

UNIVERSITI PUTRA MALAYSIA

INFLUENCE OF EMULSION COMPONENTS ON PHYSICOCHEMICAL PROPERTIES AND RELEASE OF THE VOLATILE FLAVOR COMPOUNDS FROM ORANGE BEVERAGE EMULSION

SEYED HAMED MIRHOSSEINI

FSTM 2007 9

INFLUENCE OF EMULSION COMPONENTS ON PHYSICOCHEMICAL PROPERTIES AND RELEASE OF THE VOLATILE FLAVOR COMPOUNDS FROM ORANGE BEVERAGE EMULSION

SEYED HAMED MIRHOSSEINI

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

INFLUENCE OF EMULSION COMPONENTS ON PHYSICOCHEMICAL PROPERTIES AND RELEASE OF THE VOLATILE FLAVOR COMPOUNDS FROM ORANGE BEVERAGE EMULSION

By

SEYED HAMED MIRHOSSEINI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2007

Specially Dedicated to

My Parent

Father, Mother, Brothers

and

Grandmother

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

INFLUENCE OF EMULSION COMPONENTS ON PHYSICOCHEMICAL PROPERTIES AND RELEASE OF THE VOLATILE FLAVOR COMPOUNDS FROM ORANGE BEVERAGE EMULSION

By

SEYED HAMED MIRHOSSEINI

December 2007

Chairman: Tan Chin Ping, PhD

Faculty: Food Science and Technology

In the present study, the effect of main important factors affecting the headspace (HS) extraction efficiency of orange flavor compounds was investigated for the development of the solid phase microextraction (SPME) technique. The optimum HS-SPME conditions were established by using the diluted emulsion (1:100) including 15% NaCl, a 75 μ m CAR/PDMS fiber at 45 °C for 15 min under stirring mode. Subsequently, the influence of different concentration levels of main beverage emulsion components namely Arabic gum (7-20% w/w), xanthan gum (0.1-0.5% w/w) and orange oil (6-14% w/w) on the physicochemical properties and release pattern of target volatile flavor compounds from orange beverage emulsion was studied using a three-factor central composite design (CCD). The main objective of this study was to determine the optimum level of the main emulsion components which led to the desirable response goals. The desirable response goals include: (1) the highest emulsion stability, viscosity, pseudoplastic behavior, turbidity,

cloudiness, electrophoretic mobility and largest magnitude of ζ -potential; (2) the least turbidity loss rate, conductivity, size index, average droplet size, polydispersity index, pH and flavor release content; and (3) the target value for density. The results indicated that the physicochemical properties of emulsion and release behavior of target volatile flavor compounds from orange beverage emulsion were significantly (p < 0.05) influenced by the main and interaction effects of the main beverage emulsion components. In most cases, the significant (p < 0.05) nonlinear regression models were fitted by the response surface analysis for describing the variation of physicochemical properties of emulsion. The response surface models exhibited high R^2 values (> 0.8) which had no indication of significant (p > 0.05) lack of fit in most cases, thus ensuring a satisfactory adjustment of the polynomial regression models fitted to the experimental data. The fitted models were accurately explained by the high variation of physicochemical properties of emulsion as a function of the proportion of main beverage emulsion components. In general, the predicted optimum for the orange beverage emulsion was 20% (w/w) Arabic gum, 0.3% (w/w) xanthan gum and 14% (w/w) orange oil. The results also indicated that CCD was found to be a very useful experimental design for investigating the variation of physicochemical properties of orange beverage emulsion and optimizing the proportion of beverage emulsion components leading to the desirable orange beverage emulsion. The results exhibited that independent variables had the least and most significant (p < 0.05) effects on the release of β -pinene and γ -terpinene, respectively. The effect of hydrocolloid concentration on volatile compound release was more pronounced with the negative effect of xanthan gum concentration on the overall release content. In the present study, the reduction in flavor release intensity may be explained by the different phenomena such as adsorption, complexation,

entrapment, hydrogen bonds and encapsulation of target flavor compounds induced by their interactions with Arabic gum, xanthan gum and other matrix constituents. Consequently, the effect of different concentrations of pectin (1.5, 3 and 4.5% w/w), carboxymethyl cellulose (CMC) (0.1, 0.3 and 0.5% w/w), glycerol (0.5, 1 and 1.5% w/w) and vegetable oil (2, 3 and 4% w/w) on the emulsion properties of the optimum beverage emulsion was investigated. The results indicated that these supplementary emulsion components (especially vegetable oil and pectin) could be used to modulate the physicochemical properties and release pattern of volatile flavor compounds from the orange beverage emulsion.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi sebahagian keperluan untuk ijazah Doktor Falsafah

KESAN KOMPONEN EMULSI KE ATAS CIRI-CIRI FIZIKOKIMIA DAN SIFAT PEMBEBASAN BAHAN PERISA MERUAP DARI EMULSI MINUMAN OREN

Oleh

SEYED HAMED MIRHOSSEINI

Disember 2007

Pengerusi: Tan Chin Ping, PhD

Fakulti: Sains dan Teknologi Makanan

Dalam kajian ini, kesan faktor utama yang mempengaruhi keberkesanan pengekstrakan ruang tutupan untuk komponen perisa oren telah dikaji untuk pembentukan kaedah pengekstrakan fasa pepejal mikro-ruang kepala (HS-SPME) yang efisien. Keadaan optimum HS-SPME telah dikenalpasti dengan menggunakan emulsi yang dicairkan (1:100) termasuk 15% NaCl, 75 μ m CAR/PDMS fiber pada suhu 45°C dan dikacau selama 15 minit. Kesan kepekatan bahan emulsi utama yang berlainan, iaitu gum Arabik (7 – 20% w/w), gum xanthan (0.1 – 0.5% w/w) dan minyak oren (6 – 14% w/w), ke atas ciri-ciri fizikokima dan corak pembebasan sebatian perisa meruap dari emulsi minuman oren telah dikaji dengan menggunakan rekabentuk komposit pusat (CCD) tiga faktor. Objektif utama kajian ini adalah untuk menentukan takat optimum komponen emulsi utama yang dapat menghasilkan matlamat respon yang disukai. Ciri-ciri tersebut ialah: (1) nilai kestabilan emulsi, kelikatan, sifat pseudoplastik, kekeruhan, kemendungan, mobiliti elektroforesis yang

paling tinggi dan keupayaan zeta yang terbesar; (2) kadar kehilangan kekeruhan, kekonduksian, indeks saiz, purata saiz titisan, indeks kepoliserakan dan kandungan pembebasan perisa yang paling rendah; dan (3) nilai pH dan ketumpatan yang disasarkan. Keputusan kajian ini menunjukkan bahawa sifat fizikokimia emulsi dan corak pembebasan sebatian perisa meruap dari emulsi minuman oren dipengaruhi secara bererti (p < 0.05) oleh kesan utama dan interaksi komponen-komponen emulsi minuman utama. Bagi kebanyakan kes, model regresi tak linear secara bererti yang ditetapkan melalui analisis permukaan respons telah dapat menghuraikan variasi pada sifat-sifat fizikokimia emulsi. Model-model permukaan gerak balas telah menunjukkan nilai R^2 yang tinggi (> 0.8) dan dalam kebanyakan kes tidak menunjukkan padanan kurang tepat yang bererti (p > 0.05). Ini memastikan bahawa data eksperimen telah dapat menghasilkan pengubahsuaian model regresi polinomial yang memuaskan. Model-model yang dihasilkan didapati mampu menghuraikan variasi yang tinggi terhadap sifat fizikokimia emulsi secara tepat sebagai satu fungsi terhadap perkadaran komponen emulsi minuman yang utama. Secara keseluruhannya, keadaan optimum bagi emulsi minuman oren mengandungi 20% (w/w) gum Arabik, 0.3% (w/w) gum xanthan dan 14% (w/w) minyak oren. Keputusan kajian juga mendapati bahawa CCD merupakan satu rekabentuk eksperimen vang sesuai untuk mengaji perubahan variasi pada sifat-sifat fizikokimia emulsi minuman oren dan dapat mengoptimumkan perkadaran komponen emulsi minuman bagi menghasilkan sifat-sifat emulsi minuman oren yang disukai. Keputusan kajian ini juga menunjukkan bahawa pembolehubah tak bersandar masing-masing mempunyai kesan yang paling tak ketara dan paling ketara (p < 0.05) ke atas pembebasan β -pinene dan γ -terpinene. Kesan kepekatan hidrokoloid ke atas pembebasan bahan meruap adalah lebih ketara dengan korelasi negatif di antara

kandungan pembebasan keseluruhan dan kepekatan gum xanthan. Dalam kajian ini, pengurangan pembebasan sebatian perisa meruap kelihatan lebih disebabkan oleh kesan penyerapan keatas pengkompleksan yang membawa kepada pemerangkapan, pengkapsulan dan ikatan-ikatan hidrogen akibat interaksi di antara sebatian perisa dan juzuk matriks dan bukan hanya disebabkan oleh kesan kelikatan. Kesan pelbagai kepekatan pektin (1.5, 3 dan 4.5% w/w), carboxymethyl cellulose (CMC) (0.1, 0.3 dan 0.5% w/w), glycerol (0.5, 1.0 dan 1.5% w/w) dan minyak sayuran (2.0, 3.0 dan 4.0% w/w) pada tahap optimum emulsi minuman juga telah dikaji. Keputusan menunjukkan bahawa emulsi tambahan (terutama minyak sayuran dan pektin) boleh digunakan untuk modulat sifat-sifat fizikokimia dan pembebasan komponen meruap dari emulsi minuman berperisa oren.

ACKNOWLEDGEMENTS

I am grateful to have this opportunity to express my sincere appreciation and thanks to my supervisor Dr. Tan Chin Ping for his valuable guidance, suggestion, stimulating discussion and support throughout the planning and execution of this research.

I would also like to express my appreciation and gratitude to my committee members, Prof. Dr. Salmah Yusof and Dr. Nazimah Sheikh Abdul Hamid for their remarkable ideas, constructive comments, continuous support and guidance throughout of the duration of this research project.

Sincere appreciation is also extended to Dr. Huey Boo Chern for useful statistical help, support and encouragement in my project. I also wish to thank Prof. Gary Reineccius and Dr. Ali Reza Taherian for their invaluable guidance and suggestions at the critical start of this project.

The completion of this study would not be possible without the assistance and support from Mr. Yap from Siber Hegner (M) and all the laboratory staff especially Mr. Azman, Amran and Madam Jamaliah for their kindness and technical assistance.

Last but not least, I would like to express my gratitude to my parents and family for their fullest encouragement and concern throughout the entire course of my studies.

I certify that an Examination Committee has met on 27th December 2007 to conduct the final examination of Seyed Hamed Mirhosseini on his Doctor of Philosophy thesis entitled "INFLUENCE OF EMULSION COMPONENTS ON PHYSICOCHEMICAL PROPERTIES AND RELEASE OF THE VOLATILE FLAVOR COMPOUNDS FROM ORANGE BEVERAGE EMULSION" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Examination Committees are as follows:

Sohaila HJ. Mohamad, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Yazid Abdul Manap, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Roselina Karim, PhD

Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

David B. Min, PhD

Professor College of Food Agricultural and Environmental Science Ohio State University (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 29 January 2008

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Tan Chin Ping, PhD

Lecturer Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Nazimah Sheikh Abdul Hamid, PhD

Lecturer Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

Salmah Yusof, PhD

Professor Faculty of Science and Technology Universiti Sains Islam Malaysia (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 29 January 2008

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SEYED HAMED MIRHOSSEINI

Date: 29 December 2007

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	Х
DECLARATION	xii
LIST OF TABLES	xix
LIST OF FIGURES	xxi
LIST OF ABBREVIATIONS	XXV

CHAPTER

Ι	GENERAL INTRODUCTION	1
II	LITERATURE REVIEW	10
	Introduction	10
	Beverage Emulsion Classification	11
	Beverage Emulsion Composition	12
	Water	13
	Surface Active Agents and Hydrocolloids	14
	Arabic Gum	16
	Xanthan Gum	20
	Pectin	22
	Carboxymethyl Cellulose (CMC)	24
	Acids	27
	Citric Acid	27
	Preservatives	28
	Flavoring agents	28
	Orange Oil	29
	Supplementary Emulsion Components	31
	Glycerol	31
	Vegetable Oil	33
	Physicochemical Properties of Beverage Emulsion	35
	Emulsion Stability	36
	Emulsion Appearance or Turbidity	40
	Emulsion Rheology	42
	Emulsion Droplet Size and Distribution	45
	Emulsion Droplet Charge (ζ-potential)	47
	Flavor Release	50
	Extraction Techniques	55
	Headspace-Solid Phase Microextraction (HS-	57
SPME)		

IIIHEADSPACE SOLID PHASE MICROEXTRACTION
(HS-SPME) METHOD DEVELOPMENT FOR THE 61

	QUALITATIVE AND SEMI-QUANTITATIVE						
	HEADSPACE ANALYSIS OF VOLATILE FLAVOR						
	COMPOUNDS RELEASED FROM THE REAL AND						
	MODEL ORANGE BEVERAGE EMULSIONS						
	Introduction	61					
	Materials and Methods	66					
	Chemicals and Materials	66					
	Preparation of Standard Solution	67					
	Preparation of Real Orange Beverage Emulsion	68					
	Preparation of Model Orange Beverage Emulsion	69					
	HS-SPME Extraction Procedure	70 71					
	GC- FID Condition						
GC-TOFMS condition							
	Data Analysis	72					
	Experimental Designs and Data Analysis	73					
	Results and Discussion	76					
	HS-SPME Method Development for the Real Orange						
	Beverage Emulsion	76					
	Identification	76					
	SPME Procedure	77					
	SPME Fiber Screening	77					
	Effect of Extraction Time	79					
A •, .•	Effect of Adsorption Temperature and Sample	80					
Agitation		0.0					
	Effect of Adsorption Temperature and Salt Addition	82					
	Effect of Sample Amount	83					
	Effect of pH	84					
	Effect of Salt Type	85					
	Effect of NaCl Amount	86 97					
	Effect of Sample Concentration	87					
	Performance Characteristics	89					
	Calibration and Linearity	89					
	Accuracy	90					
	Precision	90 01					
	Limit of Detection (LOD)	91					
	HS-SPME Analysis for Commercial Orange Beverage	01					
	Emulsions	91					
	HS-SPME Method Development for the Model Orange	02					
	Beverage Emulsion	92 02					
	Preliminary Study Fiber Selection	92 02					
		93 04					
	Optimization of SPME Parameters	94 04					
	Screening SPME Parameters by a Factorial Design	94 101					
	Optimization by a Central Composite Design	101					
	Performance Characteristics	105					
	Calibration and Linearity	105					
	Precision	106					
	Accuracy	107					
	Limit of Detection (LOD)	107					
	Determination of Volatile Compounds in Commercial						

Samples	107
Conclusion	108

IV	EFFECT OF LOWER CONCENTRATION OF MAIN EMULSION COMPONENTS ON PHYSICOCHEMICAL PROPERTIES AND FLAVOR RELEASE PATTERN OF ORANGE BEVERAGE EMULSIONS USED IN FRUIT	
	JUICE	112
	Introduction	112
	Materials and Methods	117
	Materials	117
	Preparation of Orange Beverage Emulsion	117
	Physicochemical Properties	119
	Emulsion Stability	119
	Turbidity Loss rate	119
	Turbidity	120
	Cloudiness and Size Index	121
	Viscosity and Flow Behavior	122
	Average Droplet Size and Polydispersity Index (PDI)	123
	ζ-potential, Electrophoretic Mobility and Conductivity	123
	pH	124
	Density	124
	Flavor Release Profile	125
	SPME Procedure for Determining the Flavor Release	125
	Instruments	125
	Experimental Design and Statistical Analysis	125
	Optimization Procedure	127
	Validation Procedure	128
	Results and Discussion	128
	Preliminary Study	128
	Physicochemical Properties	128
	Fitting the Response Surface Models	131
	Emulsion Stability	136
	Turbidity Loss Rate	139
	Turbidity	142
	Cloudiness	144
	Viscosity	146
	Flow Behavior	148
	Average Droplet Size	151
	Polydispersity Index (PDI)	153
	Size Index	154
	ζ-potential	156
	Electrophoretic Mobility	158
	Conductivity	160
	Density	162
	pH Outimization Drawdom for the Dhaviorshamias	163
Dronation	Optimization Procedure for the Physicochemical	164
Properties	Validation of the Models Fitted for the Physicochemical Properties	165
	1	

Factors Affecting Emulsion Flavor Release	170
The Main Linear Effects of the Independent Variables	174
The Quadratic Effects of the Independent Variables	177
The Interaction Effects of the Independent Variables	178
Optimization Procedure for the Desirable Flavor Release	179
Verification of the Models Fitted for the Flavor Release	184
Conclusion	186

EFFECT OF HIGHER CONCENTRATION OF MAIN EMULSION COMPONENTS ON PHYSICOCHEMICAL PROPERTIES AND FLAVOR RELEASE PATTERN OF ORANGE BEVERAGE EMULSIONS USED IN

V

CARBONATED BEVERAGE	189
Introduction	189
Materials and Methods	193
Materials	193
Preparation of Orange Beverage Emulsion	194
Physicochemical Properties	195
Emulsion Stability	195
Turbidity Loss Rate	195
Turbidity	195
Cloudiness and Size Index	196
Viscosity and Flow Behavior	196
Average Droplet size and Polydispersity Index (PDI)	196
ζ-potential, Electrophoretic Mobility and Conductivity	196
pH	197
Density	197
Flavor Release Profile	197
SPME Procedure for Determining the Flavor Release	197
Instruments	198
Experimental Design and Statistical Analysis	198
Optimization Procedure	199
Validation Procedure	199
Results and Discussion	199
Physicochemical Properties	199
Fitting the Response Surface Models	202
Refitting the Response Models to the Significant Effects	206
Emulsion Stability	209
Turbidity Loss Rate	210
Turbidity	212
Cloudiness	214
Viscosity	215
Flow Behavior	216
Average Droplet Size	218
Polydispersity Index (PDI)	220
Size Index	222
ζ-potential	224
Electrophoretic Mobility	225
Conductivity	226
Density	228

	pН					229
	Optimization	Procedure	for	the	Physicochemical	230
Properties						
	Validation of	the Models F	itted	for the	Physicochemical	
	Properties					231
	Factors Affecti	ng Emulsion	Flavo	r Relea	ase	235
	The Main I	Linear Effects	of the	e Inder	endent Variables	240
	The Quadra	atic Effects of	f the Iı	ndepen	dent Variables	242
				-	ndent Variables	243
	Optimization P	rocedure for	the De	esirable	e Flavor Release	244
	-				Flavor Release	248
	Multiple Grap	hical Optim	izatior	ns for	Determining the	
	Overall Optim	1			U	250
Co	onclusion					251

VI MODIFICATION OF PHYSICOCHEMICAL PROPERTIES AND FLAVOR RELEASE OF ORANGE BEVERAGE EMULSION USING SUPPLEMENTARY AND REPLACER EMULSION COMPONENTS 254 Introduction 254

Introduction	254
Materials and Methods	259
Materials	259
Preparation of Orange Beverage Emulsion	260
Analytical Methods	261
Emulsion Stability	261
Turbidity Loss Rate	261
Turbidity	262
Cloudiness and Size Index	262
Viscosity and Flow Behavior	262
Average Droplet Size and Polydispersity Index (PDI)	263
ζ -potential, Electrophoretic Mobility and Conductivity	263
pH	263
Density	263
SPME Procedure for Determining the Flavor Release	264
Results and Discussion	264
Effect of Supplementary Emulsion Components	265
Emulsion Stability	265
Turbidity Loss Rate	267
Turbidity	269
Cloudiness	270
Viscosity	272
Flow Behavior	273
Average Droplet Size	275
Polydispersity Index (PDI)	276
Size Index	276
ζ-potential	277
Electrophoretic Mobility	278
Conductivity	278
Density	279
pH	279

	Flavor Release Profile under Accelerated Condition	280
	Effect of Emulsion Component Replacers	287
	Emulsion Stability	288
	Turbidity Loss Rate	292
	Turbidity	295
	Cloudiness	296
	Viscosity	298
	Flow Behavior	298
	Average Droplet Size	299
	Polydispersity Index (PDI)	301
	Size Index	302
	ζ-potential	302
	Electrophoretic Mobility	303
	Conductivity	304
	Density	305
	pH	305
	Flavor Release Profile under Accelerated Condition	306
	Conclusion	314
VII	CONCLUSIONS AND RECOMMENDATIONS	317
REFERI	ENCES	326
BIODAT	TA OF THE AUTHOR	350
LIST OF PUBLICATIONS		

LIST OF TABLES

Table		Page
3.1	Independent and response variables established for the HS-SPME method development in the real orange beverage emulsion	73
3.2	Experimental variables and their levels in 2^{5-2} fractional factorial design	75
3.3	Design matrix, treatments and experimental levels in the 2^{5-2} fractional factorial design	75
3.4	Volatile flavor compounds of Valencia cold pressed orange oil identified by HS-SPME-GC using TOFMS and quantified by FID	77
3.5	The concentration range, regression equations, R^2 , recovery, LOD and RSD for the orange flavor compounds	90
3.6	Volatile flavor compounds in four commercial beverage emulsions	92
3.7	Matrix of the central composite design (CCD)	102
3.8	ANOVA results obtained for the central composite design for orange flavor compounds	103
3.9	The linear range, regression equations, R^2 , recovery, LOD and RSD for the orange flavor compounds	106
3.10	The RSDs of the target flavor compounds in orange beverage emulsion	107
3.11	Concentration of volatile flavor compounds in six commercial beverage emulsions	108
4.1	Levels of independent variables established according to the central composite design (CCD)	118
4.2	Matrix of the central composite design (CCD)	118
4.3	The experimental value for the response variables (Y_j) (mean \pm SD)	129
4.4	Regression coefficients, R^2 , adjusted R^2 , probability values and lack of fit for the final reduced models	133
4.5	ANOVA and regression coefficients of the final first and second-order polynomial models	135
4.6	Experimental and predicted values for the response variables based on final reduced models	167

4.7	Regression coefficients, R^2 , adjusted R^2 , probability values and Lack of fit tests for the final reduced models	172
4.8	Analysis of variance (ANOVA) and regression coefficients of the reduced response models	174
4.9	Comparison between experimental and predicted values for the response variables based on the final reduced models	185
5.1	Levels of independent variables established according to the central composite design (CCD)	194
5.2	Matrix of the central composite design (CCD)	194
5.3	The experimental value for the response variables (Y_j) (mean \pm SD)	200
5.4	R^2 , adjusted R^2 , probability values and lack of fit for the initial response surface models	204
5.5	ANOVA and regression coefficients of the final first and second-order polynomial models	205
5.6	Regression coefficients, R^2 , adjusted R^2 , probability values and lack of fit for the final reduced models	207
5.7	Experimental and predicted values for response variables based on final reduced models	232
5.8	Regression coefficients, R^2 , adjusted R^2 , probability values and Lack of fit tests for the final reduced models	238
5.9	Analysis of variance (ANOVA) and regression coefficients of the reduced response models	240
5.10	Comparison between experimental and predicted values for the response variables based on the final reduced models	249
6.1	The matrix of experimental design (control sample and samples containing supplementary emulsion components)	260
6.2	The matrix of experimental design (control sample and samples containing replacer emulsion components)	261
6.3	The experimental data obtained for the response variables (mean \pm SD)	264
6.4	The experimental data obtained for the response variables (mean \pm SD)	287

LIST OF FIGURES

Figure		Page
2.1	A schematic structural image of Arabic gum or Acacia gum	19
2.2	A schematic structural image of xanthan gum	21
2.3	A schematic structural image of slowest-high ster pectin	22
2.4	A schematic structural image of CMC	25
3.1	Influence of type of fiber on extraction recovery of (a) all volatile compounds except myrcene and limonene; (b) myrcene and total flavor compounds without limonene; (c) limonene and total flavor compounds including limonene	78
3.2	Influence of exposure time on extraction recovery of (a) all volatile compounds except myrcene and limonene; (b) myrcene and total flavor compounds without limonene; (c) limonene and total flavor compounds including limonene	80
3.3	Influence of absorption temperature and sample agitating on extraction recovery of (a) all volatile compounds except myrcene and limonene; (b) myrcene and total flavor compounds without limonene; (c) limonene and total flavor compounds including limonene	81
3.4	Influence of absorption temperature and salt addition on extraction recovery of (a) all volatile compounds except myrcene and limonene; (b) myrcene and total flavor compounds without limonene; (c) limonene and total flavor compounds including limonene	83
3.5	Influence of sample amount on extraction recovery of (a) all volatile compounds except myrcene and limonene; (b) myrcene and total flavor compounds without limonene; (c) limonene and total flavor compounds including limonene	84
3.6	Influence of pH on extraction recovery of (a) all volatile compounds except myrcene and limonene; (b) myrcene and total flavor compounds without limonene; (c) limonene and total flavor compounds including limonene	85
3.7	Influence of salt type on extraction recovery of (a) all volatile compounds except myrcene and limonene; (b) myrcene and total flavor compounds without limonene; (c) limonene and total flavor compounds including limonene	86

3.8	Influence of NaCl amount on extraction recovery of (a) all volatile compounds except myrcene and limonene; (b) myrcene and total flavor compounds without limonene; (c) limonene and total flavor compounds including limonene	87
3.9	Influence of sample concentration on extraction recovery of (a) all volatile compounds except myrcene and limonene; (b) myrcene and total flavor compounds without limonene; (c) limonene and total flavor compounds including limonene	88
3.10	Effect of type of fiber on extraction yield of (a) all volatile compounds except myrcene and limonene; (b) myrcene, total flavor compounds with and without limonene	94
3.11	Pareto chart of the main effects obtained from 2^{5-2} fractional factorial design (grey = (+) positive effect, white = (-) negative effect)	97
3.12	Response surfaces plots: peak area of orange flavor compounds vs. absorption temperature ($^{\circ}$ C), extraction time and sample concentration	104
4.1	Response surface plots for emulsion stability as function of Arabic gum, xanthan gum and orange oil contents	138
4.2	Response surface plots for turbidity loss rate as function of Arabic gum, xanthan gum and orange oil contents	141
4.3	Response surface plots for turbidity as function of Arabic gum, xanthan gum and orange oil contents	143
4.4	Response surface plots for cloudiness as function of Arabic gum, xanthan gum and orange oil contents	145
4.5	Response surface plots for viscosity (60 RPM) as function of Arabic gum, xanthan gum and orange oil contents	148
4.6	Response surface plots for viscosity ratio $(x/10x)$ as function of Arabic gum, xanthan gum and orange oil contents	151
4.7	Response surface plots for average droplet size as function of Arabic gum, xanthan gum and orange oil contents	152
4.8	Response surface plots for polydispersity index as function of Arabic gum, xanthan gum and orange oil contents	154
4.9	Response surface plots for size index as function of Arabic gum, xanthan gum and orange oil contents	156
4.10	Response surface plots for ζ-potential as function of Arabic gum,	

	xanthan gum and orange oil contents	158
4.11	Response surface plots for electrophoretic mobility as function of Arabic gum, xanthan gum and orange oil contents	159
4.12	Response surface plots for conductivity as function of Arabic gum, xanthan gum and orange oil contents	161
4.13	Response surface plots for density as function of Arabic gum, xanthan gum and orange oil contents	163
4.14	Response surface plots for the response variables studied as function of significant ($p < 0.05$) interaction effects between Arabic gum, xanthan gum and orange oil	184
5.1	Response surface plots for emulsion stability as function of significant ($p < 0.05$) interaction effects between independent variables	210
5.2	Response surface plots for turbidity loss rate as function of significant ($p < 0.05$) interaction effects between independent variables	212
5.3	Response surface plots for turbidity as function of significant (p < 0.05) interaction effects between independent variables	213
5.4	Response surface plots for viscosity (60 RPM) as function of significant ($p < 0.05$) interaction effects between independent variables	216
5.5	Response surface plots for viscosity ratio $(x/10x)$ as function of significant (p < 0.05) interaction effects between independent variables	218
5.6	Response surface plots for average droplet size as function of significant (p < 0.05) interaction effects between Arabic gum, xanthan gum and orange oil	220
5.7	Response surface plots for polydispersity index as function of significant ($p < 0.05$) interaction effects between independent variables	222
5.8	Response surface plots for size index as function of significant (p < 0.05) interaction effects between independent variables	223
5.9	Response surface plots for electrophoretic mobility as function of significant ($p < 0.05$) interaction effects between independent variables	226
5.10	Response surface plots for conductivity as function of significant (p	

