilage indicators (Male *et al.*, 1996; Tomballi and Mascini, 1998; Patange, *et al.*, 2005). Histamine poisoning probably occurs frequently in Asia, and was reported in extremely high levels in some salted, and dried fermented products in Asia. Other countries such as Australia, New Zealand, Africa, Canada, Europe, and United State have also reported cases of histamine poisoning. The largest outbreak was recorded in Japan in 1973 (2656 cases) (Lehane and Olley, 2000).

Histamine exerts its effects by binding to receptors on cellular membranes in the respiratory, cardiovascular, gastrointestinal and hematological immunological system and the skin in the course of allergic and other actions such as hypotension, flushing, diarrhea, vomiting and headache (Lehane and Olley, 2000). The symptoms may vary between individuals that exposed to the same dose of histamine in contaminated

fishery products (Bremer, et al., 2003). The earliest record of this disease was in 1828. Since then, the worldwide network for harvesting, processing and distributing fish products has made histamine poisoning as a global problem (Lehana and Olley, 2000). According to Food Safety Information System Malaysia (FOSIM) no guidance of histamine level is quote in Food Regulation 1985 and Food Act 1983. However, International food safety regulation, Food and Drugs Administration (FDA) USA, has quoted 500 ppm as hazardous level of histamine (FDA, 2001). Therefore, it had been considered as an indicator of earlier microbial decomposition. Histamine is generally not uniformly distributed in a decomposed fish (Lehane and Olley, 2000; FDA, 2001). The guidance level of 50 ppm has been set as the chemical index for fish spoilage. If 50 ppm of histamine is found in one section, there is the possibility that other sections may exceed 500 ppm (Lehane and Olley, 2000; FDA, 2001). The fish and fishery products with histamine above that level are prohibited from being sold for human consumption (Gigirey, et al., 1998). Asia Pacific countries such as Australia and New Zealand have quoted 100 ppm of histamine as upper limit in food products (Brinker, et al., 1996). In Canada, the level of histamine in seafood products should not exceed 200 ppm (Ababouch, et al., 2005). Reviews of the oral toxicity to humans suggested that histamine induced poisoning have three stage, slight poisoning at 80- 400 mg/kg (ppm) fish, moderate poisoning at > 400 mg/kg and severe poisoning at > 1000 mg/kg. Based on the analysis of poisoning cases, the following guidance levels have been suggested for histamine content of seafood: (i) < 50 mg/kg(safe for consumption); (ii) 50-200 mg/kg (possibly toxic), (iii) 200-1000 mg/kg

(probably toxic) and (iv) > 1000 mg/kg (toxic and unsafe for human consumption) (Lehane and Olley, 2000).

Several chromatography methods have been proposed for histamine detection (Chemnitius and Bilitewski, 1996; Male *et al.*, 1996; Scott, 1998; Tombelli and Mascini, 1998). However, these methods required complicated and expensive instruments and time consuming. With the current technology, detecting seafood spoilage can be fast, cost effective and highly specific by using amperometric biosensors method (Male *et al.*, 1996; Shin, *et al.*, 1998; Zhang *et al.*, 2002).

Biosensors are devices comprising of an analyte and a selective interface in close proximity or integrated with a transducer. The transducer will converts the biochemical signal into an electronic signal which can be processed as an output (Chaubey and Malthotra, 2002). One of the benefits of biosensors is that they show a very highly selective property. This selectivity is due to the high substrate specificity of the biological material and the interference free indication of the reaction product (Chaubey and Malhotra, 2002). Nowadays, biosensor has moved from the laboratory to field testing and some of the biosensors have been commercialized in US, Europe and Japan. Table 1.1 shows the development of biosensors by different industries (Sharma, *et al.*, 2003).

Type of biosensor	Manufacturers/ company
Air pollutants of Candida albicans	Universal Sensors, USA
Choline biosensor (immobilized on graphite electrode)	Thorn EMI Simtec Ltd., UK
Artificial electron acceptor, Hexacynoferrate (+) II (used with Pt electrode)	Wolverine Medical, USA
Immobilized enzyme membranes with O_2 , NH_4^+ and CO_2 electrode	Universal Sensors, USA
Glucose sensor (Immobilized with O ₂ electrode)	Analytical Instruments Co. Japan, Gambro AB, Sweden, Radlkis Electrochemical Instrum., Hungary, Oriental Electric Co. Ltd., Japan
Glucose biosensor (immobilized with H_2O_2 probe)	Fuji Electric Co. Japan, Kyoto Daichi Kagaku, Japan, Omron Toyoba, Japan, Solea-Tacusse., France, Yellow Springs Instruments, Co., USA
Lactate biosensor	YSI Co., USA, Omron Toyoba, Japan
Acetic acid, methanol and ethanol (immobilized with O ₂ electrode)	Denki Kagaku Keik Ltd., Japan
Uric acid sensor (immobilized with H_2O_2 electrode)	Fuji Electric Co. Japan
Fish freshness biosensor (immobilized on polarographic electrode)	Pegasus Industrial Specialities Ltd., Canada
BOD biosensors	Nissin Electric Co. Ltd., Japan

